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Abstract: The main crux of this work is to study the existence of extremal solutions for a new class of
nonlinear sequential fractional differential equations (NSFDEs) with nonlinear boundary conditions
(NBCs) under the ψ-Caputo operator. The obtained outcomes of the proposed problem are derived
by means of the monotone iterative technique (MIT) associated with the method of upper and lower
solutions. Lastly, the desired findings are well illustrated by an example.

Keywords: sequential ψ-Caputo derivative; nonlinear boundary conditions; extremal solutions;
monotone iterative technique; upper and lower solutions

MSC: 34A08; 26A33; 34A12

1. Introduction

Currently, the study of initial or boundary value problems (BVPs) for fractional differ-
ential equations (FDEs) has received great recognition due to their important applications in
various areas, such as mathematical, physical, and engineering models; see [1–3]. For more
recent developments on this topic, one can see the monographs [4–7] and the references
therein. As a consequence of the advancement made in the field of fractional calculus
(FC), several new fractional operators have appeared ranging from Riemann–Liouville,
Caputo, Hadamard and Hilfer to ψ-Caputo and ψ-Hilfer operators. For more clarifications
and basic properties of these new fractional operators, the reader is referred to the follow-
ing references [8–13]. The latest operators have the ability to recover the aforementioned
operators. In this respect, real-world events are often nonlinear, and thus, they can be
modeled by nonlinear FDEs. Recently, plenty of scholars studied the aforesaid field looking
for some qualitative properties of their solutions. Generally speaking, getting the exact
solution of FDEs involving nonlinearities is a tough task. Namely, in order to bypass the
absence of exact solutions of nonlinear FDEs, many researchers have devoted themselves to
developing various techniques to compute the approximate solutions to such problems of
the considered FDEs. Among them, the monotone iterative technique (MIT) [14,15] linked
with the method of upper and lower solutions is employed as a fundamental mechanism
to prove the existence as well as the approximation of solutions to many applied problems
of nonlinear differential equations and integral equations. In other words, the suggested
approach has many interesting advantages. The main advantage of this tool is that it not
only proves the existence of solutions but it can also provide calculable monotone sequences
that converge to the extremal solutions. Recent results by means of the MIT are obtained
in [16–22] and the references therein. To the best of our knowledge, NSFDEs involving the
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ψ-fractional operator were not given enough consideration and were only studied by a
few researchers [23], and it is the motivation of this paper. So, in this manuscript, we will
explore the existence of extremal solutions for the following NSFDEs in the ψ-Caputo sense
involving NBCs:{(cDε+1;ψ

a+ + ω cDε;ψ
a+
)
p(r) = M(r, p(r)), r ∈ ∆ := [a, b],

W(p(a), p(b)) = 0, p[1];ψ(a) = θ1,
(1)

where cDε;ψ
a+ is the ψ-Caputo fractional derivative of order ε ∈ (0, 1] (which will be specified

in Definition 2), M : ∆×R −→ R, W : R×R −→ R are both continuous functions, ω is a
positive real number, and θ1 ∈ R.

This manuscript has the following structure: Section 2 offers some basic definitions
and useful tools that are required in this paper. Section 3 is devoted to the principal findings
concerning the existence of extremal solutions for the proposed model (1). An example is
proposed in Section 4 to highlight the usefulness of our theoretical outcomes. At last, the
manuscript ends with a brief conclusion and some suggestions for future work are also
pointed out.

2. Preliminaries

Below, we provide some definitions and fundamental lemmas which will be employed
and used as helping tools in our proofs later.

Let ψ ∈ C1(∆,R) be a given function such that ψ′(r) > 0, for all r ∈ ∆.

Definition 1 ([4,8]). The R–L fractional integral of order ε > 0 for an integrable function p : ∆ −→
R with respect to ψ is described by

Iε;ψ
a+ p(r) =

∫ r

a

ψ′(η)(ψ(r)− ψ(η))ε−1

Γ(ε)
p(η)dη,

where Γ(ε) =
∫ +∞

0 rε−1e−rdr, ε > 0 is called the Gamma function.

Definition 2 ([8]). Let ψ, p ∈ Cn(∆,R). The Caputo fractional derivative of p of order n− 1 <
ε < n with respect to ψ is defined by

cDε;ψ
a+ p(r) = In−ε;ψ

a+ p[n];ψ(r),

where n = [ε] + 1 for ε /∈ N, n = ε for ε ∈ N, and p[n];ψ(r) =
(

d
dr

ψ′(r)

)n
p(r).

Lemma 1 ([8]). Let ε, µ > 0, and p ∈ Cn(∆,R). Then, for each r ∈ ∆, the following statements
are valid:

1. cDε;ψ
a+ Iε;ψ

a+ p(r) = p(r);

2. Iε;ψ
a+

cDε;ψ
a+ p(r) = p(r)−∑n−1

k=0
p[k];ψ(a)

k! [ψ(r)− ψ(a)]k, n− 1 < ε ≤ n;

3. Iε;ψ
a+ (ψ(r)− ψ(a))µ−1 = Γ(µ)

Γ(µ+ε)
(ψ(r)− ψ(a))µ+ε−1;

4. cDε;ψ
a+ (ψ(r)− ψ(a))µ−1 = Γ(µ)

Γ(µ−ε)
(ψ(r)− ψ(a))µ−ε−1;

5. cDε;ψ
a+ (ψ(r)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

Definition 3 ([5]). For u, v > 0 and v ∈ R, the Mittag–Leffler functions (MLFs) of one and two
parameters are given by

Eu(v) =
∞

∑
k=0

vk

Γ(uk + 1)
, Eu,v(v) =

∞

∑
k=0

vk

Γ(uk + v)
. (2)
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Clearly, Eu,1(v) = Eu(v).

Lemma 2 ([5,21]). Let u ∈ (0, 1), v > u be arbitrary and v ∈ R. The functions Eu,Eu,u and
Eu,v are nonnegative and have the properties listed below:

1. Eu(v) ≤ 1,Eu,v(v) ≤ 1
Γ(v) , for any v < 0;

2. Eu,v(v) = vEu,u+v(v) + 1
Γ(v) , u, v > 0, v ∈ R.

Definition 4 ([11]). A function u : [a, ∞)→ R is said to be of ψ-exponential order if there exist
nonnegative constants M, c, b such that

|u(r)| ≤ Mec(ψ(r)−ψ(a)), r ≥ b

Definition 5 ([11]). Let p, ψ : [a, ∞)→ R be real-valued functions such that ψ is continuous and
ψ′(r) > 0 on [a, ∞). The generalized Laplace transform of p is denoted by

Lψ

{
p(r)

}
=
∫ ∞

a
e−λ(ψ(r)−ψ(a))p(r)ψ′(r)dr, for all λ > 0. (3)

This holds as long as the integral on the right-hand side exists.

Definition 6 ([11]). Let u and v be two functions which are piecewise continuous at each interval
[a, b] and of ψ(r)-exponential order. We define the generalized convolution of u and v by

(u ∗ψ v)(r) =
∫ r

a
ψ′(η)u(η)v

(
ψ−1(ψ(r) + ψ(a)− ψ(η)

))
dη.

Lemma 3 ([11]). Let u and v be two functions which are piecewise continuous at each interval
[a, b] and of ψ-exponential order. Then,

Lψ

{
u ∗ψ v

}
= Lψ

{
u
}
Lψ

{
v
}

.

In the following Lemma, we present the generalized Laplace transforms of some
elementary functions

Lemma 4 ([11]). The following properties are satisfied:

1. Lψ

{
1
}
= 1

λ , λ > 0;

2. Lψ

{
(ψ(r)− ψ(a))ε−1} = Γ(ε)

λε , ε, λ > 0;

3. Lψ

{
Eu
(
±ω(ψ(r)− ψ(a))u)} = λu−1

λu∓ω , u > 0 and
∣∣ ω

λu

∣∣ < 1;
4. Lψ

{
(ψ(r)− ψ(a))v−1Eu,v

(
±ω(ψ(r)− ψ(a))u)} = λu−v

λu∓ω , u > 0 and
∣∣ ω

λu

∣∣ < 1.

In following theorems, we state the generalized Laplace transforms of the generalized
fractional integrals and derivatives.

Lemma 5 ([11]). Let ε > 0 and let p be a function of ψ-exponential order, piecewise continuous
over each finite interval [a, b]. Then,

Lψ

{
Iε;ψ

a+ p(r)
}
=

Lψ

{
p(r)

}
λε

, λ > 0,

Lemma 6 ([11]). Let ε > 0, n = [ε] + 1, and p is a function such that p, p[k];ψ, k = 1, · · · , n− 1
are continuous on [a, ∞) and of ψ-exponential order, while cDε;ψ

a+ p(r) is piecewise continuous on
[a, ∞). Then, the following relation holds:

Lψ

{cDε;ψ
a+ p(r)

}
= λεLψ

{
p(r)

}
−

n−1

∑
k=0

λε−k−1p[k];ψ(a), n− 1 < ε ≤ n.
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In particular, if 0 < ε ≤ 1, then

Lψ

{cDε;ψ
a+ p(r)

}
= λεLψ

{
p(r)

}
− λε−1p(a), λ > 0,

and, if 1 < ε ≤ 2, then

Lψ

{cDε;ψ
a+ p(r)

}
= λεLψ

{
p(r)

}
− λε−1p(a)− λε−2p[1];ψ(a), λ > 0,

Lemma 7. For a given f ∈ C(∆,R), 0 < ε ≤ 1 and ω > 0, the linear fractional initial
value problem {(cDε+1;ψ

a+ + ω cDε;ψ
a+
)
p(r) = f(r), r ∈ ∆ := [a, b],

p(a) = θ0, p[1];ψ(a) = θ1,
(4)

has a unique solution given explicitly by

p(r) = θ0 + θ1(ψ(r)− ψ(a))E1,2
(
−ω(ψ(r)− ψ(a))

)
+
∫ r

a
ψ′(η)(ψ(r)− ψ(η))εE1,ε+1

(
−ω(ψ(r)− ψ(η))

)
f(η)dη.

(5)

Proof. Performing the generalized Laplace transform to both sides of Equation (4) and
then using Lemma 4, one obtains

λε+1Lψ

{
p(r)

}
− λεp(a)− λε−1p[1];ψ(a) + ωλεLψ

{
p(r)

}
−ωλε−1p(a) = Lψ

{
f(r)

}
.

So,

Lψ

{
p(r)

}
= ω

λ−1

λ + ω
θ0 +

1
λ + ω

θ0 +
λ−1

λ + ω
θ1 +

λ−ε

λ + ω
Lψ

{
f(r)

}
= ωθ0Lψ

{
(ψ(r)− ψ(a))E1,2

(
−ω(ψ(r)− ψ(a))

)}
+ θ0Lψ

{
E1
(
−ω(ψ(r)− ψ(a))

)}
+ θ1Lψ

{
(ψ(r)− ψ(a))E1,2

(
−ω(ψ(r)− ψ(a))

)}
+Lψ

{
(ψ(r)− ψ(a))εE1,ε+1

(
−ω(ψ(r)− ψ(a))

)}
Lψ

{
f(r)

}
.

Taking the inverse generalized Laplace transform on both sides of the last expression,
we get

p(r) = θ0
(
E1
(
−ω(ψ(r)− ψ(a))

)
+ ω(ψ(r)− ψ(a))E1,2

(
−ω(ψ(r)− ψ(a))

))
+ θ1(ψ(r)− ψ(a))E1,2

(
−ω(ψ(r)− ψ(a))

)
+ f(r) ∗ψ (ψ(r)− ψ(a))εE1,ε+1

(
−ω(ψ(r)− ψ(a))

)
= θ0 + θ1(ψ(r)− ψ(a))E1,2

(
−ω(ψ(r)− ψ(a))

)
+
∫ r

a
ψ′(η)(ψ(r)− ψ(η))εE1,ε+1

(
−ω(ψ(r)− ψ(η))

)
f(η)dη.

Lemma 8 (Comparison Result). Let 0 < ε ≤ 1 and ω > 0. If γ ∈ C(∆,R) satisfying
cDε;ψ

a+ γ(r), cDε+1;ψ
a+ γ(r) ∈ C(∆,R) and{(cDε+1;ψ

a+ + ω cDε;ψ
a+
)
γ(r) ≥ 0, r ∈ (a, b],

γ(a) ≥ 0, γ[1];ψ(a) ≥ 0,

then γ(r) ≥ 0 for all r ∈ ∆.
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Proof. Let f(r) =
(cDε+1;ψ

a+ + ω cDε;ψ
a+
)
γ(r) ≥ 0, γ(a) = θ0 ≥ 0 and γ[1];ψ(a) = θ1 ≥ 0 in

Lemma 7. Then, it follows by Equation (5) and Lemma 2 that the conclusion of Lemma 8
holds.

3. Main Results

Definition 7. A function p ∈ C1(∆,R) is called a lower solution of (1), if it satisfies{(cDε+1;ψ
a+ + ω cDε;ψ

a+
)
p(r) ≤M(r, p(r)), r ∈ ∆,

W(p(a), p(b)) ≤ 0, p[1];ψ(a) ≤ θ1.
(6)

An upper solution q of the problem (1) can be defined in a similar way by reversing the
above inequality.

In order to obtain the existence of the extremal solutions for the initial value prob-
lem (1), we give the following assumptions

Hypothesis 1 (H1). There exist p0, p̃0 ∈ C(∆,R) such that p0 and p̃0 are lower and upper
solutions of problem (1), respectively, with p0(r) ≤ p̃0(r), r ∈ ∆;

Hypothesis 2 (H2). M : ∆×R −→ R is a continuous and nondecreasing function with respect
to the second variable;

Hypothesis 3 (H3). There exist constants c > 0 and d ≥ 0, such that for p0(a) ≤ u1 ≤ u2 ≤
p̃0(a), p0(b) ≤ v1 ≤ v2 ≤ p̃0(b),

W(u2, v2)−W(u1, v1) ≤ c(u2 − u1)− d(v2 − v1).

Theorem 1. Assume that (H1)–(H3) are satisfied. Then, there exist monotone iterative sequences
{pn} and {p̃n}, which converge uniformly on ∆ to the extremal solutions of the problem (1) in the
sector [p0, p̃0], where

[p0, p̃0] = {p ∈ C(∆,R) : p0(r) ≤ p(r) ≤ p̃0(r), r ∈ ∆}.

Proof. For any p0, p̃0 ∈ C(∆,R), we define{(cDε+1;ψ
a+ + ω cDε;ψ

a+
)
pn+1(r) = M(r, pn(r)), r ∈ ∆,

pn+1(a) = pn(a)− 1
cW(pn(a), pn(b)), p

[1];ψ
n+1 (a) = θ1,

(7)

and {(cDε+1;ψ
a+ + ω cDε;ψ

a+
)
p̃n+1(r) = M(r, p̃n(r)), r ∈ ∆,

p̃n+1(a) = p̃n(a)− 1
cW(p̃n(a), p̃n(b)), p̃

[1];ψ
n+1 (a) = θ1.

(8)

By Lemma 7, we know that the linear problems (7) and (8) have unique solutions
pn(r), p̃n(r), respectively, that are expressed as

pn+1(r) = pn(a)− 1
c
W(pn(a), pn(b)) + θ1(ψ(r)− ψ(a))E1,2

(
−ω(ψ(r)− ψ(a))

)
+
∫ r

a
ψ′(η)(ψ(r)− ψ(η))εE1,ε+1

(
−ω(ψ(r)− ψ(η))

)
M(η, pn(η))dη,

(9)
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and

p̃n+1(r) = p̃n(a)− 1
c
W(p̃n(a), p̃n(b)) + θ1(ψ(r)− ψ(a))E1,2

(
−ω(ψ(r)− ψ(a))

)
+
∫ r

a
ψ′(η)(ψ(r)− ψ(η))εE1,ε+1

(
−ω(ψ(r)− ψ(η))

)
M(η, p̃n(η))dη.

Firstly, let us prove that

p0(r) ≤ p1(r) ≤ p̃1(r) ≤ p̃0(r), r ∈ ∆.

To this end, we set γ(r) = p1(r)− p0(r). From (7) and Definition 7, we obtain(cDε+1;ψ
a+ + ω cDε;ψ

a+
)
γ(r) =

(cDε+1;ψ
a+ + ω cDε;ψ

a+
)
p1(r)−

(cDε+1;ψ
a+ + ω cDε;ψ

a+
)
p0(r)

=M(r, p0(r))−
(cDε+1;ψ

a+ + ω cDε;ψ
a+
)
p0(r) ≥ 0.

Again, since {
γ(a) = − 1

cW(p0(a), p0(b)) ≥ 0,
γ[1];ψ(a) ≥ 0.

Invoking Lemma 8, we get γ(r) ≥ 0 for any r ∈ ∆. Thus, p0(r) ≤ p1(r), r ∈ ∆. By the
same method, it can be shown that p̃1(r) ≤ p̃0(r), r ∈ ∆.

Now, let γ(r) = p̃1(r)− p1(r). Using (7) and (8) together with assumptions (H1)–(H2),
we get (cDε+1;ψ

a+ + ω cDε;ψ
a+
)
γ(r) =M(r, p̃0(r))−M(r, p0(r)) ≥ 0.

On the other hand,

γ(a) =
(
p̃0(a)− p0(a)

)
− 1

c
(
W
(
p̃0(a), p̃0(b)

)
−W

(
p0(a), p0(b)

))
≥ d

c
(
p̃0(b)− p0(b)

)
≥ 0,

and
γ[1];ψ(a) = 0.

According to Lemma 8, we arrive at p1(r) ≤ p̃1(r), r ∈ ∆.
Secondly, we need to show that p1 and p̃1 are the lower and upper solutions of problem

(1), respectively. Taking into account that M is an increasing function with respect to the
second variable, we get(cDε+1;ψ

a+ + ω cDε;ψ
a+
)
p1(r) = M(r, p0(r)) ≤M(r, p1(r)),

and
W(p1(a), p1(b)) ≤W(p0(a), p0(b)) + c

(
p1(a)− p0(a)

)
− d(p1(b)− p0(b))

= −d(p1(b)− p0(b))

≤ 0.

This means that p1 is a lower solution of problem (1). Analogously, we can verify that
p̃1 is an upper solution of problem (1).

By the above arguments and mathematical induction, we can show that the se-
quences pn, p̃n, (n ≥ 1) are lower and upper solutions of (1), respectively, and satisfy
the following relation:

p0(r) ≤ p1(r) ≤ · · · ≤ pn(r) ≤ · · · ≤ p̃n(r) ≤ · · · ≤ p̃1(r) ≤ p̃0(r), r ∈ ∆. (10)



Mathematics 2022, 10, 1173 7 of 11

Thirdly, we show that the sequences {pn} and {p̃n} converge uniformly to their limit
functions p∗ and p̃∗, respectively. We show that the sequences {pn} and {p̃n} converge
uniformly to their limit functions p∗ and p̃∗, respectively.

First, we prove that {pn} is uniformly bounded. By considering supposition (H2), we
may write

M(r, p0(r)) ≤ F(r, pn(r)) ≤M(r, p̃0(r)), r ∈ ∆,

i.e.,

0 ≤M(r, pn(r))−M(r, p0(r)) ≤M(r, p̃0(r))−M(r, p0(r)).

Hence, we get

|M(r, pn(r))−M(r, p0(r))| ≤ |M(r, p̃0(r))−M(r, p0(r))|.

Consequently, we arrive at

|M(r, pn(r))| ≤ |M(r, pn(r))−M(r, p0(r))|+ |M(r, p0(r))|
≤ 2|M(r, p0(r))|+ |M(r, p̃0(r))|.

Since p0, p̃0 and M are continuous on ∆, we can find a constant K independent of n,
such that

|M(r, pn(r))| ≤ K. (11)

Furthermore, from (H3), we can obtain

p0(a)− 1
c
W(p0(a), p0(b)) ≤ pn(a)− 1

c
W(pn(a), pn(b)) ≤ p̃0(a)− 1

c
W(p̃0(a), p̃0(b)),

i.e.,

0 ≤ pn(a)− p0(a)− 1
c
(
W(pn(a), pn(b))−W(p0(a), p0(b))

)
≤ p̃0(a)− p0(a)− 1

c
(
W(p̃0(a), p̃0(b))−W(p0(a), p0(b))

)
.

Hence, we get∣∣∣∣pn(a)− p0(a)− 1
c
(
W(pn(a), pn(b))−W(p0(a), p0(b))

)∣∣∣∣ ≤∣∣∣∣p̃0(a)− p0(a)− 1
c
(
W(p̃0(a), p̃0(b))−W(p0(a), p0(b))

)∣∣∣∣
≤
∣∣∣∣p0(a)− 1

c
W(p0(a), p0(b))

∣∣∣∣+ ∣∣∣∣p̃0(a)− 1
c
W(p̃0(a), p̃0(b))

∣∣∣∣.
Thus,∣∣∣∣pn(a)− 1

c
W(pn(a), pn(b))

∣∣∣∣ ≤ ∣∣∣∣pn(a)− p0(a)− 1
c
(
W(pn(a), pn(b))−W(p0(a), p0(b))

)∣∣∣∣
+

∣∣∣∣p0(a)− 1
c
W(p0(a), p0(b))

∣∣∣∣
≤ 2

∣∣∣∣p0(a)− 1
c
W(p0(a), p0(b))

∣∣∣∣+ ∣∣∣∣p̃0(a)− 1
c
W(p̃0(a), p̃0(b))

∣∣∣∣.
Since p0, p̃0 and W are continuous functions, we can find a constant L independent of

n, such that ∣∣∣∣pn(a)− 1
c
W(pn(a), pn(b))

∣∣∣∣ ≤ L. (12)
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Moreover, by (9), we have

|pn+1(r)| =
∣∣∣∣pn(a)− 1

c
W(pn(a), pn(b))

∣∣∣∣+ |θ1|(ψ(r)− ψ(a))E1,2
(
−ω(ψ(r)− ψ(a))

)
+
∫ r

a
ψ′(η)(ψ(r)− ψ(η))εE1,ε+1

(
−ω(ψ(r)− ψ(η))

)
|M(η, pn(η))|dη, r ∈ ∆.

Using Lemma 2 along with (11) and (12), we get

|pn+1(r)| = L+ |θ1|(ψ(r)− ψ(a)) +
K

Γ(ε + 1)

∫ r

a
ψ′(η)(ψ(r)− ψ(η))εdη

≤ L+ |θ1|(ψ(b)− ψ(a)) +
K(ψ(b)− ψ(a))ε+1

Γ(ε + 2)
.

Hence, {pn} are uniformly bounded in C(∆,R). Similarly, we can prove that {p̃n} are
uniformly bounded.

It remains to be shown that the sequences {pn} and {p̃n} are equicontinuous on ∆. To
do this, choosing r1, r2 ∈ ∆, with r1 ≤ r2. By (11) and Lemma 2, we have

|pn(r2)− pn(r1)| ≤ |θ1|(ψ(r2)− ψ(a))E1,2
(
−ω(ψ(r2)− ψ(a))

)
− |θ1|(ψ(r1)− ψ(a))E1,2

(
−ω(ψ(r2)− ψ(a))

)
+
∫ r1

a

ψ′(η)
[
(ψ(r1)− ψ(η))ε−1 − (ψ(r2)− ψ(η))ε−1]

Γ(ε)
|M(η, pn(η)|dη

+
∫ r2

r1

ψ′(η)(ψ(r2)− ψ(η))ε−1

Γ(ε)
|M(η, pn(η)|dη

≤ K
Γ(ε + 1)

[(ψ(r1)− ψ(a))ε + 2(ψ(r2)− ψ(r1))
ε − (ψ(r2)− ψ(a))ε]

+ |θ1|(ψ(r2)− ψ(a))E1,2
(
−ω(ψ(r2)− ψ(a))

)
− |θ1|(ψ(r1)− ψ(a))E1,2

(
−ω(ψ(r2)− ψ(a))

)
≤ 2K

Γ(ε + 1)
(ψ(r2)− ψ(r1))

ε

+ |θ1|(ψ(r2)− ψ(a))E1,2
(
−ω(ψ(r2)− ψ(a))

)
− |θ1|(ψ(r1)− ψ(a))E1,2

(
−ω(ψ(r2)− ψ(a))

)
.

By the continuity of the function |θ1|(ψ(r)− ψ(a))E1,2
(
−ω(ψ(r2)− ψ(a))

)
on ∆, the

right-hand side of the previous inequality approaches to zero when r2 → r1 independently
of {pn}. Hence, the family {pn} is equicontinuous on ∆. Likewise, we can demonstrate that
{p̃n} is equicontinuous. Therefore, by Ascoli–Arzela’s Theorem, there exist subsequences
{pnk} and {p̃nk} which converge uniformly to p∗ and p̃∗, respectively, on ∆. This together
with the monotonicity of sequences {pn} and {p̃n} implies

lim
n→∞

pn(r) = p∗(r) and lim
n→∞

p̃n(r) = p̃∗(r),

uniformly on r ∈ ∆ and the limit functions p∗, p̃∗ satisfy problem (1).
Lastly, we prove the minimal and maximal property of p∗ and p̃∗ on [p0, p̃0]. To do this,

let p ∈ [p0, p̃0] be any solution of (1). Suppose for some n ∈ N∗ that

pn(r) ≤ p(r) ≤ p̃n(r), r ∈ ∆. (13)

Setting γ(r) = p(r)− pn+1(r), it follows that(cDε+1;ψ
a+ + ω cDε;ψ

a+
)
γ(r) = M(r, p(r))−M(r, pn(r)) ≥ 0.
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Furthermore,

pn+1(a) = pn(a)− 1
c
W(pn(a), pn(b))

= pn(a) +
1
c
W(p(a), p(b))− 1

c
W(pn(a), pn(b))

≤ p(a)− d
c
(
p(b)− pn(b)

)
≤ p(a).

That is,
γ(a) ≥ 0.

Furthermore, γ[1];ψ(a) = 0. Thus, in light of Lemma 8, we have the inequality
γ(r) ≥ 0, r ∈ ∆, and then, pn+1(r) ≤ p(r), r ∈ ∆. Analogously, it can be obtained that
p(r) ≤ p̃n+1(r), r ∈ ∆. So, from mathematical induction, it follows that the relation (13)
holds on ∆ for all n ∈ N. Taking the limit as n→ ∞ on both sides of (13), we get

p∗(r) ≤ p(r) ≤ p̃∗(r), r ∈ ∆.

This means that p∗, p̃∗ are the extremal solutions of (1) in [p0, p̃0]. Thus, the proof of
Theorem 1 is finished.

4. An Example

To illustrate our abstract results (Theorem1), let us consider problem (1) with specific
data. More precisely, taking

ε =
1
2

, ω =

√
π

2
, ψ(r) = r, a = 0, b = 1, M(r, x) = (1−

√
r)ex−1−r, W(u, v) = u− 1 θ1 = 0.

Then, our model (1) reduces to the following problem{(cD
3
2
0+ +

√
π

2
cD

1
2
0+
)
p(r) = (1−

√
r)ep(r)−1−r, r ∈ J := [0, 1],

p(0) = 1, p′(0) = 0.
(14)

Taking p0(r) = 1 and q0(r) = 1 + r, it is easy to see that p0 and q0 are lower and
upper solutions of problem (14), respectively, and p0 ≤ q0. So, condition (H1) holds. In
addition, it is obvious that the function M : ∆×R −→ R is a continuous and nondecreasing
function with respect to the second variable. Hence, condition (H2) is satisfied. Moreover,
for p0(a) ≤ u1 ≤ u2 ≤ q0(a), p0(b) ≤ v1 ≤ v2 ≤ q0(b), we have

W(u2, v2)−W(u1, v1) ≤ (u2 − u1).

Therefore, the hypothesis (H2) of Theorem 1 is fulfilled with c = 1 and d = 0.
Thus, all assumptions of Theorem 1 are valid. As a result, the suggested problem

problem (14) has extremal solutions on [p0, q0].

5. Conclusions

The existence of extremal solutions for a new class of nonlinear sequential fractional
differential equations (NSFDEs) with nonlinear boundary conditions (NBCs) containing
the ψ-Caputo operator is the topic of our study. To arrive at the principal findings of this
study, we used the interlinking between the monotone iterative technique (MIT) and the
method of upper and lower solutions. We also tested the applicability and efficiency of
the mentioned method by an example. For future research, we plan to look at the same
outcomes for our present model (1) using other modern fractional operators. It would be
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also intriguing to construct numerical approaches to approximate the solutions suggested
by our Theorem 1.
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