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Abstract: The theory of statistical manifolds w.r.t. a conformal structure is reviewed in a creative
manner and developed. By analogy, the γ-manifolds are introduced. New conformal invariant
tools are defined. A necessary condition for the f -conformal equivalence of γ-manifolds is found,
extending that for the α-conformal equivalence for statistical manifolds. Certain examples of these
new defined geometrical objects are given in the theory of Iinformation.
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1. Introduction

The notion of statistical manifold was defined by S. Amari in [1], as a Riemannian
manifold (M, g) endowed with a torsion-free affine connection ∇ such that

(∇Zg)(X, Y) = (∇Yg)(X, Z) (1)

Since then, a huge literature ensued, where various techniques and notions from differ-
ential geometry were applied in information geometry, via statistics (see, for
example, [2–6]). In [7], we included an expository part, devoted to reviewing, clarifying
and extending the classical framework of statistical manifolds and of their dual connections
∇1 and ∇2, which satisfy the identity

Xg(Y, Z)− g(∇1
XY, Z)− g(Y,∇2

XZ) = 0.

The notions, techniques and results from conformal geometry have widely been used
in the study of statistical manifolds. The α-conformal equivalence and its relevance for the
α-connections were considered in [8,9]. Conformal transformations of the Fisher metric for
exponential families were studied in [10], with application to sequential estimation. In [11],
1-conformally equivalent statistical manifolds are characterized. Topological properties
of some five-dimensional compact, conformally flat statistical manifolds are found in [12].
Conformal submersions with horizontal distribution and associated statistical structures
were defined and characterized in [13].

Several generalizations of the conformal geometry of statistical manifolds were defined
and studied, such as the conformal-projective geometry [14–19] and the geometry of semi-
Weyl manifolds in [20].
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In this paper, we review in a creative manner and develop the theory of statistical
manifolds w.r.t. a conformal structure, together with a natural generalization of them, the γ-
manifolds. New conformal invariant tools are defined, and control objects are highlighted,
at both the affine differential and the conformal levels. We construct some examples of
these new geometrical objects and point out the connection with the theory of information
geometry.

In Section 2, we recall definitions and properties of the main invariants related to
statistical manifolds and dual connections, especially referring to [7]. We prove Theorem 1,
which provides a characterization of the statistical structures on a given semi-Riemannian
manifold.

In Section 3, we define the γ-manifolds, which, for a fixed prescribed γ, satisfy

(∇Zg)(X, Y) + (∇Yg)(X, Z) = γ(X, Y, Z) (2)

or
(∇Zg)(X, Y)− (∇Yg)(X, Z) = γ(X, Y, Z), (3)

instead of (1). The γ-manifolds simultaneously provide a generalization, an extension
and an analogue of statistical manifolds, and, at the same time, a generalization of the
semi-Weyl manifolds from [18] and of the statistical manifolds “with torsion” from [21,22].
The cubic form γ acts as a control on the parallelism of the semi-Riemannian metric
g, in a quite twisted way, which cannot be derived directly from the behavior of the
vector fields along curves. We give here a few properties of these new manifolds, for
the use of later sections only, and postpone their systematic study for a further paper. In
particular, a characterization of γ-manifolds is proven, which provides hints about how to
construct examples.

In Section 4, we consider a Weyl structure ĝ on (M, g) and construct statistical struc-
tures and γ-structures, depending on conformal invariants. As a byproduct, several meth-
ods for constructing γ-manifolds are highlighted, including one involving f -connections.

Section 5 contains a two-fold generalization of the notion of α-conformal equivalence,
which is called f -conformal equivalence: firstly, we consider as the control function f
instead of number α; secondly, instead of statistical manifolds, we work with γ-manifolds.
We find a necessary condition for the f -conformal equivalence (Theorem 4); we prove
two corollaries and a characterization for f -conformal equivalence for γ-manifolds (the
Theorem 5), which extend similar results from [9].

Section 6 is devoted to examples of γ-manifolds. Detailed formulas are provided in
dimension two.

2. Tool Box Remainder: Dual Connections and Statistical Manifolds

We begin this section by recalling some definitions and results form our paper [7].
Consider a semi-Riemannian manifold (M, g) with the Levi–Civita connection ∇0. Denote
by F (M), C(M), Cs(M) the sets of smooth real valued functions on M, of affine connections
and of symmetric (i.e., torsion-free) connections on M, respectively (w.r.t. the canonical
structure of F (M)-module). For a connection∇ ∈ C(M), there exists a unique A ∈ T 1

2 (M),
such that ∇ = ∇0 + A. Its torsion tensor T∇ is given by the formula

T∇(X, Y) = A(X, Y)− A(Y, X).

The affine differential control A measures how much a connection differs from ∇0.
We define [7]

Cm(M, g) := {∇ ∈ C(M) | (∇Zg)(X, Y) = 0 },

Cc(M, g) := {∇ ∈ C(M) | (∇Zg)(X, Y) = (∇Yg)(X, Z) },

Csc(M, g) := Cs(M) ∩ Cc(M, g).
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Then we derive ([7]) Cs(M) ∩ Cm(M, g) = {∇0} and

Cm(M, g) = {∇0 + A | g(A(X, Y), Z) + g(A(X, Z), Y) = 0},

Cc(M, g) = {∇0 + A | g(A(X, Y), Z) + g(A(X, Z), Y) =

= g(A(Z, Y), X) + g(A(Z, X), Y)},

Csc(M, g) = {∇0 + A | g(A(X, Y), Z) = g(A(Z, Y), X) , A(X, Y) = A(Y, X)}.

Remark 1 ([7]).

(i) The transformation Φ : C(M) → C(M) assigns to every ∇ ∈ C(M) its dual connection
∇∗ := Φ(∇), by the formula ([1,2])

g(X,∇∗ZY) = Zg(X, Y)− g(∇ZX, Y) . (4)

We see that ∇∗g = −∇g. In particular, ∇ satisfies (1) if ∇∗ satisfies (1).
(ii) Let us consider∇ = ∇0 + A. Denote by A′ , ′A ∈ T 1

2 (M) the adjoint operators, through the
formula

g(X, A′(Z, Y)) = g(Y, A(Z, X)) , g(X,′A(Y, Z)) = g(Y, A(X, Z)).

We have ∇∗ := ∇0 + A∗, where A∗ := −A′.
(iii) To any pair of conjugate connections (∇,∇∗), we associate a 1-parameter family of f -

connections {∇( f )} f∈F (M), called the connections, by

∇( f ) :=
1 + f

2
∇+

1− f
2
∇∗.

Then (∇(− f ),∇( f )) are dual w.r.t. to g. The function f acts as a differential control tool over
the set of connections. We obtain ∇( f ) = ∇0 + A f , with

A f :=
1 + f

2
A− 1− f

2
A′ ∈ T 1

2 (M).

As a particular case, we obtain the α-connections {∇α}α∈R, which are more general than the
classical ones ([2,23]), which, in addition, are symmetric.

Consider the semi-Riemannian manifold (M, g), its Levi–Civita connection ∇0, ∇ and
∇∗ dual connections. Denote by T∇ the torsion tensor field of ∇, defined by

T∇(X, Y) = ∇XY−∇YX− [X, Y].

A triple (M, g,∇) is a statistical manifold (or a statistical manifold with torsion) if
∇ ∈ Csc(M, g) (or ∇ ∈ Cc(M, g) ). We denote also (M, g,∇,∇∗) instead of (M, g,∇).

We remark that the affine and metric properties of Csc(M) w.r.t. ∇0 are the main object
of study of the theory of statistical manifolds (with or without torsion).

Remark 2 ([7]). We describe five (equivalent) characterizations of a statistical manifold (M, g,∇):

(I) By relation (1) and T∇ = 0.
(II) Through symmetric A ∈ T 1

2 (M), with

∇ = ∇0 + A , g(A(X, Z), Y) = g(A(Y, Z), X).

(III) Through T∇ = 0 and B ∈ T 0
3 (M) such that

(∇X g)(Y, Z) = B(X, Y, Z) , B(X, Y, Z) = B(Y, X, Z).
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(IV) Through ∇∗ in (4), with T∇ = T∇
∗
= 0.

(V) Through ∇∗ in (4), with both A and A′ symmetric.

The theory of statistical manifolds with symmetric dual connections was general-
ized for dual connections with torsion, in the sense of Kurose and Matsuzoe [21,22,24]
(apud [21]). These statistical manifolds were denoted generically with the acronym SMAT.
They satisfy

(∇Zg)(X, Y)− (∇Yg)(X, Z) = −g(T(Z, Y), X). (5)

Contrary to the common sense belief, the SMAT are not the only statistical-like struc-
tures involving connections with torsion, as their denomination might suggest. For example,
in [7], we defined (another) nine new similar families of generalized statistical manifolds
(with torsion), denoted SMATi, for i = 1, 9. Perhaps a better formulation might be “the
SMAT is a particular family of statistical manifolds with torsion”.

Remark 3. Let (M, g) be a semi-Riemannian manifold, a and b a (1,2)-type and a (0,3)-type tensor
fields on M, respectively. Suppose a is skew-symmetric and b(X, Y, Z) = b(X, Z, Y), for all vector
fields X, Y, Z on M. Then, it is well-known that there exists a unique connection∇ on M, such that
T∇ = a and (∇X g)(Y, Z) = b(X, Y, Z). This property, together with the relation (5), suggests the
following result, which completely characterizes the SMAT structures on (M, g) and also completes
the previous characterization of Cc(M, g).

Theorem 1. Let (M, g) be a semi-Riemannian manifold and α a skew-symmetric (1,2)-type tensor
field on M. Then there exists a (not necessarily unique) connection∇ on M, such that T∇ = α and
relation (5) holds. These connections are completely determined by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)− (6)

−g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y])+

−1
2

g(X, α(Y, Z)) +
1
2

g(Y, α(Z, X)) +
1
2

g(Z, α(X, Y))+

+
1
2
{λ(X, Y, Z)− λ(Y, Z, X)− λ(Z, X, Y)},

where λ is an arbitrary (0,3)-type tensor field on M, satisfying λ(X, Y, Z) = λ(X, Z, Y) and

λ(X, Y, Z)− g(α(Z, Y), X) = λ(Y, X, Z)− g(α(Z, X), Y),

for all vector fields X, Y, Z on M. Moreover,

(∇Zg)(X, Y) + (∇Yg)(X, Z) = λ(X, Y, Z) .

The theorem is a consequence of the following lemma, where we replaced
β(X, Y, Z) := −g(α(Z, Y), X).

Lemma 1. Let (M, g) be a semi-Riemannian manifold, α a skew-symmetric (1,2)-type tensor
field and β a (0,3)-type tensor field on M, such that β(X, Y, Z) = −β(X, Z, Y), for all vector
fields X, Y, Z on M. Then there exists a (not necessarily unique) connection ∇ on M, such that
T∇ = α and

(∇Zg)(X, Y)− (∇Yg)(X, Z) = β(X, Y, Z). (7)

These connections are completely determined by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)− (8)

−g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y])−
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−g(X, α(Y, Z)) + g(Y, α(Z, X)) + g(Z, α(X, Y))+

+β(X, Y, Z) +
1
2
{λ(X, Y, Z)− λ(Y, Z, X)− λ(Z, X, Y)},

where λ is an arbitrary (0,3)-type tensor fields on M, satisfying λ(X, Y, Z) = λ(X, Z, Y),
λ(X, Y, Z) + β(X, Y, Z) = λ(Y, X, Z) + β(Y, X, Z), for all vector fields X, Y, Z on M. Moreover,

(∇Zg)(X, Y) + (∇Yg)(X, Z) = λ(X, Y, Z). (9)

Proof. The proof is standard, by analogy with the proof of the classical result quoted in the
Remark 3.

The uniqueness is as follows: Suppose there exist two connections ∇1 and ∇2, which
satisfy the relation (8). Subtracting the two relations, we obtain g(∇1

XY−∇2
XY, Z) = 0, for

all vector fields X, Y, Z, which proves that ∇1 = ∇2.
The existence is as follows: Let λ be an arbitrary (0,3)-type tensor fields on M, satisfying

λ(X, Y, Z) = λ(X, Z, Y) and λ(X, Y, Z) + β(X, Y, Z) = λ(Y, X, Z) + β(Y, X, Z), for all
vector fields X, Y, Z. We define, formally, a mathematical function ∇ : X (M)×X (M)→
X (M), by (8). Direct checking shows ∇ has the properties of a connection in C(M).
Moreover, g(T∇(X, Y), Z) = g(α(X, Y), Z), so T∇ = α. It follows also that (7) and (9) hold
true.

Corollary 1. Let (M, g) be a semi-Riemannian manifold. Then there exists a (not necessarily
unique) symmetric connection ∇ on M, such that

(∇Zg)(X, Y)− (∇Yg)(X, Z) = 0. (10)

Moreover, such connections are completely determined by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)− (11)

−g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y])+

+
1
2
{λ(X, Y, Z)− λ(Y, Z, X)− λ(Z, X, Y)},

where λ is an arbitrary (0,3)-type tensor field on M, satisfying λ(X, Y, Z) = λ(X, Z, Y),
λ(X, Y, Z) = λ(Y, X, Z), for all vector fields X, Y, Z on M. Moreover, λ verifies also the re-
lation (9).

Remark 4.

(i) Formula (11) shows that

4g(∇XY−∇0
XY, Z) = λ(X, Y, Z)− λ(Y, Z, X)− λ(Z, X, Y)

and must be compared with the previous characterization of Cc(M) and with the Remark 2, (III).
(ii) Using Lemma 1, Theorem 1 can be generalized, by replacing Formula (5) in the hypothesis with

(∇Zg)(X, Y)− (∇Yg)(X, Z) = g(E(Z, Y), X),

for any fixed arbitrary skew-symmetric (1,2)-tensor field E. For E = −T∇, we recover
Theorem 1.

(iii) Formula (8) is written in a more "symmetric" form also as

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)−

−g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y])−

−g(X, α(Y, Z)) + g(Y, α(Z, X)) + g(Z, α(X, Y))+
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+
1
2
{β(X, Y, Z)− β(Y, Z, X)− β(Z, X, Y)}+

+
1
2
{λ(X, Y, Z)− λ(Y, Z, X)− λ(Z, X, Y)}.

3. Variations on the Same Theme: γ-Manifolds

Let (M, g) be a semi-Riemannian manifold and γ a (0,3)-tensor field on M, satisfy-
ing γ(X, Y, Z) = γ(X, Z, Y). Denote C+c(M, g, γ) := {∇ ∈ C(M) | ∇ satisfies (2)} and
C+sc(M, g, γ) := C+c(M, g, γ) ∩ Cs(M).

Definition 1. A triple (M, g,∇) is called (+γ)-manifold without torsion, or (+γ)- manifold
(with torsion) if ∇ ∈ C+sc(M, g, γ), or ∇ ∈ C+c(M, g, γ), respectively.

If (M, g,∇) is a (+γ)-manifold, then (M, g,∇∗) is a (+(−γ))-manifold, too. More-
over, C+c(M, g, 0) ∩ Cc(M, g) = Cm(M, g) and C+sc(M, g, 0) ∩ Csc(M, g) = {∇0}. We shall
improve these obvious properties in Theorem 3.

Let (M, g) be a semi-Riemannian manifold and γ a (0,3)-tensor field on M, satisfying
γ(X, Y, Z) = −γ(X, Z, Y). Denote C−c(M, g, γ) := {∇ ∈ C(M) | ∇whichsatisfies (3)}
and C−sc(M, g, γ) := C−c(M, g, γ) ∩ Cs(M).

Definition 2. A triple (M, g,∇) is called (−γ)-manifold without torsion, or (−γ)- manifold
(with torsion) if ∇ ∈ C−sc(M, g, γ), or ∇ ∈ C−c(M, g, γ), respectively.

The (+γ)-manifolds and the (−γ)-manifolds are called, shortly, γ-manifolds.

Lemma 1 provides examples of (−γ)-manifolds with and without torsion. In partic-
ular, for γ(X, Y, Z) := 0, we obtain the statistical manifolds (with and without torsion); for
γ(X, Y, Z) := g(X, T(Y, Z)), we recover the SMATs; with minor differences, we may adapt
this remark for other SMATis (see [7]).

Remark 5.

(i) Every semi-Riemannian manifold is a (−γ1)-manifold and a (+γ2)-manifold, once we fix
some arbitrary connection: the (unprescribed) γ1 and γ2 can directly be derived from the
metric and the connection. This remark does not make the notion of γ-manifold useless: the
key property for the previous definitions is the fact that γ must be a priori prescribed, and
hence it imposes strong constraints on the structure of the manifold (but which are, however,
weaker than the parallelism of the metric or than the property settled by relation (1)). From a
"dynamic" viewpoint, we may interpret γ as a (differential) control tool over the set of the
semi-Riemannian metrics on M and/or the set C(M).

(ii) Apparently, the centro-affine properties of C+sc(M, g, γ), C−sc(M, g, γ), C+c(M, g, γ) and
C−c(M, g, γ) w.r.t. ∇0 (together with the metric properties) are similar, formally, to those from
the theory of statistical manifolds (with or without torsion). For example, the α-connections
from Remark 1, (iii) can be adapted for γ-manifolds, accordingly. However, the deep geometric
and statistical properties are quite different in their essence. In what follows, this paragraph
depicts some few of the former, and we postpone a detailed study to a further paper.

(iii) We point out here an interesting analogy: from the very beginning, the theory of statistical
manifolds was determined by the properties of some specific cubic forms. Starting with the
definition of statistical manifolds by Lauritzen [25], the cubic form (the "skewness" tensor field)
(X, Y, Z) (∇Zg)(X, Y) was fundamental in describing the symmetries of the models. Our
cubic forms are related to it, but only as its symmetric and skew-symmetric parts, respectively.
In this sense, through ε and the γs, we impose weaker but, at the same time, nuanced and
calibrated geometric hypothesis. However, we cannot, for the moment, associate precise
statistical interpretation of these objects.
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The following lemma is the counterpart of Lemma 1, with a similar proof, which is
skipped.

Lemma 2. Let (M, g) be a semi-Riemannian manifold, α a skew-symmetric (1,2)-type tensor
field and γ a (0,3)-type tensor field on M, such that γ(X, Y, Z) = γ(X, Z, Y), for all vector
fields X, Y, Z on M. Then there exists a (not necessarily unique) connection ∇ on M, such that
T∇ = α and

(∇Zg)(X, Y) + (∇Yg)(X, Z) = γ(X, Y, Z). (12)

Moreover, such connections are completely determined by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)− (13)

−g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y])−

−g(X, α(Y, Z)) + g(Y, α(Z, X)) + g(Z, α(X, Y))+

+
1
2
{β(X, Y, Z)− β(Y, Z, X)− β(Z, X, Y)}+

+
1
2
{γ(X, Y, Z)− γ(Y, Z, X)− γ(Z, X, Y)},

where β is an arbitrary (0,3)-type tensor fields on M, satisfying β(X, Y, Z) = −β(X, Z, Y),
γ(X, Y, Z) + β(X, Y, Z) = γ(Y, X, Z) + β(Y, X, Z), for all vector fields X, Y, Z on M. Moreover,

(∇Zg)(X, Y)− (∇Yg)(X, Z) = β(X, Y, Z). (14)

Theorem 2. Given the semi-Riemannian manifold (M, g) and γ a (0,3)-tensor field on M, satisfy-
ing γ(X, Y, Z) = γ(X, Z, Y), the following three (equivalent) characterizations of a γ-manifold
(M, g,∇) hold true:

(I) By relation (2) and T∇ = 0.
(II) Through A ∈ T 1

2 (M) such that ∇ = ∇0 + A, with

−g(A(X, Z), Y)− g(A(X, Y), Z) = 2g(A(Y, Z), X)+γ(X, Y, Z) , A(X, Y) = A(Y, X).

(III) Through T∇ = 0 and B ∈ T 0
3 (M) such that

(∇X g)(Y, Z) = B(X, Y, Z) , B(Z, X, Y) + B(Y, X, Z) = γ(X, Y, Z).

The previous result is quite similar to that quoted in the Remark 2 and we omit
its proof.

Theorem 3. Let (M, g) be a semi-Riemannian manifold. Then C+c(M, g, 0) = Cm(M, g) and
C+sc(M, g, 0) = {∇0}.

Proof. Suppose (∇Zg)(X, Y) + (∇Yg)(X, Z) = 0. Then

(∇Zg)(X, Y) = −(∇Yg)(X, Z) = −(∇Yg)(Z, X) =

= (∇X g)(Z, Y) = (∇Yg)(X, Z) = −(∇Zg)(X, Y).

It follows that (∇Zg) = 0. Moreover, the case when ∇ is symmetric is analogous.

Remark 6. Formula (13) shows that

4g(∇XY−∇0
XY, Z) = −2g(X, α(Y, Z)) + 2g(Y, α(Z, X)) + 2g(Z, α(X, Y))+

+β(X, Y, Z)− β(Y, Z, X)− β(Z, X, Y)+
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+ γ(X, Y, Z)− γ(Y, Z, X)− γ(Z, X, Y) =

= −2g(X, α(Y, Z)) + 2g(Y, α(Z, X)) + 2g(Z, α(X, Y))+

+β(X, Y, Z) + γ(X, Y, Z)− γ(Y, Z, X)− γ(Z, X, Y)

and must be compared with the previous characterization of C+sc(M, g) and with Theorem 2, (III).
It can be used to construct examples of (+γ)-structures (with or without torsion).

Proposition 1. Let ε = ±1, a (sgn(ε)γ)-manifold (M, g,∇) and ∇∗ the dual of ∇. Then the
triple (M, g,∇∗) is a (sgn(ε)(−γ))-manifold.

Proposition 2. Let ε = ±1, a function f ∈ F (M) and a (sgn(ε)γ)-manifold (M, g,∇). Then
the triple (M, g,∇( f )) is a (sgn(ε)( f γ))-manifold.

4. Statistical Structures and γ-Structures on Weyl Manifolds

Let g be a semi-Riemannian metric on M and ĝ = {eug|u ∈ F (M)} be the conformal
(equivalence) class defined by g. All the metrics in ĝ have the same index (as g).

Proposition 3. The conformal class ĝ is convex.

Proof. Let h(1) , h(0) ∈ ĝ, h(i) = eu(i)
g and t ∈ [0, 1]. Then t h(1) + (1− t)h(0) = eug, where

u := ln{teu(1)
+ (1− t)eu(0)}.

This result can be compared with the well-known property that the set of semi-
Riemannian metrics of index ν on M is convex if, and only if, ν = 0 or ν = n.

We fix a one-form w ∈ Λ1(M) and define W : F (M) → Λ1(M), W(u) := w − du.
Alternatively, W may be viewed as an invariant of the conformal manifold (M, ĝ), acting
as an operator W : ĝ → Λ1(M), W(eug) := w− du. The triple (M, ĝ, W), denoted also
(M, ĝ, w), is called a Weyl manifold [26]. Both u and w act as (conformal) control tools
associated to the conformal structure.

A linear connection ∇ ∈ C(M) is compatible with the Weyl structure W if ∇g + w⊗
g = 0. We denote the set of the connections compatible with the Weyl structure by Cw(M, g);
this is an affine submodule of C(M). In particular, C0(M, g) = Cm(M, g) and contains all
the Levi–Civita connections associated to the metrics in ĝ. A short calculation proves that

Cw(M, g) ∩ Cc(M, g) = C0(M, g). (15)

The next remark gathers some known results in a new formalism.

Remark 7. Let T a skew-symmetric (1,2)-tensor field on (M, g). Then there exists a unique
connection ∇ ∈ Cw(M, g) with torsion T.

(i) Let u ∈ F (M), h := eug and Wh := W(h) = w− du. Then ∇h + Wh ⊗ h = 0, i.e., the
property of ∇ is invariant under conformal changes of the metric g.

(ii) Denote ∇ = ∇0 + A; then w(X)Z = A(X, Z) + A′(X, Z).
(iii) The torsion tensor field satisfies

T(X, Y) = w(X)Y− w(Y)X− A′(X, Y) + A′(Y, X).

(iv) The tensor field T acts as a control on Cw(M, g). When we vary it, in order to find triples
(M, g,∇) which are statistical manifolds, we find that examples become scarce. Indeed,
Formula (15) shows that

Cw(M, g) ∩ Cc(M, g) ∩ Cs(M) = {∇0},

so there exists a unique symmetric connection, compatible with the Weyl structure and such
that (M, g,∇) is a statistical manifold, namely the Levi–Civita connection of g.
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Proposition 4. Let ε = ±1 and (M, g,∇) a (sgn(ε)γ)-manifold, with

(∇Zg)(X, Y) + ε(∇Yg)(X, Z) = γ(X, Y, Z)

and u ∈ F (M). Then (M, eug,∇) is a (sgn(ε)γ̃)-manifold, where

γ̃(X, Y, Z) = eu{γ(X, Y, Z) + du(Z)g(X, Y) + εdu(Y)g(X, Z)} . (16)

Corollary 2. Let ε = ±1, (M, g) a semi-Riemannian manifold, ∇ ∈ C(M), a nowhere vanishing
u ∈ F (M) and

γ(X, Y, Z) =
eu

1− eu {du(Z)g(X, Y) + εdu(Y)g(X, Z)} .

Then (M, g,∇) is a (sgn(ε)γ)-manifold if (M, eug,∇) is a (sgn(ε)γ)-manifold.

Corollary 3. Let ε = ±1, (M, g), be a semi-Riemannian manifold, ∇ ∈ C(M), u ∈ F (M) and

γ(X, Y, Z) = −w(Z)g(X, Y)− εw(Y)g(X, Z) .

If (M, g,∇) is a (sgn(ε)γ)-manifold, then (M, eug,∇) is a (sgn(ε)γ̃)-manifold, where

γ̃(X, Y, Z) = −eu{W(eug)(Z)g(X, Y) + εW(eug)(Y)g(X, Z)} .

Corollary 4. Let (M, g) be a semi-Riemannian manifold, ∇ ∈ C(M), u, f ∈ F (M). Consider
∇∗,u the dual of ∇ w.r.t. the metric eug, with the notation ∇∗,0 = ∇∗. Denote ∇( f ),u the
f -connection associated to ∇ in (M, eug), with the notation ∇( f ),0 = ∇( f ). Then:

(i) ∇∗,uX Y = ∇∗XY + du(X)Y;

(ii) ∇( f ),u
X Y = ∇( f )

X Y + 1− f
2 du(X)Y.

(iii) If, moreover, for a fixed ε = ±1, (M, g,∇) is a (sgn(ε)γ)-manifold, then (M, eug,∇( f )) is
a (sgn(ε)γ̂)-manifold, where

γ̂(X, Y, Z) = eu{ f γ(X, Y, Z) + du(Z)g(X, Y) + du(Y)g(X, Z)}.

In particular, for f := u, the previous correspondence u γ̂ is one to one.

5. f -Conformal Equivalence of γ-Manifolds

Consider ε = ±1, the functions u, f ∈ F (M), (M, g,∇) a (sgn(ε)γ)-manifold and
(M, eug, ∇̃) a (sgn(ε)γ̃)-manifold.

Definition 3. The manifolds (M, g,∇) and (M, eug, ∇̃) are called f -conformal equivalent if

∇̃XY = ∇XY +
1− f

2
{du(X)Y + du(Y)X} − 1 + f

2
g(X, Y)grad u (17)

This notion generalizes the well-known α-conformal equivalence of statistical mani-
folds, where α is a real number, the connections are symmetric, ε = −1 and γ = γ̃ = 0 (see,
for example [9]).

Theorem 4. With the previous notations, let (M, g,∇) be a (sgn(ε)γ)-manifold and (M, eug, ∇̃)
be a (sgn(ε)γ̃)-manifold. A necessary condition for being f -conformal equivalent is

e−uγ̃(X, Y, Z)− γ(X, Y, Z) = (18)

= f (1 + ε){du(Z)g(X, Y) + du(X)g(Y, Z) + du(Y)g(Z, X)}.
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Proof. By hypothesis,

(∇Zg)(X, Y) + ε(∇Yg)(X, Z) = γ(X, Y, Z) (19)

(∇̃Zeug)(X, Y) + ε(∇̃Yeug)(X, Z) = γ̃(X, Y, Z) (20)

Relation (20) rewrites successively

eu{(∇̃Zg)(X, Y) + ε(∇̃Yg)(X, Z)}+

+eu{du(Z)g(X, Y) + εdu(Y)g(X, Z)} = γ̃(X, Y, Z) ,

(∇̃Zg)(X, Y) + ε(∇̃Yg)(X, Z) = (21)

= e−uγ̃(X, Y, Z)− du(Z)g(X, Y)− εdu(Y)g(X, Z) .

On another hand, we calculate

(∇̃Zg)(X, Y) = Zg(X, Y)− g(∇̃ZX, Y)− g(X, ∇̃ZY) =

= Zg(X, Y)− g(∇ZX, Y)− g(X,∇ZY)−

−1− f
2

g(du(Z)X, Y)− 1− f
2

g(du(X)Z, Y) +
1 + f

2
g(Z, X)du(Y)−

−1− f
2

g(du(Z)Y, X)− 1− f
2

g(du(Y)Z, X) +
1 + f

2
g(Z, Y)du(X) =

= (∇Zg)(X, Y)− (1− f )du(Z)g(Y, X) + f du(Y)g(Z, X) + f du(X)g(Z, Y) .

We replace it in (21) and it follows that

e−uγ̃(X, Y, Z)− du(Z)g(X, Y)− εdu(Y)g(X, Z) = γ(X, Y, Z)−

−(1− f )du(Z)g(Y, X) + f du(Y)g(Z, X) + f du(X)g(Z, Y)+

+ε{−(1− f )du(Y)g(Z, X) + f du(Z)g(Y, X) + f du(X)g(Z, Y)}

and from it we deduce Formula (18).

Remark 8. With the notations and in the hypothesis of the previous theorem, we have the following
particular cases:

(i) If ε = −1, then γ̃(X, Y, Z) = euγ(X, Y, Z).
(ii) If ε = −1 and γ̃(X, Y, Z) = γ(X, Y, Z) = 0, we see that (18) is identically satisfied. This is,

in fact, a known result for statistical manifolds ([9]).
(iii) If ε = 1, then

e−uγ̃(X, Y, Z)− γ(X, Y, Z) = 2 f {du(Z)g(X, Y) + du(X)g(Y, Z) + du(Y)g(Z, X)}.

This fact confirms our claim that the geometries of the (−γ)-manifolds and of the (+γ)-
manifolds have significant and important different features.

Applying Propositions 1 and 2, we obtain the following two corollaries, which gener-
alize similar claims in [9], true for statistical manifolds.

Corollary 5. With the previous notations, let (M, g,∇) be a (sgn(ε)γ)-manifold and∇∗ the dual
of ∇; let (M, eug, ∇̃) be a (sgn(ε)γ̃)-manifold and ∇̃∗ the dual of ∇̃. Suppose (M, g,∇) and
(M, eug, ∇̃) are f -conformal equivalent.

Then, the (sgn(ε)(−γ))-manifold (M, g,∇∗) and the (sgn(ε)(−γ̃))-manifold (M, eug, ∇̃∗)
are also (− f )-conformal equivalent.
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Corollary 6. With the previous notations, let (M, g,∇) be a (sgn(ε)γ)-manifold and (M, eug, ∇̃)
be a (sgn(ε)γ̃)-manifold. Then they are (+1)-conformal equivalent if, and only if, the (sgn(ε)( f γ))-
manifold (M, g,∇( f )) and the (sgn(ε)( f γ̃))-manifold (M, eug, ∇̃( f )) are f -conformal equivalent.

Theorem 5. Let (M, g,∇) be a (sgn(ε)γ)-manifold and ∇0 the Levi-Civita connection of g.
Denote A := ∇−∇0. Fix u, f ∈ F (M). Let (M, eug, ∇̃) be a (sgn(ε)γ̃)-manifold and ∇̃0 the
Levi–Civita connection of eug. Denote Ã := ∇̃ − ∇̃0. Suppose, moreover, the relation (18) holds.
Then the manifolds (M, g,∇) and (M, eug, ∇̃) are f -conformal equivalent if, and only if,

Ã(X, Y) = A(X, Y)− f
2
{du(X)Y + du(Y)X + g(X, Y)gradu} . (22)

Proof. One knows that

2∇̃0
XY = 2∇0

XY + du(Y)X + du(X)Y− g(X, Y)gradu . (23)

In (17), we replace ∇ and ∇̃ in terms of ∇0, ∇̃0, A and Ã. We obtain

∇̃0
XY + Ã(X, Y) = ∇0

XY + A(X, Y) +
1− f

2
{du(Y)X + du(X)Y} − 1 + f

2
g(X, Y)gradu

We use relation (23) and replace ∇̃0. The previous formula becomes (22).

Remark 9. Theorem 5 generalizes the main result from [9], which was proven in the particular
case of statistical Riemannian manifolds (i.e., for ε = −1, γ = γ̃ = 0 and g Riemannian metric). It
provides a framework for the construction of pairs of f -conformal equivalent γ-manifolds, starting
from the Levi–Civita connections ∇0 and ∇̃0, the functions u and f , the tensor fields A and Ã and
the cubic forms γ and γ̃, subject to the compatibility constraints (18) and (22).

6. Examples

In what follows, we use the notations from ([2], Chapters 2 and 3) and [7,23].
Let us take two positive integers n and m. Consider M an m-dimensional differentiable

manifold and a family of probability distributions p : Rn × M → R, with p = p(x, ξ),
p(x, ξ) > 0 and

∫
p(x, ξ)dx = 1. All the following integrals are supposed to be (correctly)

defined on Rn. Let f : Rn ×M → R be an arbitrary function. We consider ξ → Eξ [ f ] a
function from M to R, where

Eξ [ f ] :=
∫

f (x, ξ) p(x, ξ)dx .

Denote ξ = (ξ1, . . . ξm) the local coordinates on M and the log-likelihood function
by l = l(x, ξ) : Rn ×M → R, where l(x, ξ) := ln p(x, ξ). We consider the Gibbs entropy
function S = Sξ : M→ R, given by Eξ [−l], i.e.,

Sξ := −
∫

l(x, ξ) p(x, ξ)dx

and the Fisher Riemannian metric, given by the m × m-matrix G(ξ) := (gij(ξ))i,j=1,m,
defined by

gij(ξ) :=
∫

∂il(x, ξ) ∂jl(x, ξ) p(x, ξ)dx .

Here, and in the following, we denote ∂il := ∂l
∂

ξi
. One knows ([2]) that

gij(ξ) = Eξ [∂il ∂jl] = −Eξ [∂ijl] =
∫ 1

p(x, ξ)
∂i p(x, ξ)∂j p(x, ξ)dx .
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The Christoffel coefficients are written as

(Γ(0)
ij,k)ξ = Eξ [(∂i∂jl +

1
2

∂il ∂jl ) ∂kl] .

In order to not complicate the formulas, we shall try to skip the variable ξ.

With the previous notations, let us consider another connection ∇ on M, such that
∇ = ∇0 + A, where A ∈ T 1

2 (M) is fixed and arbitrary. We denote Aij,k := g(A(∂i, ∂j), ∂k)

and Γij,k := Γ(0)
ij,k + Aij,k. In what follows, we shall particularize A, in order to find examples

of γ-manifolds.

Example 1. The normal distribution is usually associated with a hyperbolic space. The density of a
normal family is

p(x, ξ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , x ∈ R,

with parameter(s) ξ = (ξ1, ξ2) = (µ, σ) ∈ R× (0, ∞). The matrix of the Fisher (i.e., Fisher–Rao)
Riemannian metric is given by

(gij) =

(
1

σ2 0
0 2

σ2

)
.

The Christoffel symbols of the Levi–Civita connection are given by

(Γ0)1
ij =

(
0 − 1

σ
− 1

σ 0

)
, (Γ0)2

ij =

( 1
2σ 0
0 − 1

σ

)
.

In the following, we determine examples of connections ∇ ∈ C+c(M, g, γ), for certain
particular (+γ)− structures.

(a) We consider

γ(X, Y, Z) = f [Z(u)g(X, Y) + Y(u)g(X, Z)], f =
eu

1− eu , u ∈ F (M),

where u is non-vanishing. (M, g,∇) is (+γ) -manifold iff (M, eug,∇) is (+γ)-manifold.
If ∇ = ∇0 + A, formula (2) leads to

−Al
kigl j − Al

kjgli − Al
jkgli − Al

jiglk = f [ukgij + ujgik],

where ui =
∂u
∂xi .

In dimension 2, one obtains

A1
11 = −1

2
f u1, A2

22 = −1
2

f u2, A1
21 = −1

2
f u2, A2

12 = −1
2

f u1,

2A2
11 + A1

12 = 0, A1
22 + 2A2

21 = 0.

In particular, for A1
22 = f u1, A2

11 = f u2, we obtain the following components of the torsion
tensor associated to ∇:

(T1
ij) =

(
0 − 3

2 f u2
3
2 f u2 0

)
, (T2

ij) =

(
0 0
0 0

)
.

(b) We consider

γ(X, Y, Z) = −[ω(Z)g(X, Y) + ω(Y)g(X, Z)],

ω ∈ Λ1(M).
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If ∇ = ∇0 + A, then from (2) one obtains

−Al
kigl j − Al

kjgli − Al
jkgli − Al

jiglk = −(ωkgij + ωjgik),

where ω = ωixi.
If (M, g,∇) is (+γ)-manifold, then (M, eug,∇) is (+γ̃)-manifold, where

γ̃(X, Y, Z) = −eu[W(eug)(Z)g(X, Y) + W(eug)(Y)g(X, Z)]

and W(eug) = ω− du, ω and u, being the conformal tools associated to the conformal structure.
In dimension 2, one obtains

A1
11 =

1
2

ω1, A2
22 =

1
2

ω2, A1
21 =

1
2

ω2, A2
12 =

1
2

ω1,

2A2
11 + A1

12 = 0, A1
22 + 2A2

21 = 0.

where ω = ω1dx1 + ω2dx2.
In particular, for A2

21 = ω1, A1
12 = ω2, we obtain the following components of the torsion

tensor associated to ∇:

(T1
ij) =

(
0 1

2 ω2
− 1

2 ω2 0

)
, (T2

ij) =

(
0 − 1

2 ω1
1
2 ω1 0

)
.

Example 2. We consider the manifold (M, g), where the metric is gij = δij. Therefore, (Γ0)k
ij = 0,

Γk
ij = Ak

ij. Let us determine examples of connections ∇ ∈ C+c(M, g, γ) for certain particular
(+γ)− structures.

(a) We consider γ(X, Y, Z) = f [Z(u)g(X, Y) + Y(u)g(X, Z)], f = eu

1−eu and the u ∈
F (M) nowhere vanishing function. Then (M, g,∇) is the (+γ)-manifold if (M, eug,∇) is the
(+γ)-manifold.

In dimension 2, one obtains

Γ1
11 = Γ2

12 = −1
2

f u1, Γ2
22 = Γ1

21 = −1
2

f u2, Γ1
22 + Γ2

21 = Γ2
11 + Γ1

12 = 0,

where ui =
∂u
∂xi .

In particular, for Γ1
22 = Γ2

11 = Γ2
21 = Γ1

12 = 0, we obtain the components of the torsion tensor
associated to ∇ :

(T1
ij) =

(
0 1

2 f u2
− 1

2 f u2 0

)
, (T2

ij) =

(
0 − 1

2 f u1
1
2 f u1 0

)
.

(b) We consider γ(X, Y, Z) = −[ω(Z)g(X, Y) + ω(Y)g(X, Z)], where ω ∈ Λ1(M).
If (M, g,∇) is (+γ)-manifold, then (M, eug,∇) is (+γ̃)-manifold, where

γ̃(X, Y, Z) = −eu[W(eug)(Z)g(X, Y) + W(eug)(Y)g(X, Z)],

W(eug) = ω− du, ω,u being the conformal tools associated to the conformal structure.
In dimension 2, one obtains

Γ1
11 = Γ2

12 =
1
2

ω1, Γ2
22 = Γ1

21 =
1
2

ω2, Γ1
22 + Γ2

21 = Γ2
11 + Γ1

12 = 0,

where ω = ω1dx1 + ω2dx1.
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In particular, for Γ1
22 = −Γ2

21 = 1
2 ω1, Γ2

11 = −Γ1
12 = 1

2 ω2, we obtain the components of the
torsion tensor associated to ∇ :

(T1
ij) =

(
0 −ω2

ω2 0

)
, (T2

ij) =

(
0 ω1
−ω1 0

)
.

Remark 10.

(i) In Examples 1 and 2, an infinite family of γ-structures is defined on M := R× (0, ∞), or
on an arbitrary M, respectively. To each such structure, one associates a connection ∇, via
the tensor field A, which measures “how far” ∇ is from the Levi–Civita connection ∇0 of the
Fisher metric. The geodesics determined from ∇0 are (locally) distance-minimizing curves
between points in M, i.e., between normal PDFs. By analogy, auto-parallel curves of ∇
may connect points of M by other paths, whose spread flow might be controlled through the
γ-structure parameters.

(ii) The Fisher metric in Example 1 is the geometrical counterpart of the Fisher information, used
in parameter estimation, measuring the quantity of information about the parameter(s) of the
system ([27,28] for details). Its curvature, and especially the scalar curvature, can distinguish
different values of the parameter. A parameter variation is measurable along the geodesics also,
but, in Example 1, the geodesics depend on only one of the two parameters (the σ). Instead, the
auto-parallel curves of a connection ∇, determined by the γ-structure, may depend on both
parameters µ and σ. However, we must point out that finding (exact parameterizations of) the
auto-parallel curves of ∇ may be just as difficult as finding the geodesics.

7. Discussions

(i) The paper dealt with notions and results intended to understand geometrical ob-
jects, such as statistical manifolds and dual connections, beyond the classical setting.
The new notion of γ-manifold seems appropriate and potentially useful. Another
generalization that seems promising is the f -conformal equivalence of γ-manifolds,
which provides new conformal-like control tools for the covariant derivation of a
semi-Riemannian metric.

(ii) From now on, several research directions are open: the detailed study of the geometry
of γ-manifolds per se; the statistical relevance of the new conformal invariants; specific
statistical applications for the new examples of geometric structures introduced here;
and the optimization results on the space of the control tensors, which appear in
Lemmas 1 and 2.

(iii) Beyond the formal theory we developed in this paper, we must point out, at a spec-
ulative level, two guiding ideas which led us toward this subject: firstly, the deep,
hidden conformal nature of the Universe, which reveals itself, from time to time, in
various physical theories, in particular in statistical mechanics ([29]); secondly, the
more prosaic, but also important, conformal patterns arising in recent machine learn-
ing theories, as the metric tools are no more enough ([30,31]; with—apparently—no
connection with the “conformal inference prediction”). It would not be a surprise if
these two ideas eventually converge.
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