
����������
�������

Citation: Mouakher, A.; Hajjej, F.;

Ayouni, S. Efficient Mining

Support-Confidence Based

Framework Generalized Association

Rules. Mathematics 2022, 10, 1163.

https://doi.org/10.3390/

math10071163

Academic Editors: Codruta Mare

and Ioana Florina Coita

Received: 21 February 2022

Accepted: 30 March 2022

Published: 3 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Efficient Mining Support-Confidence Based Framework
Generalized Association Rules
Amira Mouakher 1,*, Fahima Hajjej 2 and Sarra Ayouni 2

1 Institute of Information Technology, Corvinus University of Budapest, 1093 Budapest, Hungary
2 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; fshajjej@pnu.edu.sa (F.H.);
saayouni@pnu.edu.sa (S.A.)

* Correspondence: amira.mouakher@uni-corvinus.hu

Abstract: Mining association rules are one of the most critical data mining problems, intensively
studied since their inception. Several approaches have been proposed in the literature to extend
the basic association rule framework to extract more general rules, including the negation operator.
Thereby, this extension is expected to bring valuable knowledge about an examined dataset to the
user. However, the efficient extraction of such rules is challenging, especially for sparse datasets. This
paper focuses on the extraction of literalsets, i.e., a set of present and absent items. By consequence,
generalized association rules can be straightforwardly derived from these literalsets. To this end,
we introduce and prove the soundness of a theorem that paves the way to speed up the costly
computation of the support of a literalist. Furthermore, we introduce FASTERIE, an efficient algorithm
that puts the proved theorem at work to efficiently extract the whole set of frequent literalets. Thus,
the FASTERIE algorithm is shown to devise very efficient strategies, which minimize as far as possible
the number of node visits in the explored search space. Finally, we have carried out experiments on
benchmark datasets to back the effectiveness claim of the proposed algorithm versus its competitors.

Keywords: data mining; association rules; frequent literalsets; generalized association rules; support
computation

MSC: 68T01

1. Introduction

Discovering association rules is a fundamental and essential subject in data mining
and has been extensively investigated since its inception in [1,2]. Over the past few years,
the use of association rule mining in varied application scenarios [3–7] have been intensely
discussed [8,9]. The idea consists of discovering causal relationships, where the presence of
some items suggests that other items follow from them. A typical example of an association
rule mining application is the market basket analysis, where the discovered rules can lead
to important marketing and strategic management decisions. The process of mining for
association rules has two phases:(i) mining for frequent itemsets; and (ii) generating strong
association rules from the discovered frequent itemsets.

Traditional association rules mining algorithms were developed to find associations
between items present in a transactional database. Nevertheless, in many domains, one
might be interested in discovering association rules taking into account the absence of some
items to identify conflicting or complementary items. These rules are commonly called
generalized association rules [10–12]. Nevertheless, considering the negation operator into
the association rule framework is the furthest from a straightforward task. Indeed, the
challenging issue of mining generalized association rules gave rise to several critical issues:

1. When negative items are considered, the length of the transactions increases to reach
a value equal to n, where n stands for the number of items in the mined dataset. Since

Mathematics 2022, 10, 1163. https://doi.org/10.3390/math10071163 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071163
https://doi.org/10.3390/math10071163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1709-5790
https://orcid.org/0000-0001-5662-6238
https://doi.org/10.3390/math10071163
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071163?type=check_update&version=3

Mathematics 2022, 10, 1163 2 of 22

the complexity of standard association rules mining algorithms is very sensitive to
the transaction length, these algorithms would break down for such datasets. Indeed,
computing supports of itemsets with negation is a very time-consuming step.

2. For sparse datasets, a large number of the items are not present in each transaction
leading to an overwhelming amount of association rules with negation. Consequently,
it is nearly impossible for end-users to comprehend or validate such a high number of
the extracted association rules, thereby limiting the usefulness of the mined results.

A large number of researchers have tried to mitigate the search space exploration
of the patterns for more efficiently sweeping using the following methods: (i) defining
various forms of generalized association rules; (ii) incorporating attribute correlations
or rule interestingness measures; and (iii) relying on additional background information
concerning the data.

As opposed to this, we propose a new approach staying within the strict bounds of
the original support-confidence framework. Our proposal can be intuitive to users, i.e., no
additional parameters are required. We usually proceed in two steps to extract generalized
association rules: (i) all frequent generalized literalsets are extracted; and (ii) all valid
generalized association rules are straightforwardly derived from frequent literalsets. Here
the fulfillment of the validity criterion is assessed through the confidence metric that needs
to be over a user-defined threshold, called minconf.

A scrutiny of the wealthy number of the related work enables us to draw the following
challenging landscape:

• All the surveyed approaches could only extract a particular case of the generalized as-
sociation rules. This issue is due to the intractability of the extraction of the generalized
literaset step.

• The computation of the support of the negative part literaset is the furthest from a
trivial task. Even if the computation of the generalized support can be transcripted
in terms of the positive part of the literaset, it will lead to a barely bearable compu-
tational over-cost burden. Indeed, most of these itemsets are non-frequent, and we
need to explicitly delve into the disk-resident database to compute their associated
support values.

Keeping these cons in mind, we focus on the first and the most challenging step of
generalized association rules mining, i.e., the extraction of frequent literalsets, since it is
the most challenging one. To this end, we propose a new algorithm, called FASTERIE, for
extracting frequent literalsets. Furthermore, we also propose a new method to compute
the support of literalsets efficiently. Our approach outperforms its competitors from the
literature on benchmark datasets.

The remainder of the paper is organized as follows. In Section 2, we present some
basic definitions used throughout the paper. Section 3 reviews the dedicated related work.
Section 4 introduces an extended form of association rules that considers the absence
of items. Next, we discuss the drawbacks of the naive approach, which uses classical
algorithms such as APRIORI [13] to extract frequent literalsets in Section 5. Moreover, we
introduce a new method for computing the support of a literalset based on the respective
supports of its subsets. Section 6 thoroughly details the FASTERIE algorithm dedicated to
extract the whole set of frequent literalsets. Experimental results are described in Section 7,
along with the comparison of FASTERIE performances to those of existing algorithms.
Finally, Section 8 concludes the paper and points out issues of future work.

2. Basic Concepts and Terminology

This section provides some fundamental notions used in the remainder of the paper.
Furthermore, we recall the problem of positive association rule extraction as it has been
defined in [13]. The recent past has witnessed a shift in the focus of the association rule
mining community, which is now focusing more on an extended form of association rules,
callednegative association rules.

Mathematics 2022, 10, 1163 3 of 22

Let I= {i1, i2, . . . , im} be a set of m items. A transaction, over I , is a couple T = (tid, I)
where tid is the transaction identifier and I is a set of items such that I ⊆ I . A transaction
database D over I is a set of transactions over I . A transaction T is said to support a set X
if and only if X ⊆ I.

Let X be a subset of I , called positive itemset, containing k items, then X is said to be
a positive k-itemset. The absolute support of a positive itemset X is given by Supp(X) =
|tid| ({tid, I) ∈ D, X ⊆ I}|. If the support of X is greater than or equal to a user-defined
minimum threshold minsup, then X is called frequent.

A positive association rule is defined as a correlation between two sets of items [13]. It
is sketched as: R : X ⇒ Y such that X, Y ⊆ I and X ∩Y = ∅. An association rule R is said
to be based on the itemset X ∪Y and the itemsets X and Y are called, respectively, premise
and conclusion of R.

To assess the validity of an association rule R, two metrics are commonly used [13]:
(i) the support: support of the rule R, denoted Supp(R), is given by Supp(X ∪ Y); (ii) the
confidence: it expresses the conditional probability to find Y in a transaction containing X.

The confidence of the rule R, denoted Conf (R), is given by
Supp(X ∪Y)

Supp(X)
. To be valid, an

association rule must have its confidence greater than or equal to a user-defined minimum
confidence threshold, denoted minconf.

Negative association rules were at first mentioned in [14]. A negative association rule
extends positive association rule R: X⇒ Y to four basic rules R1: X ⇒ Y, R2: X⇒ Y, R3:
X ⇒ Y and R4: X ⇒ Y where R4 is a positive rule and the other three ones are negative
rules where premise or/and conclusion parts represent a negation of an itemset (negative
itemset). The semantic meaning of a negative itemset X is the non simultaneous presence
of items included in X. The extraction of such rules is based on the following observation:

Supp(X ⇒ Y) = Supp(X ∪Y) = Supp(Y)− Supp(X ∪Y).

Therefore, the support of negative itemsets, on which negative association rules is
based, can be deduced from the support of positive itemsets.

3. Related Work

Mining traditional association rules based on frequent itemsets have been extensively
studied since their introduction by [13]. However, mining negative association rules have
been less often addressed.

The idea of mining negative association rules was firstly presented in [14] where the
authors introduced the concept of excluding associations. Indeed, they presented a versatile
method to find associations of the form ABC ⇒ D, where AB⇒ D is not maintained due
to a low confidence value. This approach permits the extraction of a subset of generalized
association rules where their premise part contains only one negative literal.

We discuss the main approaches dedicated to extract negative association rules in the
following.

3.1. The Gen-Neg-Rules Algorithm

Savasere et al. proposed an algorithm to mine strong negative association rules by
combining frequent itemsets and domain knowledge to form taxonomy [15]. Their basic
assumption was that items from the same product family are expected to have similar
types of interaction with other items. The authors use the item taxonomy to determine the
expected support of an itemset. If the actual support of an itemset X ∪Y is considerably
lower than expected, the authors conclude that a negative association between X and Y
may be of interest. The authors proposed the following definitions:

Definition 1. Let a formal context K = (O, I ,R) such that O represents a finite set of objects (or
transactions), I represents a finite set of attributes (or items) andR is a binary relation (i.e,R ⊆
O × I). Let T a taxonomy, associated to K, containing a set J of items. Let X a subset of J , X is

Mathematics 2022, 10, 1163 4 of 22

said to be a multi-level itemset if and only if @j ∈ X such that j is descendant of an item j′ ∈ X.
The support of a multi-level itemset X is computed as follows: Supp(X) = |({oi ∈ O|∀ xj ∈ X, (xj,
oi) ∈ R ∨ (xn, oi) ∈ R, xn ∈ descendant(xj)})|.

Definition 2. Let X and Y be two valid interesting multi-level itemsets. A negative association
rule R: X ⇒ Y, is valid if and only if its value of interestingness RI is at least equal to MinRI,
where RI is equal to the following:

RI =
ε[Supp(X ∪Y)]− Supp(X ∪Y)

Supp(X)

The Gen-Neg-Rules algorithm relies on the following steps:

1. Extracting the multi-level itemsets: First, the authors proposed to extract multi-level
itemsets based on Definition 1.

2. Extracting the interesting multi-level itemsets: Let X be a frequent multi-level itemset.
The set of interesting multi-level itemsets based on X is obtained by replacing some
items of X by their parents or their siblings. A valid interesting multi-level itemsets
should have a deviation value (deviation(X) = ε[Supp(X)] − Supp(X)) which is greater
or equal to minsup ×MinRI, such that MinRI is a threshold of interestingness fixed
by the user and ε[Supp(X)] denotes the expected support of X. Three cases must be
distinguished whenever we have to compute the expected support of an interesting
multi-level itemset:

1st case: Let X = {p, q, . . ., t} be a frequent multi-level itemset and Y = {p∧, q∧, . . .,
t∧} be a candidate interesting multi-level itemset such that p∧, q∧, . . ., t∧
are respectively, the children of p, q, . . ., t in the taxonomy. The expected
support of Y is then equal to:

ε[Supp(Y)] =
Supp(X)× Supp(p∧)× Supp(q∧)× . . .× Supp(t∧)

Supp(p)× Supp(q)× . . .× Supp(t)

2nd case: Let X = {p, q, r, . . ., t} be a frequent multi-level itemset and Y = {p, q, r∧,
. . ., t∧} be a candidate interesting multi-level itemset such that r∧, . . ., t∧
are respectively, the children of r, . . ., t in the taxonomy. The expected
support of Y is then equal to:

ε[Supp(Y)] =
Supp(X)× Supp(r∧)× . . .× Supp(t∧)

Supp(r)× . . .× Supp(t)

3rd case: Let X = {p, q, r, . . ., t} be a frequent multi-level itemset and Y = {p, q, r<,
. . ., t<} be a candidate interesting multi-level itemset such that r<, . . ., t<
are respectively, siblings of r, . . ., t in the taxonomy. The expected support
of Y is then equal to:

ε[Supp(Y)] =
Supp(X)× Supp(r<)× . . .× Supp(t<)

Supp(r)× . . .× Supp(t)

3. Extracting the negative association rules: The authors redefined negative association
rules based on Definition 2. Hence, negative association rules can be generated once
valid, and interesting multi-level item sets are extracted.

At a glance, the Gen-Neg-Rules algorithm is intuitively appealing. Nevertheless, it
has several limitations. First, it assumes that an item taxonomy is available, making it
difficult to generalize the proposed approach. Second, it discovers negative associations by
computing item sets’ expected support using the item taxonomy’s immediate parent-child
or sibling relationships. Finally, it does not infer the expected support for itemsets unrelated
to immediate parent-child or sibling relationships.

Mathematics 2022, 10, 1163 5 of 22

3.2. The DI-Apriori Algorithm

Morzy added the join measure allowing to assess the rarity of an itemset [16]. In
addition, the author introduced the notion of dissociative itemset defined as follows:

Definition 3. Let maxjoin a user-defined maximal threshold of the join measure, where minsup >
maxjoin. An itemset Z is said to be dissociative, if and only if:

1. Supp(Z) ≤ maxjoin,
2. ∃ X and Y, such that X ∩ Y = ∅, X∪ Y = Z, Supp(X) ≥ minsup and Supp(Y) ≥

minsup.

Plainly speaking, given a dissociative itemset Z = X ∪Y, then Z represents that both
X and Y are frequent and X rarely occurs with Y. In addition, to limit the exploration of the
search space, Morzy suggested extracting a subset of dissociative itemsets called minimal
dissociative itemsets, defined as follows:

Definition 4. A dissociative itemset X ∪Y is minimal if and only if it does not exist a dissociative
itemset X′ ∪Y′, such that X′ ⊂ X and Y′ ⊂ Y .

To extract the generalized association rules, Morzy introduced the DI-APRIORI algo-
rithm, which proceeds in four steps:

1. Extracting the positive association rules: First, the algorithm generates the set of
frequent dissociative itemsets like APRIORI algorithm [13]. Then it generates the
positive association rules.

2. Extracting the minimal dissociative itemsets: It was argued in [16] that an itemset
X belonging to the negative border Bd− (the negative border denoted Bd−, contains
infrequent itemsets whose all respective subsets are frequent) is either a candidate
dissociative itemset or a subset of a candidate dissociative itemset. Based on this
observation, the negative border Bd− is examined and all itemsets with support
value lower than maxjoin are added to the set of valid minimal dissociative itemsets
D. The remaining itemsets in the negative border form the seed set of candidate
minimal dissociative itemsets C. Each itemset X ∪Y in C is extended with a frequent
1-itemsets i. If (X ∪ i) and (Y ∪ i) are both frequent and (X ∪Y ∪ i) is also infrequent,
then (X ∪ i)X ∪ Y ∪ i) is a candidate minimal dissociative itemset. If the support of
(X ∪ Y ∪ i) is lower than maxjoin, then (X ∪ Y ∪ i) is added to D. Otherwise, it is
added to C.

3. Derivating the dissociative itemsets: Based on the set D, the algorithm derives the
whole set of the remaining dissociative itemsets. Then, the algorithm derives the
remaining dissociative itemsets, for each minimal dissociative itemset X ∪ Y, by
replacing X and Y by their respective frequent supersets.

4. Generating the negative association rules: Once the dissociative itemsets are extracted,
DI-Apriori derives association rules of the form X ; Y with respect to the provided
minconf threshold.

The author proposed an approach permitting to generate, on the one hand, positive
association rules like the Apriori algorithm [13]. On the other hand, the author added the
maxjoin threshold to belittle the number of infrequent itemsets and defined dissociative
itemsets. In addition, this approach allows extracting a concise representation of itemsets.
The remaining dissociative itemsets are derived straightforwardly from these minimal dis-
sociative itemsets. However, it is worth mentioning that this operation is computationally
expensive. Hence, extracting a generic basis of association rules from minimal dissociative
item sets is more appropriate. Then, the remaining (redundant) rules can be derived from
the user’s demand.

Mathematics 2022, 10, 1163 6 of 22

3.3. The Positive and Negative Associations Algorithm

Wu et al. presented an Apriori-based framework for mining generalized association
rules [11], which focuses on the rule interest measure [17]. Indeed, in the latter reference, it
was argued that a rule X ⇒ Y is not worth of interest whenever Supp(X ∪Y)− Supp(X)×
Supp(Y) = 0. An interpretation of this proposition is that a rule is not interesting whenever
its premise and consequent are approximately independent.

Definition 5. To put at work the concept introduced by Piatetsky-Shapiro, Wu et al. defined an
interestingness measure, called interest(X, Y) = |Supp(X ∪ Y) - Supp(X)× Supp(Y)|. Thus,
given a minimum interestingness threshold minint, if interest(X, Y) ≥ minint , then the rule X
⇒ Y is of potential interest, and X ∪Y is referred to as a potentially interesting itemset.

Aiming at extracting generalized association rules, Wu et al. proposed an algorithm,
called Positive And Negative Associations, operating into two steps:

1. Extracting the frequent and infrequent itemsets of interest: The authors maintain
two sets: (i) FI : the set of frequent itemsets; and (ii) INF : the set of infrequent
itemsets. First, the algorithm generates FI1 and INF 1 containing, respectively,
frequent 1-itemsets and infrequent 1-itemsets. After that, for each k ≥ 2, two steps are
required:

- The algorithm generates Ck containing all candidate k-itemsets where each
k-itemset in Ck is generated by two frequent itemsets in FIk−1. After determin-
ing the support of each itemset in Ck, the algorithm inserts into FIk frequent
k-itemsets and inserts Ck − FIk into INF k.

- For each element of FIk or INF k, the algorithm removes all itemsets that do
not meet the minint threshold. Let I ∈ FIk or I ∈ INF k, ∀ X and Y such that
X ∪Y = I, the algorithm checks whether interest(X, Y) ≤ minint.

2. Derivating the generalized association rules of interest: based on Piatetsky-Shapiro’s
argument [17], the authors introduced a conditional-probability increment ratio func-
tion for a pair of itemsets X and Y, denoted by Cpir as follows:

Cpir(X|Y) = Supp(X|Y)− Supp(Y)
1− Supp(Y)

ifSupp(X|Y) ≥ Supp(Y)andSupp(Y) 6= 1,

or

Cpir(X|Y) =
Supp(X|Y)− Supp(Y)

Supp(Y)
ifSupp(X|Y) < Supp(Y)andSupp(Y) 6= 0.

To derive association rules, the authors proposed an algorithm which generates
positive association rules of interest based on itemsets of FI . In addition, if Cpir(Y|X)
≥ minconf, Y⇒ X is extracted as a valid rule of interest. If Cpir(X|Y ≥ minconf, X ⇒ Y
is extracted as a valid rule of interest. For each itemset I in INF , the algorithm
generates negative association rules of interest based on I if interest(X, Y) ≥ minint.
If Cpir(Y, X)≥ minconf, Y⇒ X is extracted as a valid rule of interest. If Cpir (X, Y) ≥
minconf, X⇒ Y is extracted as a valid rule of interest (X⇒ Y is also generated as a
valid rule if it fulfills both the Cpir and minint thresholds).
The proposed approach’s main idea is to extract positive association rules from
frequent itemsets and negative association rules from infrequent itemsets. However,
this strategy has substantial problems since the proposed algorithm cannot generate
all valid positive and negative association rules. Indeed, the interest function used
in this algorithm for pruning itemsets does not have a downward closure property
like support. Furthermore, for each iteration k, the set INF k is deduced from FIk.
Hence, the algorithm cannot generate all infrequent itemsets.

Mathematics 2022, 10, 1163 7 of 22

3.4. The Positive and Negative Correlated Associations Algorithm

Antonie and Zaïane considered a framework [18] that adds to the support-confidence
measures the correlation coefficient [19] allowing to assess the strength of the linear relation-
ship between two itemsets. For example, let X and Y be two itemsets, then the correlation
coefficient is given by the following formula:

correlation(X, Y) =
Supp(X ∪Y)− Supp(X)× Supp(Y)√

Supp(X)× (1− Supp(X))× Supp(Y)× (1− Supp(Y))

The authors proposed an algorithm that combines the phase of itemsets extraction
and that of association rules derivation to extract generalized association rules. Indeed
it generates the relevant rules on the fly while analyzing the correlations within each
candidate itemset. Initially, the algorithm determines the set of frequent 1-itemsets. Instead
of joining frequent (k − 1)-itemsets to obtain candidates of iteration k, the algorithm
proceeds by joining the frequent itemsets of iteration (k − 1) with the frequent 1-itemsets.
This permits extending the set of candidate itemsets and can analyze the correlation of
more item combinations. For each candidate itemset I, all combinations of itemsets X ∪Y
such that X ∪Y = I are extracted. Then, for each itemset X ∪Y, the algorithm computes
the correlation coefficient between X and Y. In this phase, two cases arise:

1st case: If the correlation coefficient measure is positive and greater than or equal to
a correlation threshold, then an association rule X ⇒ Y is generated. This
association rule is valid if and only if its support and its confidence are greater
than or equal to, respectively, minsup and minconf. If the support is less than
minsup, then the rule X ⇒ Y is generated whenever it satisfies the minsup and
minconf constraints.

2nd case: Suppose the correlation coefficient measure is negative while having an absolute
value greater than or equal to the correlation threshold. In that case, both
rules X ⇒ Y and X ⇒ Y are derived if they both satisfy minsup and minconf
thresholds.

3.5. The Pnar Algorithm

Cornelis et al. proposed an algorithm, called Pnar [20] based on the following defini-
tions:

Definition 6. Let DRk = {R1, . . ., Rn} be the set of association rules that can be extracted from
a transaction database D. A rule R1: X1 ⇒ Y ∈ DRk is said to be more general than R2 : X2
⇒ Y ∈ DRk, denoted R1 ≺ R2, if and only if X1 ⊂ X2.

Definition 7. MR = {Ri ∈ DRk | @ Rj ∈ DRk, Rj ≺ Ri}

The Pnar alorithm proceeds in two steps:

• Extracting the frequent itemsets: This step is built up conceptually around a partition
of the itemsets space into four sets:

1. First, the algorithm extracts the set of frequent positive itemsets P1.
2. For each frequent positive itemset I in P1, the algorithm inserts I into P2.
3. The algorithm constructs the set P3 containing itemsets, which are conjunctions

of two negative itemsets of P2.
4. Based on P1 and P2, the algorithm generates frequent itemsets, which are con-

junctions of an itemset of P1 and an itemset of P2.

• Generating the generalized association rules: Based on the four classes of itemsets
already extracted, Cornelis et al. proposed to extract a subset of association rules
from which the whole set of redundant rules can be deduced. Indeed, Cornelis et al.
defined the redundancy of a rule. Hence, using Definition 6, the authors introduced a

Mathematics 2022, 10, 1163 8 of 22

subset of association rules, called set of minimal rules and denotedMR according
to Definition 7. Once P1, P2, P3, and P4 are extracted, the algorithm generates first
positive association rules from P1. Second, for each itemset X ∪ Y of P3, The Pnar
algorithm derives each minimal association rule R: X⇒ Y whenever its confidence
value is at least equal to minconf. Third, for each itemset X ∪ Y of P4, the algorithm
generates X ⇒ Y and X ⇒ Y if they fulfill the minconf threshold.

It is worthy of mention that the Pnar algorithm cannot generate all possible negative
itemsets. Indeed, the authors deduced P2, P3, and P4 from the set of frequent positive
itemsets P1. Furthermore, the authors do not provide any inference mechanism to derive,
without information loss, redundant association rules from those retained.

3.6. The Apriori FISinFIS Algorithm

Mahmood et al. proposed a set of algorithms for discovering positive and negative
association rules simultaneously among frequent and infrequent itemsets from textual
datasets along with three different phases [12].

1. In the first phase, the authors proposed an algorithm called Apriori FISinFIS that
generates all frequent (FIS) and infrequent (inFIS) itemsets of interest (i.e., having
support and confidence greater than a predefined minSupp and minConf). Infrequent
itemset (inFIS) generation is of great importance in generating negative association
rules and tracking essential implications/associations, which would have been missed
when mining only positive association rules.

2. In the second phase, another algorithm is defined to generate positive and negative
association rules with greater confidence than the user-defined threshold and lift
greater than 1. The extracted associations are considered as valid positive and negative
association rules, respectively.

3. Negative association rules are captured among frequent itemsets (FIS). However,
positive associations are extracted among the infrequent itemsets (inFIS).

The extraction of positive and negative rules is based on the following equations [12]:

Lift(X ⇒ Y) =
P(X ∪Y)
P(X)P(Y)

Supp(X) = 1− Supp(X)

Supp(X ∪Y) = Supp(X)− Supp(X ∪Y).

Conf(X ⇒ Y) = 1− Conf(X ⇒ Y) =
P(XY)
P(X)

Supp(X ∪Y) = Supp(Y)− Supp(Y ∪ X).

Conf(X ⇒ Y) =
Supp(X ∪Y)

Supp(X)

Supp(X ∪ Y) = 1 − Supp(X) − Supp(Y) + Supp(X ∪ Y).

Conf (X⇒ Y) = 1−Supp(X)−Supp(Y)+Supp(X∪Y)
1−P(X) = Supp(X∪Y)

Supp(X)

To the best of our knowledge, no algorithm of the scrutinized approaches is grounded to
extract the generalized association rules as defined in Section 4. Indeed, in [18], Antonie
and Zaïane acknowledged that their approach was not general enough to capture the whole
set of generalized association rules. The authors constrained themselves by extracting a
subset of generalized association rules. The premise or the conclusion is a conjunction
of only negative literals or conjunction of only positive literals. In addition, in [14], the
authors extracted a subset of generalized association rules where only the premise part can
contain one negative literal.

Mathematics 2022, 10, 1163 9 of 22

4. Efficient Extraction of Generalized Association Rules

We usher this section by defining an extended form of association rules, called gener-
alized association rules, which takes into account the presence as well as the absence of the
items.

Let I= {i1, i2, . . . , im} be a set of items and L = I ∪ {i|i ∈ I} be the set of literals, such
that a literal is an item i (said a positive literal) or its opposite i (said a negative literal). Let L
be a subset of L containing k non opposite literals, then L is called k-literalset. Let L be a
k-literalset composed of p positive literals and (k - p) negative literals. Then, L is said to be
a p-positive literalset, i.e., a (k− p)-negative literalset. We denote by POSVAR(L), POSPART(L)
and NEGPART(L), respectively, the positive variation, the set of the positive literals, and the
set of the negative literals of L. Formally, these three notions are defined as follows:

Definition 8. Let L be a literalset such that L = {i1, i2, . . ., ip, j1, j2, . . ., jl}.

POSVAR(L) = {i1, i2, . . . , ip, j1, j2 . . . , jl}.

POSPART(L) = {i1, i2, . . . , ip}.

NEGPART(L) = {j1, j2, . . . , jl}.

Let a transaction database D over a set of items I . A transaction T of D is said to
support a literalset L whenever it supports POSPART(L) and does not contain any opposite
literal of NEGPART(L), i.e.,

Supp(L) = |{tid|(tid, I) ∈ D, POSPART(L) ⊆ Iand∀j ∈ NEGPART(L), j /∈ I}|.

A literalset L is said to be frequent if and only if its support is at least equal to a minimum
threshold minsup. It is worth underscoring that the set FL of frequent literalsets is a
downward closure, i.e., equipped by the anti-monotone property, as it is the case for the
set of frequent itemsets. Indeed, if L ∈ FL, ∀ L1 ⊇ L, L1 is also frequent. Conversely, if
L /∈ FL, ∀L1 ⊃ L, L1 is not frequent.

Example 1. Let us consider the transaction database, shown in Table 1, over the set of items I =
{a, b, c, d, e}. We have abc is a 3-literalset and it also is a 1-positive literalset. Its support value is
equal to Supp(abc)= 2, while POSVAR(abc) = abc, POSPART(abc) = a and NEGPART(abc) = bc.
Let minsup = 2, abc is then a frequent literalset. All its subsets are then also frequent literalsets. For
example, Supp(ab) = 3 ≥ 2.

Table 1. A transaction database D.

Tid Items

t1 a e
t2 a c e
t3 a b d
t4 b c e
t5 a e

We define a generalized association rule as a correlation between two literalsets and
having the following form R : L1 ⇒ L2 where L1, L2 ⊆ L and L1 ∩ L2 = ∅. A generalized
association rule is said to be valid if and only if its support value, i.e., the support of L1 ∪ L2,
is at least equal to minsup and its confidence is at least equal to minon f .

5. Efficient Computation of the Support of Literalsets

The extraction process of generalized association rules can be split into two steps
as follows:

1. Extract frequent literalsets;

Mathematics 2022, 10, 1163 10 of 22

2. Derive valid generalized association rules: this step is the least computational. Indeed,
for each frequent literalset L, we derive all possible combinations L1 and L2, such that
L1, L2 ⊆ L and L1 ∩ L2 = ∅, for which the minconf constraint is fulfilled.

For this purpose, the remainder of this section is devoted to the tricky and challenging
task of extracting frequent literalsets. We usher this development by paying heed to
discussing the opportunity of a straightforward naive Brute-force approach.

5.1. A Naive Brute-Force Approach

A naive brute-force approach consists of augmenting each transaction of the original
dataset with new item identifiers representing the absence of each item from a transaction
and, then, straightforwardly applying a classical algorithm such as Apriori [13] on a
generalized transaction datasbase as the one given in Table 2.

Table 2. A generalized transaction database D.

Tid Items

t1 a b c d e
t2 a b c d e
t3 a b c d e
t4 a b c d e
t5 a b c d e

Nevertheless, this approach was shown to be inefficient, especially during the step
dedicated to the computation of literalsets supports [21]. Indeed, to compute supports of
the candidate k-literalsets, the algorithm has to check for each k-subset of a transaction
T = (tid, L) (L is a set of literals, such that L ⊆ L.) whether it belongs to the set of
the candidate k-literalsets. Since the length of each transaction was increased to reach a
value equal to n = |I|, then the number of the k-subsets that we have to check rockets
considerably. The computation of literalsets supports will be a very time-consuming and
intractable step.

5.2. Toward an Efficient Computation the Support of a Literalset

As underscored before, extracting generalized association rules from the extended
transaction database is impractical whenever the classical mining approach is used. Thus,
it would be interesting to devise a solution that permits to extraction of generalized as-
sociation rules directly from the original transaction database. Nevertheless, computing
supports of literalsets becomes problematic. In other words, how can we compute the
support of a literalset from transactions which contain only the present items? In such
a situation, the inclusion-exclusion principle can offer an efficient option. Indeed, this
well-known principle was of extensive use in many enumeration problems [22]. Moreover,
this principle was used in [21,23] to compute the support of a literalset. Given a literalset
L = {i1, . . . , im, j1, . . . , jn}, then its support is computed as follows:

Supp(L) = ∑
S⊆{j1,...,jn}

(− 1)|S| × Supp({i1, . . . , im} ∪ S) (1)

Example 2. Let abcd be a literalset. Then, its support is computed as follows:

Supp(abcd) = Supp(a)− Supp(ab)− Supp(ac)− Supp(ad) + Supp(abc) + Supp(abd) + Supp(acd)− Supp(abcd).

Hence, we notice that the support of a literalset L can be deduced by only considering
the supports of positive itemsets. Indeed, the support of a literalset L is determined from
the support of POSVAR(L) and those of the subsets of NEGPART(L). However, it is worth
putting forward that positive itemsets, of need to compute the support of a literalset,

Mathematics 2022, 10, 1163 11 of 22

are not necessarily found to be frequent ones. Consequently, as a flagrant con, these
approaches [21,23] need to perform supplementary accesses to the dataset to count the
supports of these infrequent positive itemsets. To tackle such an insufficiency, Boulicaut et
al. proposed a potential solution, which consists of providing an approximate value of the
support of a literalset by ignoring infrequent positive itemsets [21]. Thus, the more positive
itemsets are infrequent, the more non-scalable this approach is.

In the following, we introduce a new theorem that reduces the number of accesses
to the database. Nevertheless, first, we intuitively illustrate the driving idea through an
example.

Example 3. Let us consider the transaction database D depicted by Table 1. Figure 1 shows
transactions that contain the literal a, respectively, b and c. At a glance, we can notice that:

Supp(a) = Supp(abc) + Supp(abc)︸ ︷︷ ︸+Supp(abc) + Supp(abc)

Supp(a) = Supp(ab) + Supp(abc) + Supp(abc)

Supp(a) = Supp(ab) +
︷ ︸︸ ︷
Supp(ac)− Supp(abc) +Supp(abc)

As a consequence, we can deduce the following observation:

Supp(abc) = −Supp(a) + Supp(ab) + Supp(ac) + Supp(abc)

a b
abc abc

abc

c

abc abc
abc

abc

Figure 1. Sets representing transactions containing literals a, b, and c.

As we can see, the support of the literalset abc can be deduced from the supports of its
strict subsets and that of its positive variation POSVAR(abc). Consequently, we guarantee
a decrease in the number of accesses to the dataset. To generalize the observation, we
propose to compute the support of a literalset as follows:

Theorem 1. Let L = {i1, . . ., im, j1, . . ., jn} be a literalset. Then the support of L is equal to

Supp(L) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})

∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S) (2)

with |S′| = |S| if n is even and |S′| = |S| + 1 if n is odd.

Proof. Note that for all expressions, |S′| = |S| if n is even and |S′| = |S| + 1 if n is odd.

Mathematics 2022, 10, 1163 12 of 22

We show by induction that Supp({i1, . . . , im, j1, . . . , jn}) = (− 1)n ×
Supp({i1, . . . , im, j1, . . . , jn})

+ ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S) (H1)

We have H1 fulfilled for both n = 0 and n = 1. Indeed,

• For n=0, we have Supp({i1, . . . , im}) = (− 1)0 × Supp({i1, . . . , im})
• For n=1, we have, for each literalset X and an item i, the number of transactions

containing X is the sum of the number of transactions in which occurs X with i, and
the number of transactions in which X occurs without i. In other words, Supp(X) =
Supp(X∪{i}) + Supp(X∪{i}). Hence,

Supp(X∪{i}) = Supp(X) − Supp(X∪{i}) (E1)

Applying E1 for the literalset {i1, . . . , im} and the item j1, we obtain:
Supp({i1, . . . , im, j1}) = Supp({i1, . . . , im}) − Supp({i1, . . . , im, j1}).

We suppose that (H1) is true for n, and we show that it holds for n + 1.
By applying (E1) for the literalset {i1, . . . , im, j1, . . . , jn} and the item jn+1, we obtain:

Supp({i1, . . . , im, j1, . . . , jn, jn+1}) = Supp({i1, . . . , im, j1, . . . , jn})
− Supp({i1, . . . , im, jn+1, j1, . . . , jn})

According to the hypothesis (H1) we have:

Supp({i1, . . . , im, j1, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})

+ ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

and

Supp({i1, . . . , im, jn+1, j1, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn, jn+1})

+ ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im, jn+1} ∪ S)

Then, we can deduce that:

Supp({i1, . . . , im, j1, . . . , jn, jn+1}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})
− (− 1)n × Supp({i1, . . . , im, j1, . . . , jn, jn+1})

+ ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S) (E2)

− ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im, jn+1} ∪ S) (E3)

For each literalset L ∈ (E2), it corresponds a literalset {L ∪ jn+1} ∈ (E3). Thus,

Supp({i1, . . . , im, j1, . . . , jn, jn+1}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn}) (E4)
− (− 1)n × Supp({i1, . . . , im, j1, . . . , jn, jn+1})

+ ∑
S⊂{j1,...,jn ,}

(− 1)|S
′ | × Supp({i1, . . . , im, jn+1} ∪ S)

Mathematics 2022, 10, 1163 13 of 22

Let us compute (− 1)n × Supp({i1, . . . , im, j1, . . . , jn}) (E4). According to (H1):

Supp({i1, . . . , im, j1, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})

+ ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

Hence,

(− 1)n × Supp({i1, . . . , im, j1, . . . , jn}) = Supp({i1, . . . , im, j1, . . . , jn})

∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

= − ∑
S⊆{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S) (E5)

By replacing (E4) by (E5), we obtain:

Supp({i1, . . . , im, j1, . . . , jn, jn+1}) = − (− 1)n × Supp({i1, . . . , im, j1, . . . , jn, jn+1})

+ ∑
S⊂{j1,...,jn ,}

(− 1)|S
′ | × Supp({i1, . . . , im, jn+1} ∪ S)

− ∑
S⊆{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

= (− 1)n+1 × Supp({i1, . . . , im, j1, . . . , jn, jn+1})

+ ∑
S⊂{j1,...,jn+1,}

(− 1)|S
′ | × Supp({i1, . . . , im, jn+1} ∪ S)

We conclude that:

Supp({i1, . . . , im, j1, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})

+ ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

6. The FASTERIE Algorithm for an Efficient Extraction of Frequent Literalsets

In what follows, we put the focus on the most computational step of the generalized
association rule mining process, namely, the extraction of frequent literalsets. Indeed,
this step is considered the critical phase of the process. To this end, we introduce a new
algorithm, called FASTERIE, permitting us to extract the frequent literalsets from the original
database. In the following, we present the FASTERIE main principle and the underlying
data structure. In addition, we thoroughly describe the different steps of the proposed
algorithm.

The FASTERIE algorithm adopts a bottom-up traversal of the search space. Hence,
starting from the empty set, it determines frequent literalsets in a growing manner and it
stores them into a prefix tree (aka trie) [24]. Figure 2 (Left) shows a prefix tree that stores all
strict subsets of the literalset abcd, which can be extracted from the database D depicted in
Table 1. The prefix tree nodes are ordered according to the lexicographic order on literals

Mathematics 2022, 10, 1163 14 of 22

(the lexicographic order used is given by a ≺ . . . ≺ z ≺ a ≺ . . . ≺ z). Each path, starting
from the root node of the prefix tree, represents a literalset, where the integer kept in the
last node on the path stands for the support of the literalset, e.g., the left-most path from the
node labeled “∅, 5” to the node labeled “c, 2” represents the literalset abc, whose support
value is equal to 2.

Figure 2. (Left): The prefix tree containing strict subsets of abcd. (Right): The bottom-most node
d (encircled) presents the candidate literalset abcd generated from frequent literalsets abc and abd.
The support value associated to this node is initialized to 0. The arrows show subsets that have to
be checked.

In the following, we thoroughly describe the different steps of the FASTERIE algorithm,
whose pseudo-code is presented by Algorithm 1.

In the following, we describe the main routines invoked by the FASTERIE algorithm, namely
the Generate-frequent-1-literalsets, the Generate-next-level, and the Partial-Computat
ion-Support.

Algorithm 1: FASTERIE Algorithm
Data: (database D, minsup)
Results: FL
Begin

Set of frequent literalsets FL ← ∅;1

FL ← Generate-frequent-1-literalsets(D);2

do3

Set of candidates CL ← Generate-next-level(FL);4

for each literalset L in CL do
Partial-Computation-Support(L, root node n∅);5

Scan D to compute the support of positive variation of each literalset6

in CL;
CL ← Prune-Infrequent-literalsets(CL, minsup);7

FL ← FL ∪ CL;8

while CL is non empty9

return FL;
End

6.1. The Generate-Frequent-1-Literalsets Procedure

The Generate-frequent-1-literalsets procedure scans the transaction database to
find out the set of frequent 1-literalsets. To this end, it uses a temporary |I|-sized array,
where the ith entry represents the support of the positive literal i. Initially, entries of the
array are set to 0. Then, for each scanned transaction T of the database, the support of the
literal i is incremented if i is contained in T. Straightforwardly, we can deduce the support
of each negative literal i from that of its opposite i, thanks to Supp(i) = Supp(∅)− Supp(i).

Mathematics 2022, 10, 1163 15 of 22

The procedure creates the root node n∅ containing the empty set and its support value equal
to |D| and its child nodes representing frequent literals with their associated supports.

6.2. The Generate-Next-Level Procedure

During an iteration k, the procedure uses the prefix tree to generate the candidate k-
literalsets. For this purpose, Generate-next-level creates for each pair of (k− 1)-literalsets
L1 and L2, sharing the same (k − 2)-elements in the prefix tree, a candidate child node
nL1∪L2. Furthermore, the procedure leverages the anti-monotonicity property of the support
measure, to prune candidate k-literalsets, which have at least one infrequent (k − 1)-subset.
Figure 2 (Bottom) illustrates the Generate-next-level procedure at work.

6.3. Computing Supports of the Literalsets

The purpose of this step is to compute the respective supports of candidate literalsets.
To this end, we propose to split this phase into two sub-phases as follows:

6.3.1. The Partial-Computation-Support

To compute the support of a candidate k-literalset L, we first call the Partial-Computat
ion-Support procedure, whose pseudo-code is given by Algorithm 2. This procedure only
allows computing the value of the subtractive term in Equation (2) (c.f. Theorem 1). To do
so, the supports of the subsets of L sharing POSPART(L) are required. It is important to
note that these support values were already determined during previous iterations. To this
end, Partial-Computation-Support uses an array of size |L|, denoted by Z. The ith entry
of Z, denoted by Z[i], contains the ith literal in L.

Algorithm 2: PARTIAL-COMPUTATION-SUPPORT PROCEDURE

Data: (literalset L, n)
/* assert: Supp(L) stores the support of the literalset L */
/* assert: Z stores literals of the literalset L */
Begin

i := 0 ;1

while Z[i] is not the last positive literal in L do2

n := n→ nZ[i];3

i := i + 1;4

Supp(L) := 0;5

EXPLORE(Z, i, n, Supp(L));6

End

This procedure traverses the prefix-tree starting from the root node. Two-pointers are
used. The first pointer p runs through the elements of Z and is initialized to the first element.
The second pointer q runs through the nodes of the prefix-tree, and it is initialized to the
root node n∅. For a literal Z[i] referenced by p, Partial-Computation-Support checks
whether p is not the last positive literal in L. If so, it runs through the node’s children
referenced by q to locate the node with label Z[i]. Otherwise, p is the last positive literal in
L, and we begin by retrieving the supports of the literalsets according to Theorem 1, since
they share POSPART(L). Indeed, we explore descendants of the node referenced by q, by
invoking recursively the Explore procedure, whose pseudo-code is given by Algorithm 3.

Mathematics 2022, 10, 1163 16 of 22

Algorithm 3: EXPLORE PROCEDURE

Data: (Z, n, i, Supp(L))
Begin

n := n→ nZ[i];1

Supp(L) = Supp(L) ± n.Supp;2

for(j := i + 1; j < |L|; j := j + 1)3

Explore(Z, n, j, Supp(L));4

End

In fact, this procedure looks for children nodes of the node referenced by q, whose
labels are included in NEGPART(L)). Then, for each children node nc, the support of L is
updated with support of nc and Explore is recalled. The search process comes to an end
whenever any pointer reaches the end of its structures.

Example 4. In Figure 3, the Partial-Computation-Support procedure is illustrated for the
candidate literalset abcd. The arrows indicate the nodes that are summed.

Figure 3. Partial-Computation-Support at work for the candidate literalset abcd.

6.3.2. Computation of Supports of Positive Variations

Once the subtractive term of each candidate k-literalset L is computed, the FASTERIE
algorithm computes the first term which represents the support of POSVAR(L), cf. Theo-
rem 1. It is important to note that this computation requires only one scan of the database
for the whole set of the candidate k-literalsets.

Finally, after computing supports of the candidate k-literalsets, the algorithm deletes
leaves presenting a support value lower than minsup (cf. Algorithm 1, line 8).

6.4. Optimization Issues

It is noteworthy that FasterIE has to make many node visits through the prefix tree to
compute the support of a literalset. Consequently, to improve the performance of FASTERIE
algorithm, we should devise strategies which minimize as far as possible the number of
node visits.

Mathematics 2022, 10, 1163 17 of 22

1. Strategy 1: The first optimization is based on the following observation. As shown
before, during partial counting of the support of a candidate literalset, the algorithm
explores nodes that have been already visited during the checking subsets step. For
example, in Figure 3, the framed nodes were already visited when subsets of abcd
were handled. Thus, combining these two steps would be advantageous.

2. Strategy 2: According to Theorem 1, we can remark that some supports needed to
compute the support of a literalset L are also required to compute the support of L
subsets sharing POSPART(L)). For example, we have:

Supp(acd) = −Supp(a) + Supp(ac) + Supp(ad) + Supp(acd) (3)

Supp(abcd) = Supp(a)− Supp(ab)− Supp(ac)− Supp(ad) + Supp(abc) + Supp(ab d) + Supp(acd)− Supp(abcd) (4)

Consequently, we can replace terms of Equation (4) shared with Equation (3) by
Supp(POSVAR(acd)).

Supp(abcd) = −Supp(ab) + Supp(abc) + Supp(ab d) + Supp(acd)− Supp(abcd) (5)

According to Equation (5), we remark that instead of looking for Supp(a), Supp(ac),
Supp(ad) , and Supp(acd), we only have to recuperate Supp(POSVAR(acd)).
To generalize this example, we propose to further refine the computation support of a
literalset L as follows:

Proposition 1. Let L = {i1, . . ., im, j1, . . ., jn} be a literalset.

Supp(L) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn}) + Supp({i1, . . . , im, j2, . . . , jn})

− ∑
S⊂{j2,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im, j1} ∪ S)

with |S′| = |S| if n is even and |S′| = |S| + 1 if n is odd.

Proof. According to Theorem 1, we have:

Supp({i1, . . . , im, j1, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})

+ ∑
S⊂{j1,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

Hence,

Supp({i1, . . . , im, j1, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})

+ ∑
S⊆{j2,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)(E6)

+ ∑
S⊂{j2,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im, j1} ∪ S)

Mathematics 2022, 10, 1163 18 of 22

By applying Theorem 1 for the literalset {i1, . . . , im, j2, . . . , jn}, we obtain:

Supp({i1, . . . , im, j2, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j2, . . . , jn})

+ ∑
S⊂{j2,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

Hence,

(− 1)n × Supp({i1, . . . , im, j2, . . . , jn}) = Supp({i1, . . . , im, j2, . . . , jn})

(E7) + ∑
S⊂{j2,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

= ∑
S⊆{j2,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im} ∪ S)

By replacing (E6) by (E7), we deduce that:

Supp({i1, . . . , im, j1, . . . , jn}) = (− 1)n × Supp({i1, . . . , im, j1, . . . , jn})
+ Supp({i1, . . . , im, j2, . . . , jn})

+ ∑
S⊂{j2,...,jn}

(− 1)|S
′ | × Supp({i1, . . . , im, j1} ∪ S)

However, it is essential to underscore that we have to store the positive variation of
literalsets in its corresponding node.

7. Experimental Evaluation

To assess the performances of the FASTERIE algorithm, we carried out experiments
considered on benchmark datasets taken from the UCI Machine Learning Database Reposi-
tory (the datasets, accessed on 7 November 2021, are available at http://www.ics.uci.edu/
mlearn/MLRepository.html).

7.1. Assessing Optimizations Benefits

The first series of experiments were performed to compare the first version of FASTERIE
to the second one, i.e., using the optimizations mentioned above, denoted by FASTERIE+.
According to Figure 4, we can notice that the optimized version largely outperforms the
first version of FASTERIE, especially as far as we lower minsup values. For example, for the
lowest threshold, FASTERIE+ is 32 times, 6 times, 8 times, and 7 times as fast as FASTERIE
respectively for the NURSERY, MONKS, FLARE, and ZOO datasets. This is can be explained
by the fact that both introduced optimizations allow to considerably reduce the number of
visited nodes during the step of computing of literalset supports.

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

Mathematics 2022, 10, 1163 19 of 22

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 10 15 20 25 30 35

T
im

e
 [
s
e
c
]

minsup (%)

Nursery

FasterIE
FasterIE+

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 2 3 4 5 6 7 8 9 10

T
im

e
 [
s
e
c
]

minsup (%)

Monks

FasterIE
FasterIE+

 1

 4

 16

 64

 256

 1024

 4096

 30 35 40 45 50 55 60

T
im

e
 [
s
e
c
]

minsup (%)

Flare

FasterIE
FasterIE+

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 30 35 40 45 50 55 60

T
im

e
 [
s
e
c
]

minsup (%)

Zoo

FasterIE
FasterIE+

Figure 4. Comparison of FASTERIE performances vs. those of FASTERIE+.

7.2. Performance of the FASTERIE Algorithm

In the following, we evaluate the FASTERIE algorithm in its optimized version. To this
end, two different series of experiments were held as follows:

• The first series of experiments: This series consists of comparing FASTERIE versus the
naive brute-force approach. To this end, we first extended the tested databases. Then,
we used the efficient Bodon implementation [25] of the APRIORI algorithm to extract
frequent literalsets (this implementation, accessed on 4 September 2021, is available at
http://fimi.cs.helsinki.fi/). According to Figure 5, we notice that FASTERIE largely
outperforms APRIORI. Indeed, our algorithm performs 10–72 times faster than its
competitor APRIORI. A takeaway message from this first series of experiments is that
we can observe that the brute-force naive approach is, expectantly, the furthest from
being scalable.

• The second series of experiments: In this series, we compare the FASTERIE algorithm
versus its competitors, i.e., to those extracting frequent literalsets from the original
dataset. In [23], Calders and Goethals presented three methods for computing the
support of a literalset (these approaches were used to extract the non-derivable item-
sets [26]). we leveraged these approaches to implement three algorithms, denoted
by BRUTEFORCEIE, COMBINEDIE, and QIE in order to extract frequent literalsets.
As aforementioned, these methods have to access the dataset further to compute the
required supports of several infrequent positive itemsets. It is worthy of mention to
note that we omit the experimental results of QIE because it is a very time-consuming
algorithm. For example, for the ZOO database, it takes more than eight hours for a
minsup value equal to 60%. A glance to Figure 5, we notice that FASTERIE algorithm
outperforms BRUTEFORCEIE by many orders of magnitude. This is explained by the
fact that BRUTEFORCEIE performs a high number of database scans to determine the
respective literal supports. Indeed, the algorithm has to scan the database for each
support computation. Consequently, the more significant negative literaset part is,
the slower the algorithm becomes. This conclusion is reasonably expected since the
number of terms of Equation (1) exponentially grows with the number of negative
literals. As we have already underscored, the larger the negative literaset part, the

http://fimi.cs.helsinki.fi/

Mathematics 2022, 10, 1163 20 of 22

trickier and more challenging the literaset support computation. Our approach comes
into play since we put forward that according to Proposition 1, we underscore that
some supports needed to compute the support of a literalset L are also be reused to
compute the support of L subsets sharing part. Thus, we are rewriting in terms of its
support, and we are decreasing the length of negative literaset part. By and large, FAS-
TERIE algorithm sharply outperforms COMBINEDIE, which on his turn outperforms
the BRUTEFORCEIE algorithm. Indeed, the COMBINEDIE algorithm reduces the I/O
cost by storing all transactions in a trie-like data structure [27].

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 10 15 20 25 30 35

T
im

e
 [
s
e
c
]

minsup (%)

Nursery

FasterIE+
Apriori

CombinedIE
BruteForceIE

 1

 4

 16

 64

 256

 1024

 4096

 2 3 4 5 6 7 8 9 10
T

im
e
 [
s
e
c
]

minsup (%)

Monks

FasterIE+
Apriori

CombinedIE
BruteForceIE

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 30 40 50 60 70 80

T
im

e
 [
s
e
c
]

minsup (%)

Flare

FasterIE+
Apriori

CombinedIE
BruteForceIE

 0.25

 1

 4

 16

 64

 256

 1024

 35 40 45 50 55 60

T
im

e
 [
s
e
c
]

minsup (%)

Zoo

FasterIE+
Apriori

CombinedIE
BruteForceIE

Figure 5. Comparison of the performances of FASTERIE and those of the existing algorithms.

8. Conclusions

Generalized association rules mining is a highly relevant yet challenging problem in
data mining that has caught many researchers’ interest. Indeed, when negative items are
considered, the length of the transactions increases. Thus, the standard algorithms of data
mining and especially the step of computing the supports of itemsets with negation would
break down.

This paper focuses on a critical step of generalized association rules mining, namely
extracting frequent literalsets. Indeed, this step constitutes the basis of the mining process
of generalized association rules. To this end, we proposed a new algorithm, called FAS-
TERIE, for extracting frequent literalsets. In addition, we devise an efficient method that
overcomes the problem of computing the support of literalsets. Experimental results show
the proposed approach’s efficiency compared to the existing algorithms.

The number of generalized association rules can be overwhelming. Thus, it is nearly
impossible for the end-users to comprehend or validate many such rules. In this line, we
are planning to tackle the pay heed to these thriving challenges:

• Mining generic bases of top-K of generalized association rules [28]: The massive
number of association rules drawn from– even reasonably sized datasets–bootstrapped
the development of more acute techniques or methods to reduce the size of the
reported rule sets. The sought-after goal would be to define“ irreducible” nuclei
of generalized association rule subset. From such a generic basis of generalized
association rules, it is possible to infer all association rules commonly via an adequate

Mathematics 2022, 10, 1163 21 of 22

axiomatic system. We also consider exploring the benefit of applying this newly
defined generic basis for the regulation of Pregnancy Associated Breast Cancer Gene
Expressions [29],

• A conceptual coverage composed of generalized literalsets [6,30]: This issue explores
the thriving opportunity to define a generalized conceptual coverage by generalized
intent and extent parts. Would it be better, or more convenient, to describe some
properties by the absence of the other ones?

• Identification of biclusters in gene expression data [31]: Indeed, biclusters can be of
positive or negative correlations. A negative correlations bicluster is a bicluster where
the expression values of some genes tend to be the complete opposite of the other
genes, i.e., given two genes G1 and G2, under the same condition C, if both G1 and G2
are affected by C. At the same time, G1 goes up, and G2 goes down, we can note that
G1 and G2 have a negative correlation pattern.

Author Contributions: Conceptualization, A.M., F.H. and S.A.; Formal analysis, A.M., F.H. and S.A.;
Investigation, A.M., F.H. and S.A.; Methodology, A.M., F.H. and S.A.; Project administration, A.M.,
F.H. and S.A.; Software, A.M., F.H. and S.A.; Supervision, A.M., F.H. and S.A.; Validation, A.M., F.H.
and S.A.; Writing—original draft, A.M.; Writing—review & editing, F.H. and S.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This project was supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R236), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Acknowledgments: This project was supported by Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2022R236), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Solanki, S.K.; Patel, J.T. A Survey on Association Rule Mining. In Proceedings of the Fifth International Conference on Advanced

Computing Communication Technologies, Haryana, India, 21–22 February 2015; pp. 212–216.
2. Sharma, R.; Kaushik, M.; Peious, S.A.; Bazin, A.; Shah, S.A.I.F., Jr.; Ben Yahia, S.; Draheim, D. A Novel Framework for Unification

of Association Rule Mining, Online Analytical Processing and Statistical Reasoning. IEEE Access 2022, 10, 12792–12813. [CrossRef]
3. Fister, I.I.F., Jr. Association Rules over Time. In Frontiers in Nature-Inspired Industrial Optimization; Springer: Singapore, 2022;

pp. 1–16. [CrossRef]
4. Fournier-Viger, P.; Li, J.; Lin, J.C.; Truong Chi, T.; Uday Kiran, R. Mining cost-effective patterns in event logs. Knowl.-Based Syst.

2020, 191, 105241. [CrossRef]
5. Mouakher, A.; Ben Yahia, S. Anthropocentric Visualisation of Optimal Cover of Association Rules. In Proceedings of the 7th

International Conference on Concept Lattices and Their Applications, Sevilla, Spain, 19–21 October 2010; Volume 672, pp. 211–222.
6. Mouakher, A.; Ben Yahia, S. QualityCover: Efficient binary relation coverage guided by induced knowledge quality. Inf. Sci.

2016, 355–356, 58–73. [CrossRef]
7. Mouakher, A.; Ragobert, A.; Gerin, S.; Ko, A. Conceptual Coverage Driven by Essential Concepts: A Formal Concept Analysis

Approach. Mathematics 2021, 9, 2694. [CrossRef]
8. Shahin, M.; Arakkal Peious, S.; Sharma, R.; Kaushik, M.; Ben Yahia, S.; Shah, S.A.; Draheim, D. Big data analytics in association

rule mining: A systematic literature review. In Proceedings of the 3rd International Conference on Big Data Engineering and
Technology (BDET), Singapore, 16–18 January 2021; pp. 40–49.

9. Sharmila, S.; Vijayarani, S. Association rule mining using fuzzy logic and whale optimization algorithm. Soft Comput. 2021, 25,
1431–1446. [CrossRef]

10. Bagui, S.; Probal, D. Mining Positive and Negative Association Rules in Hadoop’s MapReduce Environment. In Proceedings of
the ACMSE 2018 Conference, ACMSE’18, Richmond, KY, USA, 29–31 March 2018; Association for Computing Machinery: New
York, NY, USA, 2018. [CrossRef]

11. Wu, X.; Zhang, C.; Zhang, S. Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 2004, 22,
381–405. [CrossRef]

12. Mahmood, S.; Shahbaz, M.; Guergachi, A. Negative and Positive Association Rules Mining from Text Using Frequent and
Infrequent Itemsets. Sci. World J. 2014, 2014, 973750. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2022.3142537
http://dx.doi.org/10.1007/978-981-16-3128-3_1
http://dx.doi.org/10.1016/j.knosys.2019.105241
http://dx.doi.org/10.1016/j.ins.2016.03.009
http://dx.doi.org/10.3390/math9212694
http://dx.doi.org/10.1007/s00500-020-05229-4
http://dx.doi.org/10.1145/3190645.3190701
http://dx.doi.org/10.1145/1010614.1010616
http://dx.doi.org/10.1155/2014/973750
http://www.ncbi.nlm.nih.gov/pubmed/24955429

Mathematics 2022, 10, 1163 22 of 22

13. Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of
the ACM-SIGMOD International Conference on Management of Data (SIGMOD 1993), Washington, DC, USA, 26–28 May 1993;
pp. 207–216.

14. Amir, A.; Feldman, R.; Kashi, R. A new versatile method for association generation. In Proceedings of the 1st European
Symposium on Data Mining and Knowledge Discovery (PKDD 1997), Trondheim, Norway, 24–27 June 1997; pp. 221–231.

15. Savasere, A.; Omiecinski, E.; Navathe, S. Mining for strong negative associations in a large database of customer transactions. In
Proceedings of the 14th International Conference Data Engineering 1998 (ICDE 1998), Orlando, FL, USA, 23–27 February 1998;
pp. 494–502.

16. Morzy, M. Efficient mining of dissociation rules. In Proceedings of the 8th International Conference on Data Warehousing and
Knowledge Discovery (DaWak 2006), Krakow, Poland, 4–8 September 2006.

17. Piatetsky-Shapiro, G. Discovery, Analysis, and Presentation of Strong Rules. In Knowledge Discovery in Databases; Piatetsky-Shapiro,
G., Frawley, W.J., Eds.; AAAI/MIT Press: Cambridge, MA, USA, 1991; pp. 229–248.

18. Antonie, M.; Zaïane, O. Mining positive and negative association rules: An approach for confined rules. In Proceedings of the 8th
European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2004), Pisa, Italy, 20–24 September
2004; pp. 27–38.

19. Tan, P.; Kumar, V. Interestigness measures for association patterns: A perspective. In Proceedings of the International Workshop
on Postprocessing in Machine Learning and Data Mining, Boston, MA, USA, 20–23 August 2000.

20. Cornelis, C.; Yan, P.; Zhang, X.; Chen, G. Mining positive and negative association rules from large databases. In Proceedings
of the International Conference on Cybernetics and Intelligent Systems (CIS 2006), Bangkok, Thailand, 19–21 November 2006;
pp. 613–618.

21. Boulicaut, J.F.; Bykowski, A.; Jeudy, B. Towards the tractable discovery of association rules with negations. In Proceedings
of the 4th International Conference on Flexible Query Answering Systems (FQAS 2000), Warsaw, Poland, 25–28 October 2000;
pp. 425–434.

22. Knuth, D.E. Fundamental Algorithms; Addison-Wesley: Reading, MA, USA, 1997.
23. Calders, T.; Goethals, B. Quick Inclusion-Exclusion. In Proceedings of the 4th International Workshop Knowledge Discovery in

Inductive Databases (KDID 2005), Porto, Portugal, 3 October 2005.
24. Fredkin, E. Trie memory. Commun. ACM 1960, 3, 490–499. [CrossRef]
25. Bodon, F. A fast APRIORI implementation. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementa-

tions (FIMI 2003), Melbourne, FL, USA, 19 December 2003.
26. Calders, T.; Goethals, B. Non-derivable itemset mining. Data Min. Knowl. Discov. 2007, 14, 171–206. [CrossRef]
27. Borgelt, C.; Krus, R. Induction of association rules: APRIORI implementation. In Proceedings of the 15th Conference on

Computational Statistics (COMPSTAT 2002), Berlin, Germany, 24–28 August 2002; pp. 395–400.
28. Ben Yahia, S.; Gasmi, G.; Mephu Nguifo, E. A new generic basis of “factual” and “implicative” association rules. Intell. Data Anal.

2009, 13, 633–656. [CrossRef]
29. Bouasker, S.; Inoubli, W.; Ben Yahia, S.; Diallo, G. Pregnancy Associated Breast Cancer Gene Expressions: New Insights on

Their Regulation Based on Rare Correlated Patterns. IEEE ACM Trans. Comput. Biol. Bioinform. 2021, 18, 1035–1048. [CrossRef]
[PubMed]

30. Mouakher, A.; Ben Yahia, S. On the efficient stability computation for the selection of interesting formal concepts. Inf. Sci. 2019,
472, 15–34. [CrossRef]

31. Houari, A.; Ayadi, W.; Ben Yahia, S. A new FCA-based method for identifying biclusters in gene expression data. Int. J. Mach.
Learn. Cybern. 2018, 9, 1879–1893. [CrossRef]

http://dx.doi.org/10.1145/367390.367400
http://dx.doi.org/10.1007/s10618-006-0054-6
http://dx.doi.org/10.3233/IDA-2009-0384
http://dx.doi.org/10.1109/TCBB.2020.3015236
http://www.ncbi.nlm.nih.gov/pubmed/32776880
http://dx.doi.org/10.1016/j.ins.2018.08.056
http://dx.doi.org/10.1007/s13042-018-0794-9

	Introduction
	Basic Concepts and Terminology
	Related Work
	The Gen-Neg-Rules Algorithm
	The DI-Apriori Algorithm
	The Positive and Negative Associations Algorithm
	The Positive and Negative Correlated Associations Algorithm
	The Pnar Algorithm
	The Apriori FISinFIS Algorithm

	Efficient Extraction of Generalized Association Rules
	Efficient Computation of the Support of Literalsets
	A Naive Brute-Force Approach
	Toward an Efficient Computation the Support of a Literalset

	The FasterIE Algorithm for an Efficient Extraction of Frequent Literalsets
	The Generate-Frequent-1-Literalsets Procedure
	The Generate-Next-Level Procedure
	Computing Supports of the Literalsets
	The Partial-Computation-Support
	Computation of Supports of Positive Variations

	Optimization Issues

	Experimental Evaluation
	Assessing Optimizations Benefits
	Performance of the FasterIE Algorithm

	Conclusions
	References

