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Abstract: We study numerical approaches to computation of spectral properties of composition
operators. We provide a characterization of Koopman Modes in Banach spaces using Generalized
Laplace Analysis. We cast the Dynamic Mode Decomposition-type methods in the context of Finite
Section theory of infinite dimensional operators, and provide an example of a mixing map for which
the finite section method fails. Under assumptions on the underlying dynamics, we provide the first
result on the convergence rate under sample size increase in the finite-section approximation. We
study the error in the Krylov subspace version of the finite section method and prove convergence
in pseudospectral sense for operators with pure point spectrum. Since Krylov sequence-based
approximations can mitigate the curse of dimensionality, this result indicates that they may also have
low spectral error without an exponential-in-dimension increase in the number of functions needed.
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1. Introduction

Spectral theory of dynamical systems shifts the focus of investigation of dynamical
systems behavior away from trajectories in the state space and towards spectral features of
an associated infinite-dimensional linear operator. Of particular interest is the composition
operator—in a measure-preserving setting called the Koopman operator [1–5]. Its spectral
triple—eigenvalues, eigenfunctions and eigenmodes—can be used in a variety of contexts,
from model reduction [5] to stability and control [6]. In practice, we only have access to
finite-dimensional data from observations or outputs of numerical simulations. Thus, it is
important to study approximation properties of finite-dimensional numerical algorithms
devised to compute spectral objects [7]. Compactness is the property that imbues infinite-
dimensional operators with quasi-finite-dimensional properties. Self-adjointness also helps
in proving the approximation results. However, the composition operators under study
here are rarely compact or self-adjoint. In addition, in the classical, measure-preserving
case, the setting is that of unitary operators (and essentially self-adjoint generators for the
continuous-time setting [8]), but in the general, dissipative case, composition operators
are neither.

There are three main approaches to finding spectral objects of the Koopman operator:

1. The first, suggested already in [9] is based on long time weighted averages over
trajectories, rooted in ergodic theory of measure-preserving dynamical systems. An
extension of that work that captures properties of continuous spectrum was presented
in [10]. This approach was named Generalized Laplace Analysis (GLA) in [11], where
concepts pertaining to dissipative systems were discussed also in terms of weighted
averages along trajectories. In that sense, the ideas in this context provide an extension
of ergodic theory for capturing transient (off-attractor) properties of systems. For on-
attractor evolution, the properties of the method acting on L2 functions were studied
in [4]. The off-attractor case was pursued in [4,12] where Fourier averages (which are
Laplace averages for the case when the eigenvalue considered is on the imaginary
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axis) were used to compute the eigenfunction whose level sets are isochrons, and [13]
in which analysis for general eigenvalue distributions was pursued in Hardy-type
spaces. This study was continued in [14] to construct dynamics-adapted Hilbert
spaces. The advantage of the method is that it does not require the approximation
of the operator itself, as it constructs eigenfunctions and eigenmodes directly from
the data. In this sense, it is close (and in fact related) to the power method of ap-
proximating the spectrum of a matrix from data on iteration of a vector. In fact, the
methodology extends the power method to the case when eigenvalues can be of
magnitude 1. It requires separate computation to first determine the spectrum of the
operator, which is also done without constructing it. This can potentially be hard to
do because of issues such as spectral pollution—see remarks at the end of Section 3;
also note the general long-standing problems of spectral pollution and computing the
full spectrum of Schrödinger operators on a lattice were recently solved in [15]. The
recent work [16] enables computation of full spectral measures using the combination
of resolvent operator techniques (used for the first time in the Koopman operator
context in [17]) and ResDMD—an extension of Dynamic Mode Decomposition (intro-
duced next) technique that incorporates computation of residues from data snapshots
(computation of residues was considered earlier in [18]).

2. The second approach requires construction of an approximate operator acting on a
finite-dimensional function subspace i.e., a finite section—the problem that is also
of concern in a more general context of approximating infinite dimensional opera-
tors [7,19,20]. The best known such method is the Dynamic Mode Decomposition
(DMD), invented in [21] and connected to the Koopman operator in [22]. It has a
number of extensions (many of which are summarized in [23]), for example, Ex-
act DMD [24]; Bayesian/subspace DMD [25]; Optimized DMD [26,27]; Recursive
DMD [28]; Variational DMD [29]; DMD with control [30,31]; sparsity promoting
DMD [32]; DMD for noisy systems [33–35]. The original DMD algorithm featured
state observables. The Extended Dynamic Mode Decomposition [36] recognizes that
nonlinear functions of state might be necessary to describe a finite-dimensional in-
variant subset of the Koopman operator and provides an algorithm for finite-section
approximation of the Koopman operator. A study of convergence of such approxima-
tions is provided in [37], but the convergence was established only along subsequences,
and the rate of convergence was not addressed. Here, we provide the first result on
the rate of convergence of the finite section approximation under assumptions on the
nature of the underlying dynamics. In addition, spectral convergence along subse-
quences is proven in [37] under the assumption of the weak limit of eigenfunction
approximations not being zero. This condition is hard to verify in practice. Instead, in
Section 5.2, we prove a result that obviates the weak convergence assumption using
some additional information on the underlying dynamics. It was observed already
in [9] that, instead of an arbitrary set of observables forming a basis, one can use
observables generated by the dynamics—namely time delays of a single observable
filling a Krylov subspace—to study spectral properties of the Koopman operator. In
the DMD context, the methods developed in this direction are known under the name
Hankel-DMD [38,39]. It is worth noticing that the Hankel matrix approach of [38] is in
fact based on the Prony approximation and requests a different sample structure than
the Dynamic Mode Decomposition. Computation of residues was considered in [18]
to address the problem of spectral pollution, where discretization introduces spurious
eigenvalues. As mentioned before, the recent work [16] provides another method
to resolve the spectral pollution problem, introducing ResDMD—an extension of
Dynamic Mode Decomposition that incorporates computation of residues from data
snapshots. The relationship between GLA and finite section methods was studied
in [40].

3. The third approach is based on the kernel integral operator combined with the Krylov
subspace methodology [41], enabling approximation of continuous spectrum. While
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GLA and EDMD techniques have been extended to dissipative systems, the kernel
integral operator technique is currently available only for measure-preserving (on-
attractor) systems.

In this paper, we continue with the development of ergodic theory-rooted ideas to
understanding and numerically computing the spectral triple—eigenvalues, eigenfunctions
and modes—for the Koopman operator. After some preliminaries, we start in Section 3
with discussing properties of algorithms of Generalized Laplace Analysis type in Banach
spaces. Such results have previously been obtained in Hardy-type spaces [13], and here,
we introduce a Gel’fand-formula-based technique that allows us to expand to general
Banach spaces. We continue in Section 4 with setting the finite-section approximation of
the Koopman operator in the ergodic theory context. An explicit relationship of finite
section coefficients to dual basis is established. Under assumptions on the underlying
dynamics, we provide the first result on the convergence rate under sample size increase in
the finite-section approximation. The error in the finite section approximation is analyzed.
In Section 5, we study finite section approximations of the Koopman operator based on
Krylov sequences of time-delays of observables, and prove that under certain conditions,
the approximation error decreases as the number of samples is increased, without depen-
dence on the dimension of the problem. Namely, the Krylov subspace (Hankel-DMD)
methodology has the advantage of convergence in the number of iterates and does not
require a basis exponentially large in the number of dimensions. This solves the problem
of the choice of observables, since the dynamics selects the basis by itself. In Section 6, we
discuss an alternative point of view on the DMD approximations which is not related to
finite sections, but samples of continuous functions on finite subsets of the state-space. The
concept of weak eigenfunctions is discussed, continuing the analysis in [37]. We conclude
in Section 7.

2. Preliminaries

For a Lipshitz-continuous (ensuring global existence and uniqueness of solutions)
dynamical system

ẋ = F(x), (1)

defined on a manifold M ∈ Rm (i.e., x ∈ M—where we by slight abuse of notation identify
a point in a manifold M with its vector representation x in Rm), where x is a vector and F is
a possibly nonlinear vector-valued smooth function, of the same dimension as its argument
x, denote by St(x0) the position at time t of trajectory of (1) that starts at time 0 at point x0.
We call the family of functions St the flow.

Denote by f an arbitrary, vector-valued observable f : M→ Rk. The value f(t, x0) of
the observable f that the system trajectory starting from x0 at time 0 sees at time t is

f(t, x0) = f(St(x0)). (2)

Note that the space of all observables f is a linear vector space. The family of operators
Ut, acting on the space of observables parameterized by time t is defined by

Utf(x0) = f(St(x0)). (3)

Thus, for a fixed time τ, Uτ maps the vector-valued observable f(x0) to f(τ, x0). We will
call the family of operators Ut indexed by time t the Koopman operator of the continuous-
time system (1). This family was defined for the first time in [1], for Hamiltonian systems.
In operator theory, such operators, when defined for general dynamical systems, are often
called composition operators, since Ut acts on observables by composing them with the
mapping St [3]. Discretization of St for times τ, 2τ, . . . , nτ, . . . leads to the τ-mapping
T = Sτ : M→ M with the discrete dynamics

x′ = Tx, (4)
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and the associated Koopman operator U defined by

U f = f ◦ T. (5)

Let F be a space of observables and U : F → F the Koopman operator associated
with a map T (note this means that f ◦ T ∈ F if f ∈ F ). Appropriate (dynamics-adapted)
spaces are discussed in [14]. A function φλ ∈ F is an eigenfunction of U associated with
eigenvalue λ provided

Uφλ = λφλ. (6)

Let σ(U) ⊂ C be the spectrum of U. The operator U is called scalar [42] on F provided

U =
∫

σ(U)
βdE(β), (7)

where E is a family of spectral projections forming resolution of the identity, and the integral
is over β ∈ σ(U) ⊂ C. Further, the operator U is called spectral provided

U = S + N, (8)

where S is scalar and N quasi-nilpotent. Examples of functional spaces in which Koopman
operators are scalar and spectral are given in [14]. Let f ∈ F be a vector of observables. For
a scalar operator U, the Koopman mode sλ of f associated with an eigenvalue λ of algebraic
multiplicity 1 is given by

sλφλ = fλ, (9)

where φλ is the unit norm eigenfunction associated with λ, and

fλ = f−
∫

σ(U)/{λ}
βdE(β)f =

∫
{λ}

βdE(β)f (10)

Note that, denoting by Eλ the projection on the eigenspace associated with the eigen-
value λ, we have

Eλfλ = Eλf, (11)

since Eλ fλ = fλ and Eλ ◦
∫

σ(U)/{λ} βdE(β)(f) = 0, by one of the key properties of the
spectral resolution [42]. Now,

Eλf = cφλ, (12)

for some constant c, proving that sλ is well-defined and independent of x.

Remark 1. Note that in the more general case with algebraic multiplicities of eigenvalues larger
than 1, an analogous definition of the Koopman mode can be obtained. For example, if algebraic
multiplicity and geometric multiplicity are 2 and there are two linearly independent eigenfunctions
φ1

λ and φ2
λ associated with the eigenvalue λ of multiplicity 2, and we are computing s1

λ, then (10)
contains an additional term on the RHS, −s2

λφ2
λ, and similarly for s2

λ, forming 2 equations. In the
case of spectral operators, one works similarly, but the added complexity is in the use of generalized
eigenfunctions [14].

We assume that the dynamical system T has a Milnor attractor A such that for every
continuous function g, for almost every x ∈ M with respect to an a priori measure ν on M
(without loss of generality as we can replace M with the basin of attraction of A) the limit

g∗(x) = lim
n→∞

1
n

n−1

∑
i=0

Uig(x), (13)
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exists. This is the case, e.g., for smooth systems on subsets of Rn with Sinai–Bowen–Ruelle
measures, where ν is the Lebesgue measure [43]. For such systems, Hilbert spaces on which
the Koopman operator is spectral have been constructed in [14].

3. Generalized Laplace Analysis

An example of what we call Generalized Laplace Analysis (GLA) is the computation
of eigenspace at 0 (namely, invariants) of dynamical systems using time averages: recall

h∗(x) = lim
t→∞

1
t

∫ t

0
h(Sτ(x))dτ (14)

is the time average at initial condition x of the function h under the dynamics of St. For
fixed point attractors

Uth∗(x) = 1 · h∗(x) (15)

As shown previously, this is valid in a much larger context: limit cycle attractors,
toroidal attractors, Milnor attractors, and measure-preserving systems.

We generalize the idea that averages along trajectories produce eigenfunctions, by
introducing weights:

h∗(x) = lim
t→∞

1
t

∫ t

0
a(τ)h(Sτ(x))dτ ≈ 1

n

nj

∑
j=0

a(j∆τ)h(Sj∆τ(x)) (16)

where a(t) is a function of time—typically a (possibly complex) exponential, and ∆τ is a
sampling time interval. If we have a vectorized set of initial conditions xk, k = 1, . . . , nk,
then we can generate a data matrix

Hjk = h(Sj∆τ(xk)) (17)

Vectorizing (a)j = a(j∆τ), we get

h∗a = Ha. (18)

H is the data matrix. For a(t) = 1 = e0·t, we get h∗a = H1, where 1 is a vector of 1’s with nj
components. To obtain eigenfunctions using Fourier averages, as developed in [12], we set
a(t) = 1 = e−iωt, to obtain

h∗e−iωt(x) = lim
t→∞

1
t

∫ t

0
e−iωτh(Sτ(x))dτ ≈ 1

n

nj

∑
j=0

eiωj∆τh(Sj∆τ(x)) (19)

Both of the above examples were for the case when |a(t)| = 1 corresponding to
eigenvalues 0, iω, both on the imaginary axis. In the next subsection, we provide a general
theorem that deals with eigenvalues distributed arbitrarily in the complex plane.

GLA for Fields of Observables

Many of the problems of interest in applications feature a distributed field of ob-
servables. For example, time evolution of temperature in a linear rod described by the
coordinate z ∈ [0, 1], is T(t, T0, z), where T0(z) is the initial condition that belongs to the
state space of all possible temperature distributions satisfying the boundary conditions, and
t is time. We will set our analysis up having this example in mind—namely, we consider a
field of observables f (x, z), where x is in state space, and z is an indexing set—and consider
the time evolution of such observables starting from an initial condition x.

Let f (x, z) be a bounded field of observables f (x, z) : M× A→ Rm, continuous in x,
where the observables are indexed over elements z of a set A, and M is a compact metric
space. We will occasionally drop the dependence on the state-space variable x and denote
f (x, z) = f (z) and the iterates of f by f (Tix, z) = f i(z). Let U be the Koopman operator
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associated with a map T : M→ M. We assume that U is bounded, and acting in a closed
manner on a Banach space of continuous functions C (this does not have to be the space of
all continuous functions on M, see the remark after the theorem).

Theorem 1 (Generalized Laplace Analysis). Let λ0, . . . , λK be simple eigenvalues of U such
that |λ0| ≥ |λ1| ≥ . . . ≥ |λK| > 0, and there are no other points λ in the spectrum of U with
|λ| ≥ |λK|. Let φk be the eigenfunction of U associated with λk, k ∈ {0, . . . , K}. Then, the
Koopman mode associated with λk is obtained by computing

fk = lim
n→∞

1
n

n−1

∑
i=0

λ−i
k

(
f (Tix, z)−

k−1

∑
j=0

λi
jφj(x)sj(z)

)

= lim
n→∞

1
n

n−1

∑
i=0

λ−i
k

(
f i(z)−

k−1

∑
j=0

λi
j f j

)
(20)

where fk = φk(x)sk(z), φk is an eigenfunction of U with |φk| = 1 and sk is the k-th Koopman mode.

Proof. We introduce the operator

Uλ0 = λ−1
0 U. (21)

Then, for some function g(x), consider

U( lim
n→∞

1
n

n−1

∑
i=0

Ui
λ0

g(x)) = lim
n→∞

1
n

n−1

∑
i=0

λ−i
0 Uig(Tx)

= lim
n→∞

1
n

n−1

∑
i=0

λ−i
0 Ui+1g(x)

= λ0 lim
n→∞

1
n

n−1

∑
i=0

λ
−(i+1)
0 Ui+1g(x)

= λ0

[
lim

n→∞

1
n

(
λ−n

0 g(Tnx)− g(x) +
n−1

∑
i=0

Ui
λ0

g(x)

)]

= λ0

[
lim

n→∞

1
n

(
λ−n

0 g(Tnx) +
n−1

∑
i=0

Ui
λ0

g(x)

)]
, (22)

where the last line is obtained by boundedness of g. Due to the boundedness of U and
continuity of g, we have

lim
n→∞

|λ−n
0 Ung| ≤ |g|. (23)

This is obtained as the consequence of the so-called Gel’fand formula that states that
for a bounded operator V on a Banach space X, limn→∞ |Vn|1/n = ρ where ρ is the spectral
radius of V [44] (note that in our case ρ = |λ0|). Thus, the first term in (22) vanishes in the
limit. Denoting

g∗λ0
(x) = lim

n→∞

1
n

n−1

∑
i=0

Ui
λ0

g(x), (24)

where the convergence is again obtained from the Gel’fand formula, utilizing the assump-
tion on convergence of time averages and (23). Thus, we obtain

Ug∗λ0
(x) = λ0g∗λ0

(x) (25)
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and, thus, g∗λ0
(x) is an eigenfunction of U at eigenvalue λ0 (note that g∗λ0

(x) ∈ C by the
fact that partial sums form a Cauchy sequence). If we have a field of observables f (x, z),
parameterized by z, we get

f ∗λ0
(x, z) = φk(x)sj(z), (26)

since f ∗λ0
(x, z) is an eigenfunction of U at eigenvalue λ0, so for every z, it is just a constant

(depending on z) multiple of the eigenfunction φk(x) of norm 1. If we denote

Pλ0 = lim
n→∞

1
n

n−1

∑
i=0

Ui
λ0

, (27)

(note Pλ0 is a bounded projection operator), we can split the space of functions C into the
direct sum Pλ0 C

⊕
(I − Pλ0)C.

Now, let 0 < k < K. Consider the space of observables

(I − Pλ0,λ1,...,λk−1
)C = (I −

k−1

∑
j=0

Pλj)C, (28)

complementary to the subspace Φ spanned by φj, 0 ≤ j < k. The operator U|Φ, the
restriction of U to Φ has eigenvalues λ0, . . . , λk−1. Since

gk = g− Pλ0,λ1,...,λk−1
g (29)

does not have a component in Φ, we can reduce the space of observables to (I− Pλ0,λ1,...,λk−1
)C,

on which Uλk satisfies the assumptions of the theorem, and obtain

U(gk)
∗
λk
(x) = λk(gk)

∗
λk
(x). (30)

If we have a field of observables f (x, z), then

fk(x, z) = f (x, z)− Pλ0,λ1,...,λk−1
f , (31)

and, thus,
fk(x, z) = φk(x)sk(z). (32)

In other words, fk is the skew-projection of the field of observables f (x, z) on the
eigenspace of the Koopman operator associated with the eigenvalue λk.

Remark 2. The assumptions on eigenvalues in the above theorem would not be satisfied for dynam-
ical systems whose eigenvalues are dense on the unit circle (e.g., a map that, as n→ ∞ approaches
a unit circle in the complex plane on which the dynamics is given by z′ = eiωz, where ω is irra-
tional w.r.t. π). However, in such a case, the space of functions can be restricted to the span of
functions eikθ , k = 1, . . . , N, θ ∈ [0, 2π), and the requirements of the theorem would be satisfied.
This amounts to restricting the observables to a set with finite resolution, which is standard in
data analysis.

Remark 3. Function spaces in which Koopman operators are spectral are typically special tensor
products of on-attractor Hilbert spaces—for example, L2(µ) where µ is the physical invariant
measure—and off-attractor spaces of functions that are continuous or possess additional smooth-
ness [14]. Provided we do not restrict the on-attractor part to a finite-dimensional subset like we did
in the previous remark, the above theorem would apply to the off-attractor subset (which is an ideal
set of functions that vanish a.e. on the attractor). However, the on-attractor Koopman modes can
be obtained a.e. using the same procedure as above, and results relying on the Birkhoff’s Ergodic
Theorem, valid in L2(µ), as in [4,5,45,46].
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In principle, one can find the full spectrum of the Koopman operator by performing
Generalized Laplace Analysis, where Theorem 1 is used on some function g(x) starting from
the unit circle, successively subtracting parts of the signal corresponding to eigenvalues
with decreasing |λ|. In practice, such computation can be unstable, since at large t, it
involves a multiplication of a very large with a very small number. In addition, the
eigenvalues are typically not known a priori. A large class of dynamical systems have
eigenvalues on and inside the unit circle (or left half of the complex plane inclusive of the
imaginary axis in the continuous time case) [14]. The eigenvalues on the unit circle can
be found using the Fast Fourier Transform (FFT). Once the contributions to the dynamics
from those eigenvalues are subtracted, the next largest set of eigenvalues have magnitude
less than 1. Thus, the power method would enable finding the magnitude |λ1| of the
resulting eigenvalue. Scaling the operator (restricted to the space of functions not containing
components from eigenspaces corresponding to eigenvalues of magnitude 1) with that
magnitude, FFT can be performed again to identify the arguments of the eigenvalues
of magnitude |λ1|. Alternatively, as shown in the next section, we describe the finite
section method, in which the operator is represented in a basis, and a finite-dimensional
truncation of the resulting infinite matrix—a finite section—is used to approximate its
spectral properties. Under some conditions [37], increasing the dimension of the finite
section and the number of sample points, eigenvalues of the operator can be obtained.

4. The Finite Section Method

The GLA method for approximating eigenfunctions (and thus modes) of the Koopman
operator, analyzed in the previous section, was proposed initially in [4,5,9] in the context
of on-attractor (measure-preserving) dynamics, and extended to off-attractor dynamics
in [11–13,39,47]. It is predicated on the knowledge of (approximate) eigenvalues—since
the eigenvalues need to be known a priori to be able to perform weighted trajectory sums
in (20). There is always the eigenvalue 1 that is known, and the trajectory sums in that
case lead to invariants of the dynamics [45,46]. Other eigenvalues with modulus 1 can
be approximated using signal processing methods (see e.g., [39]). Importantly, the GLA
does not require the knowledge of an approximation to the Koopman operator and is in
effect a sampling method which avoids the curse of dimensionality. In contrast, DMD-
type methods, invented initially in [21] without the Koopman operator background, and
connected to the Koopman operator setting in [22] produce a matrix approximation to the
Koopman operator. There are many forms of the DMD methodology, but all of them require
a choice of a finite set of observables that span a subspace. In this section, we analyze
such methods in the context of finite section of the operator and explore connections to the
dual basis.

4.1. Finite Section and the Dual Basis

Consider the Koopman operator acting on an observable space F of functions on the
state space M, equipped with the complex inner product 〈·, ·〉 (note that we are using the
complex inner product linear in the first argument here; the physics literature typically
employs the so-called Dirac notation, where the inner product is linear in its second
argument) and let { f j}, j ∈ N be an orthonormal basis on F , such that, for any function
f ∈ F , we have

f = ∑
j∈N

cj f j. (33)

Let
ukj =

〈
U f j, fk

〉
. (34)

Then,
(U f )k = 〈U f , fk〉 = ∑

j∈N
cj
〈
U f j, fk

〉
= ∑

j∈N
ukjcj. (35)
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Consider the (not necessarily orthogonal) unconditional basis { f j}. The action of U on
an individual basis function f j is given by

U f j = ∑
k∈N

ukj fk, (36)

where ukj are now just coefficients of U f j in the basis. We obtain

U f = ∑
j∈N

cjU f j = ∑
j∈N

cj ∑
k∈N

ukj fk = ∑
k∈N

(
∑
j∈N

ukjcj

)
fk, (37)

and we again have
(U f )k = ∑

j∈N
ukjcj. (38)

As in the previous section, associated with any closed linear subspace G of F , there is
a projection onto it, denoted P = P2, that we can think of as projection “along” the space
(I − P)F , since, for any f ∈ F , we have

P(I − P) f = (P− P2) f = 0, (39)

and, thus, any element of (I− P)F has projection 0. We denote by Ũ the infinite-dimensional
matrix with elements ukj, k, j ∈ N. Thus, the finite-dimensional section of the matrix

Ũn =


u11 u12 · · · u1n
u21 u22 u2n

...
. . .

...
un1 un2 · · · unn

, (40)

is the so-called compression of Ũ that satisfies

Ũn = PnŨPn, (41)

where Pn is the projection “along” (I − Pn)F to the span of the first n basis functions,
span( f1, . . . , fn).

The key question now is: how are the eigenvalues of Ũn related to the spectrum of the
infinite-dimensional operator U? This was first addressed in [37].

Example 1. Consider the translation T on the circle S1 given by

z′ = eiωz, z ∈ S1, (42)

Let f j = eijθ , θ ∈ [0, 2π). Then,

U f j = f j ◦ T = eijωeijθ . (43)

Thus, from (34) ukj = δkjeijω, where δkj = 1 for k = j and zero otherwise (the Kronecker
delta), and Ũ is a diagonal matrix. In this case, the finite section method provides us with the subset
of the exact eigenvalues of the Koopman operator.

The following example shows how careful we need to be with the finite-section method
when the underlying dynamical system has chaotic behavior:
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Example 2. Consider the map T on the circle S1 given by

z′ = z2, z ∈ S1, (44)

This is a mixing map that does not have any eigenvalues of the Koopman operator on L2(S1)
except for the (trivial) 1, while its spectrum is the whole unit circle [48]. Let f j = eijθ , θ ∈ [0, 2π).
Then,

U f j = f j ◦ T = eij2θ . (45)

Let
f (θ) = ∑

j∈Z
cjeijθ . (46)

Then,
U f (θ) = ∑

j∈Z
cjei2jθ . (47)

Thus, Ũn is given by

Ũn =



0 0 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
0 1 0 0 · · ·

...
. . .

...
0 0 · · · 0


, (48)

provided n 6= 2k, k ∈ N. In this case, the finite section method fails, as Un has eigenvalue 0 of
multiplicity n. This example illustrates how the condition in [37] that the weak convergence of
a subsequence of eigenfunctions of ŨN to a function φ must be accompanied by the requirement
||φ|| 6= 0 in order that the limit of the associated subsequence of eigenvalues converges to a true
eigenvalue of the Koopman operator. In particular, no subsequence of eigenvalues in this case
converges to the true eigenvalue of the Koopman operator, since the map is measure preserving,
and thus, its eigenvalues are on the unit circle. The example shows the peril of applying the finite
section method to find eigenvalues of the Koopman operator when the underlying dynamical system
has a continuous spectral part [5] (in this case, Lebesgue [48]) spectrum. Continuous spectrum
is effectively dealt with in [10,49] using harmonic analysis and periodic approximation methods,
respectively.

To apply the finite-section methodology of approximation of the Koopman operator,
we need to estimate the coefficients ukj from data. If we have access to measurements of N
orthogonal functions f1, . . . , fN on m points on state space, as indicated in [37], assuming
ergodicity, this becomes possible:

Theorem 2. Let { f1, . . . , fN} be an orthogonal set of functions in L2(M, µ) and let T be ergodic
on M with respect to an invariant measure µ. Let xl , l ∈ N be a trajectory on M. Then, for almost
any x1 ∈ M

ukj = lim
m→∞

1
m

m

∑
l=1

f c
k (xl) f j ◦ T(xl) = lim

m→∞

1
m

m

∑
l=1

f c
k (xl) f j(xl+1) (49)

Proof. This is a simple consequence of the Birkhoff ergodic theorem ([50]). Recall that

ukj =
〈
U f j, fk

〉
=
∫

M
U f j f c

k dµ, (50)
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and the last expression is equal to

lim
m→∞

1
m

m

∑
l=1

f c
k (xl) f j ◦ T(xl), (51)

by the Birkhoff Ergodic Theorem applied to the function U f j f c
k .

In the case of non-orthonormal Riesz basis, denote by f̂k the dual basis vectors,
such that 〈

f j, f̂k

〉
= δjk, (52)

where δjj = 1 for any j, and δjk = 0 if j 6= k. For the infinite-dimensional Koopman matrix
coefficients, we get

ukj =
〈

U f j, f̂k

〉
. (53)

Let us consider the finite set of independent functions f̃ = { f1, . . . , fN} and the associ-
ated dual set {ĝ1, . . . , ĝN} in the span F̃ of f̃, that satisfy〈

f j, ĝk
〉
= δjk. (54)

Note that the functions ĝk are unique, since they are each orthonormal to n− 1 vectors
in F̃ . Let

F = F̃ + F̃T , (55)

and PF̃ the orthogonal projection on F̃ (this in effect assumes all the remaining basis
functions are orthogonal to F̃ ). Then,

ĝk = PF̃ f̂k, (56)

since, by self-adjointness of orthogonal projections, and PF̃ f̂k ∈ F̃〈
f j, PF̃ f̂k

〉
=
〈

PF̃ f j, f̂k

〉
=
〈

f j, f̂k

〉
= δjk (57)

Now, we have

ũkj =
〈
U f j, ĝk

〉
=
〈

U f j, PF̃ f̂k

〉
=
〈

PF̃U f j, f̂k

〉
(58)

and thus, since f j ∈ F , the coefficients ũkj are the elements of the finite section PF̃UPF̃ in
the basis f̃. It is again possible to obtain ũkj from data:

Theorem 3. Let { f1, . . . , fN} be a non-orthogonal set of functions in L2(M, µ) and let T be ergodic
on M with respect to an invariant measure µ. Let xl , l ∈ N be a trajectory on M. Then, for almost
any x1 ∈ M

ũkj = lim
m→∞

1
m

m

∑
l=1

f j ◦ T(xl)ĝc
k(xl) = lim

m→∞

1
m

m

∑
l=1

f j(xl+1)ĝc
k(xl), (59)

where, for any finite m, ĝc
k(xl)/m, l = 1, . . . , m are obtained as rows of the matrix (F†F)−1F†,

where
F = [ f1(X) f2(X) . . . fN(X)], (60)

F† = (Fc)T is the conjugate (Hermitian) transpose of F , and f j(X) is the column vector
( f j(x1) . . . f j(xm))T .
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Proof. The fact that ĝc
k(xl)/m, l = 1, . . . , m are obtained as rows of the matrix (F†F)−1F†

follows from
(F†F)−1F†F = IN (61)

where IN is the N × N identity matrix. The rest of the proof is analogous to the proof of
Theorem 2.

Remark 4. The key idea in the above results—Theorems 2 and 3—is that we sample the functions
fi, i = 1, . . . , N and the dual basis gk, k = 1, . . . , N on m points in the state space, and then take
the limit m→ ∞. Thus, besides approximating the action of U using the finite section ŨN , we also
approximate individual functions f j, gk by their sample on m points. The corollary of the theorems
is that the finite sample approximations ŨN,m, obtained by setting the coefficients

ũkj,m =
1
m

m

∑
l=1

f j ◦ T(xl)ĝc
k(xl) (62)

converges to ŨN as m→ ∞. This result has been obtained in [51], without the use of the dual basis,
relying on the Moore–Penrose pseudoinverse, the connection which we discuss next.

We call F the data matrix. Note that the matrix F+ = (F†F)−1F† is the so-called Moore–
Penrose pseudoinverse of F. Using matrix notation, from (59), the approximation of the
finite section can be written as

Ũa
N = F+F(T(X)) = F+F′, (63)

where X = (x1, . . . , xm)T ,

F′ = F(T(X)) =
[

f1(TX) f2(TX) . . . fN(TX)
]
. (64)

and fk(TX) is the column vector  fk(Tx1)
...

fk(Txm)

. (65)

If we now assume that there is an eigenfunction-eigenvalue pair λ, φ of U such that
φ ∈ span F̃ , then

PF̃UPF̃φ = PF̃Uφ = Uφ = λφ. (66)

Thus, the eigenvalue λ will be in the spectrum of ŨN . More generally, it is known that
an operator U and a projection PF̃ commute if and only if F̃ is an invariant subspace of U.
Thus, the spectrum of the finite-section operator ŨN is a subset of the spectrum of U for the
case when F̃ is an invariant subspace.

If an eigenfunction φ of U is in F̃ , it can be obtained from an eigenvector a of the finite
section ŨN as

φ = a · f̃ =
N

∑
k=1

ak fk, (67)

where a = (a1, . . . , aN) satisfies ŨNa = λa, since, for such φ,

Uφ = a ·Uf̃ = λφ = λa · f̃ = UNa · f̃. (68)

We have introduced above the dot notation, that produces a function in F from an
N-vector a and a set of functions f̃.

Remark 5. The Theorems 2 and 3 are convenient in their use of sampling along trajectory and
an invariant measure, thus enabling construction of finite section representations of the Koopman
operator from a single trajectory. However, the associated space of functions L2(µ) is restricted
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since the resulting spectrum is on the unit circle. Choosing a more general measure ν that has
support in the basin of attraction is possible. Namely, when we construct the finite section, we then
use a sequence xl , l = 1, . . . , m of points that weakly converges to the measure ν, and their images
under T, yl = T(xl). This is the approach in [51]. The potential issue with this approach is the
choice of space—typically, L2(ν) will have a very large spectrum, for example, filling the entire unit
disk of the complex plane [52]. In contrast, Hilbert spaces adapted to the dynamics of a dissipative
systems can be constructed [14], starting from the ideal set of continuous functions that vanish on
the attractor, enabling a natural setting for computation of spectral objects for dissipative systems.

Koopman mode is the projection of a field of observables on an eigenfunction of U.
Approximations of Koopman modes can also be obtained using a finite section. Let ŨN be
a finite section of Ũ. Let h : M → CK be a vector observable (thus, a field of observables
indexed over a discrete set). Then, the Koopman mode sλ(h) associated with the eigenvalue
λ of U is obtained as

sλ(h) =
〈
h, φ̂

〉
φ, (69)

where φ, φ̂ are the eigenfunction and the dual eigenfunction associated with the eigenvalue
λ. Let aj, j = 1, . . . , N be eigenvectors of ŨN , and thus, the associated eigenfunctions of the
finite section are

φj = aj · f̃, j = 1, . . . , N (70)

where aj = (aj1, . . . , ajN). Then, we get the dual basis

φ̂j =
〈
âj, ĝ

〉
, j = 1, . . . , N (71)

where 〈
âj, ak

〉
= δjk. (72)

This is easily checked by expanding:

〈
φj, φ̂j

〉
=

〈
N

∑
k=1

ajk fk,
N

∑
l=1

âil ĝl

〉

=
N

∑
k=1

N

∑
l=1

ajk âc
il〈 fk, ĝl〉

=
N

∑
k=1

ajk âc
ik = δji. (73)

Thus, the approximation s̃j(h) to the Koopman mode sj(h) associated with the eigen-
value λj of the finite section reads

s̃j(h) =
〈
h, φ̂j

〉
φj =

N

∑
k=1

âjk〈h, ĝk〉φj. (74)

Now, assume that h = f̃,

〈
f̃, φ̂j

〉
φj =

N

∑
k=1

(âj)k
〈
f̃, ĝk

〉
φj = âjφj. (75)

Thus, the Koopman modes associated with the data vector of observables f̃ are ob-
tained as the left eigenvector âjφj of the finite section of the Koopman operator ŨN .

Assuming that the approximation of the finite section, the N × N matrix Ũa
N has

distinct eigenvalues λa
1, . . . , λa

N , we write the spectral decomposition

Ũa
N = AΛA−1, (76)
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where Λ is the diagonal eigenvalue matrix and

A = [a1 a2 . . . aN ] (77)

is the column eigenvector matrix. From

Ũa
N = (F†F)−1F†F′ = AΛA−1, (78)

we get that the data can be reconstructed by first observing

F†F′ = F†FAΛA−1. (79)

This represents N equations with m unknowns for each column of F′. Assuming
m > N, it is an underdetermined set of equations that can have many solutions for columns
of F′. Then,

F′p = (FF†)−1FF†FAΛA−1 = FAΛA−1 (80)

is the projection of all these solutions on the subspace spanned by the columns of F. If
m < N, (79) is overdetermined, and the solution F′p is the closest—in least squares sense—to
F′ in the span of the columns of F.

Note that A−1 is the matrix in which rows are the Koopman modes âk:

A−1 =

 â1
...

âN

, (81)

and, thus,

ΛA−1 =

 λ1â1
...

λN âN

. (82)

Using (68), we get

FA =


f̃(x1) · a1 · · · f̃(x1) · aN
f̃(x2) · a1 · · · f̃(x2) · aN

... · · ·
...

f̃(xm) · a1 · · · f̃(xm) · aN

 =


φ̃1(x1) · · · φ̃N(x1)
φ̃1(x2) · · · φ̃N(x2)

... · · ·
...

φ̃1(xm) · · · φ̃N(xm)

 (83)

where φ̃j is an eigenfunction of the finite section, and aj’s are the columns of A. Note that
φ̃k(xl) = λ̃l−1

k φ̃k(x1). Using (80), we get

F′p = FAΛA−1 =


∑N

k=1 λ̃kφ̃k(x1)âk
∑N

k=1 λ2
k φ̃k(x1)âk
...

∑N
k=1 λm

k φ̃k(x1)âk

. (84)

Remark 6. The novelty in this section is the explicit treatment of the finite section approximation
in terms of the dual basis that enables error estimates in the next subsection. The finite section is also
known under the name Galerkin projection [36]. The relationship between GLA and finite section
methods was studied in [40].

4.2. Convergence of the Finite Sample Approximation to the Finite Section

The time averages in (59) converge due to the Birkhoff’s Ergodic Theorem [50]. In the
case when a dynamical system is globally stable to an attractor with a physical invariant
measure, the rates of convergence depend on the type of asymptotic dynamics that the
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system is exhibiting. Namely, the Koopman operator U, when restricted to measure-
preserving, on-attractor dynamics, is unitary. Its spectrum can in that case be written as
σp(U) ∪ σc(U), where σp denotes the point spectrum corresponding to eigenvalues of U
and σc the continous spectrum [53]. The next theorem describes convergence of the finite
sample approximation to ŨN when the asymptotic dynamics has only the point spectrum—
e.g., when the attractor dynamics is that of a fixed point, limit cycle or ergodic rotation on a
higher dimensional torus:

Theorem 4. Let T : M → M be a C∞ dynamical system with an attractor A and an invariant
measure supported on the attractor. Let U be the Koopman operator on L2(µ), with a pure point
spectrum that is either a non-dense set on the unit circle, or generated by a set of eigenvalues
whose imaginary parts ω = (ω1, . . . , ωm) satisfy the Diophantine conditions |k·ω −k0| ≥
4c0|k|−µ, µ > m + 1, k ∈ Zm, k0 ∈ Z. Let f j, gk be C∞ for all j, k. Note that the coefficients in the
finite section matrices depend on the initial condition x of the trajectory that was used to generate
the finite section, with the notation UN,m(x), ŨN(x). Then, for almost all initial conditions x ∈ M

||ŨN,m(x)− ŨN(x)||2 ≤
c(N)

m
(85)

where || · ||2 is the Frobenius norm.

Proof. We suppress the dependence on x in the notation. The entries ũkj,m = 1
m ∑m

l=1 f j ◦
T(xl)ĝc

k(xl) of UN,m (see (62)) converge a.e. w.r.t. µ. Since T is conjugate to a rotation on an
Abelian group [54], which is either discrete or the dynamics is uniformly ergodic (in which
case, by assumption, the Diophantine condition is satisfied), for sufficiently smooth T and
f j, ĝk [55–57], we have

||ũkj,m − ũkj||2 ≤
c( f j, gk)

m
(86)

and the statement follows by setting c(N) = N2 maxj,k c( f j, gk).

Remark 7. The smoothness of T, f j, ĝk and the Diophantine condition are required in order for the
solution of the homological equation to exist [55]. Only finite smoothness is required [55], but we
have assumed C∞ for simplicity here.

The above means that ŨN,m(x) converges to ŨN(x) spectrally:

Corollary 1. Let λm be an eigenvalue of ŨN,m(x) with multiplicity h. Then, for arbitrary ε > 0,
for sufficiently large m > M, there is a set of eigenvalues λ of ŨN(x) whose multiplicity sums to h
such that |λm − λ| ≤ ε.

Proof. This follows from continuity of eigenvalues [58] to continuous perturbations (estab-
lished by theorem 4).

Remark 8. If f ◦ Tn are independent, the convergence estimate above deteriorates to O(1/
√

m).
Presence of continuous spectrum without the strong mixing property can lead to convergence
estimates O(1/mα) with 0 < α < 1/2 [56].

Remark 9. Spectral convergence in the infinite-dimensional setting is a more difficult question
(see [37] in which only convergence along subsequences was established under certain assumptions).
Even if the result could be obtained, the practical question is the convergence in m and N. To address
it further, we start with the formula for error in the finite section.

4.3. The Error in the Finite Section

It is of interest to find out how big is the error we are making in the finite section
approximations discussed above. We have the following result.
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Proposition 1. Let φ̃ = ẽ · f̃ be an eigenfunction of the finite section associated with the eigenvalue
λ̃ and eigenvector ẽ. Then,

Uφ̃− λ̃φ̃ = ẽ · (Uf̃− PF̃Uf̃). (87)

Proof. The first term on the right side of (109) follows from the definition of φ̃. We then
need to show

λ̃φ̃ = ẽ · PF̃Uf̃. (88)

However, the left side is just UN φ̃, and since f̃ ∈ F̃ , UN f̃ = PF̃UPF̃ f̃ = PF̃Uf̃, which
proves the claim.

5. Krylov Subspace Methods

A particularly useful feature of dynamical systems theory based on Koopman operator
methods is that properties of the system can be surmised from data. Indeed, in the
previous section, we found how a finite section of the matrix representation of the Koopman
operator can be found from data. However, the discussion was based on existence of a
basis, that typically might come from taking products on basis elements on 1-dimensional
subspaces—for example, Fourier basis on an interval subset of R. Such constructions
lead to an exponential growth in the number of basis elements, and the so-called curse of
dimensionality. In this section, we study finite section numerical methods that are based on
the dynamical evolution of a single or many observables—functions on state space—that
span the so-called Krylov subspace. The idea is that one might start with a single observable,
and due to its evolution, span an invariant subspace of the Koopman operator (note the
connection of such methods with the Takens embedding theorem ideas [4,39]). Since
the number of basis elements is in this case equal to the number of dynamical evolution
steps, in any dimension, Krylov subspace-based methods do not suffer from the curse
of dimensionality.

5.1. Single Observable Krylov Subspace Methods

Let T be a discrete-time dynamical system on a compact metric space M equipped
with a measure µ on the Borel σ-algebra. Let F be a Hilbert space of functions on M (for
suitable spaces, see [14]). For a finite-time evolution of an initial function f (x) ∈ F under
T, we get a (Krylov) sequence

( f (x), f ◦ T(x), . . ., f ◦ TN(x)) = ( f (x), U f (x), . . ., UN f (x)), (89)

where U is the Koopman operator associated with T. Let fi = f ◦ Ti−1(x). Then, clearly
fi+1 = U fi, for i = 1, . . ., N. If fN+1 was in the space spanned by f1, . . ., fN , and these were
linearly independent functions, we would have

fN+1 =
N

∑
i=1

ci fi, (90)

for some constants ci, i = 1, . . .N. In that case, the operator U would have a finite-
dimensional approximation ŨN on the span( f1, . . . fN), given by the companion matrix

Ũ = C =


0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

...
. . .

...
...

0 0 . . . 1 cN

 (91)

The above is, in the terminology of the previous section, the finite section representation
of U.
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Example 3. Let V be a subspace of L2(M) spanned by eigenfunctions e1, . . ., eN that satisfy

Uej = ei2πωj ej (92)

Let

g =
N

∑
j=1

ajej, (93)

Then,

Ukg =
N

∑
j=1

ajUkej

=
N

∑
j=1

aje
i2πkωj ej, (94)

and

UN g =
N

∑
l=1

djej

=
N

∑
j=1

aje
i2πNωj ej

=
N

∑
k=1

ck

N

∑
j=1

aje
i2πkωj ej

=
N

∑
j=1

(
N

∑
k=1

ckei2πkωj

)
ajej. (95)

Thus, the numbers ck, k = 1, . . . , N in the companion matrix are determined by N equations
with N unknowns (

N

∑
k=1

ckei2πkωj

)
aj = dj, j = 1, . . . , N. (96)

Now, let a1 = 1, aj = 0, j = 2, . . . , N. We get UN g = d1e1 = ei2πNω1 e1 and, thus,

c1 = ei2πNω1 . (97)

It is clear that cj = 0, j = 2, . . . , N. Note that, if ω1 = j/N for some integer j, we get c1 = 1
and, thus, the companion matrix becomes the circulant shift matrix

Ũ =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

. (98)

Consider now the case when UN f is not in the span of f1, . . . , fN . We have the
projection formula (58)

ũkj =
〈
U f j, ĝk

〉
. (99)

Since 〈
f j, ĝk

〉
= δk,j, (100)
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for j = 1, . . . , N − 1, k = 1, . . . , N we have

ũkj =
〈
U f j, ĝk

〉
=
〈

f j+1, ĝk
〉
= δk,j+1 (101)

which produces zeros in all columns of row k except in the column j− 1, where we have a
1. There is no column j− 1 for row 1, so we get all zeros up to the last column. Now, for the
last column, we have

ũkN = 〈U fN , ĝk〉 = 〈PF̃U fN , ĝk〉, (102)

and, thus, ck in the matrix (98) is the k-th coefficient of the orthogonal projection of U fN on
F̃ in the basis f̃ that here consists of the Krylov sequence of independent observables

( f , U f , . . . , UN−1 f ) ≡ ( f1, . . . , fN), (103)

where we defined f1, . . . , fN by the last relationship.

5.2. Error in the Companion Matrix Representation

Let ẽ = (e1, . . . , eN)
T be an eigenvector of Ũ satisfying

Ũẽ = λ̃ẽ, (104)

and f̃ = ( f1, f2, f3, . . . fN). The action of U on ẽ · f̃ is given as

Uẽ · f̃ = ẽ · f̃ ◦ T =
N

∑
i=1

ei fi ◦ T

=
N

∑
i=1

ei fi+1. (105)

Now, we also have

Ũẽ =


0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

...
. . .

...
...

0 0 . . . 1 cN




e1
e2
e3
...

eN

 =


c1eN

e1 + c2eN
e1 + c3eN

...
eN−1 + cNeN



=


0
e1
e2
...

eN−1

+ eN


c1
c2
c3
...

cN

 = λ̃ẽ (106)

Using this in (105), and denoting c̃ = (c1, . . . , cN), we obtain

Uẽ · f̃ = λẽ · f̃− eN c̃ · f̃ + eN f ◦ TN

= λ̃ẽ · f̃ + eN( f ◦ TN − c̃ · f̃). (107)

This formula also follows directly from (109) by observing that Uf̃ = ( f2, . . . , fN , fN+1),
where fN+1 = f ◦ TN , the fact that P( f2, . . . , fN) = ( f2, . . . , fN), and PF̃ f ◦ TN = c̃ · f̃. Thus,

ẽ · (Uf̃− PF̃Uf̃) = eN( f ◦ TN − c̃ · f̃). (108)

We have the following simple consequence:

Lemma 1. If f ◦ TN is in the span( f1, . . . fN), then φ̃ = ẽ · f̃ is an eigenfunction of U associated
with the eigenvalue λ̃.
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If the assumption that f ◦ TN is in span( f1, . . . fN) is relaxed, and c̃ · f̃ is the orthogonal
projection of f ◦ TN to F̃ , then ẽ · f̃ is an approximation to the eigenvector of U with an
approximate eigenvalue λ̃, with the error

eN( f ◦ TN − c̃ · f̃) = eNr, (109)

where r = f ◦ TN − c̃ · f̃ is called the residual. Note that Equation (107) could be written as

|Uẽ · f̃− λ̃ẽ · f̃| = |eNr|, (110)

which means that ẽ · f̃ is in the (λ̃, ε)-pseudospectrum of U for ε = |eNr| (see [59]).
The calculations above, first presented in [39], allow us to show how the finite section

spectrum approximates the spectrum of the Koopman operator when the number of
functions N in the Krylov sequence goes to infinity. The specific sense of approximation
here is pseudospectral, and for a class of systems that satisfy a convergence requirement on
the Krylov sequence, convergence in the pseudospectral sense can be proven:

Lemma 2. Let the Krylov sequence satisfy

lim
N→∞

|| f ◦ TN − c̃ · f̃|| = 0 (111)

Then, for and ε > 0, for large enough n, an eigenfunction of the finite section φ̃ is in the
ε-pseudospectrum of U.

Proof. Without loss of generality, we assume |ẽ| = 1 and, thus, |eN | ≤ 1. From (109), taking
N large enough, we get

|Uẽ · f̃− λ̃ẽ · f̃| = |eN( f ◦ TN − c̃ · f̃)| ≤ | f ◦ TN − c̃ · f̃| < ε, (112)

which proves the claim.

Theorem 5. Assume that for any function g in the space of observables F equipped with a norm
|| · ||, we have

g =
∞

∑
j=1

ckφk (113)

where φk are normalized (||φk|| = 1) eigenfunctions of the Koopman operator associated with
eigenvalues |λk| ≤ 1, i.e., U has a pure point spectrum in F . Let f̃ be the Krylov sequence generated
by f and F f the cyclic invariant subspace of U generated by f . Let Pn

F̃ be the orthogonal projection
on the subspace of F generated by the first n elements of the Krylov sequence. Let λ̃, φ̃ be an
eigenvalue-eigenfunction pair for the finite section. Then, for any ε > 0, there is an N such that
n ≥ N implies

||Uφ̃− λ̃φ̃|| < ε. (114)

Proof. Due to Lemma 2, we only need to prove that, under the assumption on the spectrum,

lim
N→∞

|| f ◦ TN − c̃ · f̃|| = 0. (115)

Due to the assumption in Equation (113), we have

f =
∞

∑
k=1

ckφk, (116)

and, thus,

f N = f ◦ TN =
∞

∑
j=1

ckλN
k φk. (117)
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We split the spectrum of U in F as σ(U) = σ(U)|S1 + σ(U)|D, where D is the interior
of the unit disk in the complex plane. Then,

f ◦ TN = f N
S1
+ f N

D = ∑
λk∈σ(U)|S1

ckλN
k φk + ∑

λj∈σ(U)|D
cjλ

N
j φj. (118)

For sufficiently large N, for any ε/2

| ∑
λj∈σ(U)|D

cjλ
N
j φj| ≤ ε/2. (119)

In addition,
∑

λk∈σ(U)|S1

ckλN
k φk (120)

is an almost periodic function and, thus, for sufficiently large M > N, we have

| f M
S1
− f N

S1
| ≤ ε/2. (121)

Combining (119) and (121) proves the claim, since f M is ε-away from an element f j of
the span( f , . . ., f M−1), and || f ◦ TM − c̃ · f̃|| is the minimal distance of f M to the subspace
span( f , . . ., f M−1) that contains f j.

Remark 10. The above construction only requires the Krylov sequence, and shows that the finite
section approximation reveals the pseudospectrum of the Koopman operator. Thus, methods relying
on Krylov sequences are “sampling” the high-dimensional space and can approximate the part of the
spectrum contained in their invariant subspace irrespective of the dimension of the problem.

The use of Krylov sequences is also of interest because they span the smallest invariant
subset that the observable f belongs to:

Theorem 6. Let f be an observable. Then, span( f , f ◦ T, . . ., f ◦ Tn, . . .) is the smallest forward
invariant subspace of U that contains f .

Proof. Assume not. Then, there is A ⊂ span( f , f ◦ T, . . ., f ◦ Tn, . . .), where A is a proper
subset, that contains f , meaning that there is f ◦ T j for some integer j, that is not in A.
However, then, A is not invariant since it contains f and U j f is not in A.

Remark 11. The assumptions in Theorem 5 are satisfied by any dynamical system with a quasi-
periodic attractor with the space of observables being an appropriately constructed Hilbert space [14].
However, they exclude systems with mixed or purely continuous spectrum, as evidenced by the
Example 2.

5.3. Krylov Sequences from Data

If M is not a finite discrete set, numerically, we do not have f̃ on the whole state
space. Instead, we might be able to sample the function f on a discrete subset of points
X = {x1, . . ., xm}T ⊂ M. We can think of f as a column vector, and form again the m× N
data matrix F

F =
[

f1(X) f2(X) . . . fN(X)
]

(122)

and its first iterate

F′ =
[

f2(X) f3(X) . . . fN+1(X)
]

=
[

f1(TX) f2(TX) . . . fN(TX)
]

=
[

f1(Y) f2(Y) . . . fN(Y),
]
. (123)
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where Y = TX. We have
F′ = FC, (124)

or
C = F+F′ (125)

as could be surmised from (63), and the following corollary of Lemma 1 holds:

Corollary 2. Let f ◦ TN be in the span( f1, . . . fN), and rank F = N. Let λ̃, ẽ be an eigenvalue
and the eigenvector of the companion matrix Ũ. Then, an eigenvalue λ̃ of Ũ is an eigenvalue of U,
and f̃(X) · ẽ is a sample of the corresponding eigenfunction of U on X.

Proof. As soon as we know N samples of the function f , the vector c̃ in the companion
matrix is fixed, and thus the residual is zero.

When xk = Txk−1, k = 1, . . ., m + n − 1, i.e., the sampling points are on a single
trajectory, the matrix F becomes the Hankel–Takens matrix

H =


f (x) f (Tx) . . . f (Tn−1x)

f (Tx) f (T2x) . . . f (Tnx)
... · · · · · ·

...
f (Tmx) f (Tm+1x) . . . f (Tm+n−1x)

. (126)

The reason for calling H the Hankel–Takens matrix is that, besides the usual property
of Hankel matrices that have constant skew-diagonal terms—in this case Hi,j = f (Tkx),
where k = |i| + |j| − 2—it also satisfies Hi,j+1 = Hi,j ◦ T = Hi+1,j, a property which is
related to the Takens embedding [4,60].

Let C have distinct eigenvalues. We diagonalize it using

C = AΛA−1. (127)

The companion matrix is diagonalized by the so-called Vandermonde matrix

A−1 =


1 λ1 λ2

1 . . . λN−1
1

1 λ2 λ2
2 . . . λN−1

2
1 λ3 λ2

3 . . . λN−1
3

...
...

...
. . .

...
1 λN λ2

N . . . λN−1
N

. (128)

Thus, the Koopman modes of the vector of observables f̃ composed of time delays
are precisely the columns of the Vandermonde matrix, while the right eigenvectors are the
columns of the inverse of the Vandermonde matrix.

5.4. Schmid’s Dynamical Mode Decomposition as a Finite Section Method

The key numerical issue with the Krylov subspace-based algorithms is the fact that the
procedure requires inversion of the Vandermonde matrix (128). Since the condition number
||A||||A−1|| (where || · || is the induced matrix norm) of the Vandermonde matrix scales
exponentially in its size provided λk 6= eiω, for some k, even if |λk| ≈ 1 [61]. There are a
variety of ways to resolve this issue, and the first one that appeared [21] is the following
version of the Koopman operator approximation, based on singular value decomposition.

Let
F = GΣV† (129)
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be the “thin” singular value decomposition of the m× N “data matrix” F, whose columns
are samples of functions f1, . . ., fN . The m× N matrix G and N × N matrix V are unitary
matrices, V† is the conjugate transpose of V, and Σ is an N × N diagonal matrix. Note that

FV = GΣ, (130)

and, thus,
Fvj = σjuj, j = 1, . . ., n (131)

where vj is the j-th column of V and uj is the j-the column of u. Clearly then, uj are linear
combinations of vectors f1(X), f2(X), . . ., fN(X), and for m ≥ N, there are N such linear
combinations. We could consider each of these combinations as a sample of a function,

ũj = vj · f̃, (132)

where f̃ = ( f1, . . ., fN) is the vector of independent functions. In other words,

ũ = (u1, . . ., uN) (133)

spans F and is an orthogonal basis for it. Now, G is in fact the data matrix whose columns
are uj’s:

G = [u1 u2 . . . uN ] = [u1(X) u2(X) . . . uN(X)] (134)

Then, the finite section is

ŨS
N = G+G′ = (G†G)−1G†G′

= G†F′VΣ−1. (135)

Now, since
G† = (FVΣ−1)† = Σ−1V†F†, (136)

G†G = Σ−1V†F†FVΣ−1, (137)

and, thus,
(G†G)−1G† = ΣV†(F†F)−1VΣΣ−1V†F† = ΣV†(F†F)−1F†, (138)

we have

ŨS
N = ΣV†(F†F)−1F†F′VΣ−1 = ΣV†F+F′VΣ−1 = ΣV†Ũa

NVΣ−1. (139)

Therefore, ŨS
N and Ũa

N are similar matrices that thus have the same spectrum. If aj is
an eigenvector of ŨS

N , then VΣ−1aj is an eigenvector of Ũa
N , and, according to (67)

φ̃N
j = Gaj (140)

is a finite section approximation to an eigenfunction of the Koopman operator.

6. Weak Eigenfunctions from Data

In the sections above we presented finite section approximations of the Koopman
operator, starting from the idea that bounded infinite-dimensional operators are, given a
basis, represented by infinite matrices, and then truncated those. In this section, we will
present an alternative point of view that provides additional insights into the relationship
between the finite-dimensional approximation and the operator. As a consequence of this
approach, we show how the concept of a weak eigenfunction, first discussed in [37], arises.

We start again with a vector of observables, f̃ = ( f1, . . ., fN). Except when we can
consider this problem analytically, we know the values of observables only on a finite
set of points in state space, X = {x1, . . ., xm}. Assume also that we know the value of f̃
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at Y = {yk} = {T(xk)}. We can think of f j(X) = ( f j(x1), . . ., f j(xm)), j ∈ {1, . . ., N} as a
sample of the observable f j on X ⊂ M.

Consider the case xk+1 = Txk, k = 1, . . ., m− 1. There are many m× m matrices A
such that

f j(Y)T = A f j(X)T (141)

One of them is the transpose of the companion matrix (98)

ŨT =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
. . .

...
cj1 cj2 cj3 . . . cjm

, (142)

but there are many values that cjk, k = 1, . . .m can assume, since the only requirement on
them is

m

∑
k=1

cjk f j(xk) = f j(ym) (143)

and there are m unknowns and 1 equation that determines them. However, the c′s need
not depend on j, since the operator that maps the vectors f j(X)T to f j(Y)T is not dependent
on j. Clearly, if there are m observables, then we get

m

∑
k=1

ck f j(xk) = f j(ym), j ∈ {1, . . ., m}, (144)

and, thus, we can determine c = (c1, . . ., cm) uniquely.
If the number of observables N is larger than m, then f jk = f j(xk) are elements of an

N ×m matrix F (note that this data matrix is precisely the transpose of the one we have
used before, in (122)) and, thus, there are not enough components in c to solve

Fc = f̃(ym)
T . (145)

This system is overdetermined, so in general does not have a solution. The Dynamic
Mode Decomposition method then solves for c using the following procedure: let P be the
orthogonal projection onto span of columns of F. Then,

FcMP = Pf̃(ym)
T , (146)

has a solution, provided F has rank m: Pf̃(ym)T is an N-dimensional vector in the span of
the columns of F and thus can be written as a linear combination of those vectors. In fact,
we can write

cMP = F+ f̃(ym)
T . (147)

We now discuss the nature of the approximation of the Koopman operator U by the
companion matrix (98)

ŨT = CT =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
. . .

...
c1 c2 c3 . . . cm

, (148)

where c = (c1, . . ., cm) = cMP obtained from Equation (147).
Let S = {x1, . . . , xm} be an invariant set for T : M→ M, where M is a measure space,

with measure µ. Consider the space C|S , of continuous functions in L2(µ) restricted to S .
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This is an m-dimensional vector space. The restriction U|S of the Koopman operator to C|S ,
is then a finite-dimensional linear operator that can be represented in a basis by an m×m
matrix. An explicit example is given when xj, j = 1, . . . , m represent successive points on
a periodic trajectory, and the resulting matrix representation in the standard basis is the
m×m cyclic permutation matrix

Π =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
. . .

...
1 0 0 . . . 0

, (149)

If S is not an invariant set, an m×m approximation of the reduced Koopman operator
can still be provided. Namely, if we know m independent functions’ restrictions ( f j)|S ,
j = 1, . . . , m in C|S , and we also know f j(Txk), j, k ∈ {1, . . . , m}, we can provide a matrix
representation of U|S . However, while in the case where S is an invariant set, the iterate
of any function in C|S can be obtained in terms of the iterate of m independent functions,
for the case when S is not invariant, this is not necessarily so. Namely, the fact that S is
not invariant means that functions in C|S do not necessarily experience linear dynamics
under U|S . However, one can take N observables f j, j = 1, . . . , N, where N > m, and
approximate the nonlinear dynamics using linear regression on f̃(X) ≡ (f(x1), . . . , f(xm)),
where f(·) = ( f1(·), . . . , fN(·))T—i.e., by finding an m× m matrix C that gives the best
approximation of the data in the Frobenius norm,

CT = argmin
B∈Cm×m

||f(Tx)− f(x)B||F ≡ argmin
B∈Cm×m

‖( f j(Txk))
n,m
j,k=1,1 − ( f j(xk))

n,m
j,k=1,1B‖F. (150)

We have the following:

Theorem 7. Let T : M → M be a measure µ-preserving transformation on a metric space M,
and let Sm = {xj}, j = 1, . . ., m be a trajectory such that, when m → ∞, Sm becomes dense in a
compact invariant set A ∈ M. Then, for any N-vector of observables f ∈ C|Sm , N ≥ m, we have

lim
m→∞

|U|Sm f− Cf| = 0 (151)

Proof. By density of S∞, for sufficiently large M, m ≥ M implies |xm − xj| < εM for some
xj ∈ x1, . . ., xm−1. By continuity of observables,

|U|Sm f− Cf| ≤ DεM (152)

for some constant D. Taking M sufficiently large makes εM → 0.

Consider an m-dimensional eigenvector ẽ = (e1, . . ., em) of ŨT , associated with the
eigenvalue λ. Since the eigenvector satisfies

ŨT ẽ = λẽ (153)

we have
ẽk+1 = λẽk, k = 1, . . ., m− 2. (154)

Thus, ẽ can be considered as an eigenfunction on the finite set x1, . . ., xm−1. On the last
point of the sample, xm, we have

m

∑
j=1

cjẽj = λẽm (155)
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Let us now consider the concept of the weak eigenfunction, or eigendistribution. Let
ν be some prior measure of interest on M. Let φ be a bounded function that satisfies
φ ◦ T = λφ. We construct the functional L on C(M) by defining

L(h) =
∫

M
hφdν. (156)

Set UL(h) =
∫

M hφ(Tx)dν and we get

UL(h) =
∫

M
hφ(Tx)dν = λ

∫
M

hφdν = λL(h). (157)

Clearly, this is satisfied if φ is a continuous eigenfunction of U at eigenvalue λ. How-
ever, Equation (157) is applicable for cases with much less regularity. Namely, if µ is a
measure and

L( f ) =
∫

f (x)dµ(x) (158)

the associated linear functional, then we can define the action of U on L by

UL( f ) =
∫

f (x)dµ(Tx). (159)

Consider, for example, a set of points xk, k ∈ N+ and assume that for every continuous
h there exists the limit

L(h) = lim
K→∞

1
K

K

∑
k=1

h(xk)ẽ(xk). (160)

Then, by the Riesz representation theorem, there is a measure µ such that

L(h) =
∫

M
hdµ. (161)

Definition 1. Let a measure µ be such that the associated linear functional L satisfies

UL = λL, (162)

for some λ ∈ C. Then, µ is called a weak eigenfunction of U.

Now, we have

UL(h) = lim
K→∞

1
K

K

∑
k=1

h(xk)ẽ(xk+1) = λ lim
K→∞

1
K

K

∑
k=1

h(xk)ẽ(xk) = λL(h), (163)

proving the following theorem:

Theorem 8. Consider a set of points xk, k ∈ N+, on a trajectory of T, and assume that for every
continuous h, there exists the limit

L(h) = lim
K→∞

1
K

K

∑
k=1

h(xk)ẽ(xk), (164)

where
ẽ(xk) = λẽ(xk−1). (165)

Then, the µ associated with L(h) by

L(h) =
∫

M
hdµ, (166)

is a weak eigenfunction of U associated with the eigenvalue λ.
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From the above, it follows that the left eigenvectors of ŨT are approximations of the
associated (possibly weak) Koopman modes, as it is assumed that ł is such an eigenvector,

łjŨ = λjłj. (167)

Then, 〈
ł, f j(X)

〉
(168)

is the projection of f j(X) on the eigenspace spanned by the eigenvector ej. Moreover, since

łj = λłj+1 − cmłm (169)

the statement can be obtained in the limit K → ∞ by the so-called Generalized Laplace
Analysis (GLA) that we described in Section 3.

Remark 12. The standard interpretation of the Dynamic Mode Decomposition (e.g., on Wikipedia)
was in some way a transpose of the one presented here: the observables f T

1 , . . . f T
m (interpreted as

column vectors) were assumed to be related by a matrix A : f j+1 = A f j. Instead, in the nonlinear,
Koopman operator interpretation, each row is mapped into its image, and this allows interpretation
on the space of observables. This is particularly important in the context of evolution equations, for
example, fluid flows, where the evolution of the observables’ field—the field of velocity vectors at
different spatial points—is not evolving linearly.

7. Conclusions

In this paper, we pursued analysis of two of the major approaches to computation of
the Koopman operator spectrum: the Generalized Laplace Analysis and the finite section
method. We derived approximation results and reinterpreted finite section as a method
acting on samples of continuous functions on the state space. The example of a chaotic
system with continuous spectrum shows how a failure of the finite section method can
occur for that class of systems. The question of choice of observables is often raised in the
context of finite-section approximations such as the EDMD. Specifically, the number of basis
functions—e.g., Fourier basis on a box in a d-dimensional space—selected as observables
can increase exponentially with the dimension d. The pseudospectral result proven here
shows that choosing time-delayed observables avoids this issue, making time-delayed
observations a natural choice. However, it is clear from the example we gave that the finite
section method can fail to converge spectrally for systems with continuous spectrum.

One can understand the Krylov subspace approach as sampling by dynamics in the
observables space. The weak eigenfunction approach is based on sampling in the state
space. Thus, both techniques avoid the curse of dimensionality that methods such as
EDMD potentially introduce.

There are a number of directions for future research based on the work presented here.
Generalized Laplace Analysis methods could use results in numerical approximations
of Laplace transfroms [62] to remedy some of the difficulties arising in computation. It
could be coupled with the power methods in numerical linear algebra for computation
of eigenvalues, eigenfunctions and modes. There is a vast literature on Krylov subspace
methods that can be used to refine the computations using finite section methodologies.
Finally, recent results in computation of Koopman operator approximations might provide
a direction for obtaining pseudospectrum convergence results for the cases of dynamical
systems with (partially) continuous spectrum.
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