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1. Introduction

The Bernoulli equation is written as

% +p(x)y —gx)y" =0, (1)

where m is any real number, and p(x) and g(x) are continuous functions; see [1].

The above Bernoulli equation is one of the equations that can convert nonlinear
equations into linear equations. The equation was first discussed in a work by Jacob
Bernoulli in 1695, after whom it is named. For example, this Bernoulli equation can solve
problems modeled by nonlinear differential equations and also solve equations about the
population expressed in logistic equations or Verhulst equations.

In [2,3], we note

2

ad " 2
ZE”ﬁ = 1’
e TR

> &) .
En(x)— = e,
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where &, is the Euler numbers and &, (x) is the Euler polynomials. If m = 0 in Equation (1),
then the Bernoulli equation has the solution which is the generating function of the Euler
polynomials. The equation is as follows.

d Eo(1) +2x 2
Egn—l(x) + Onggn—l(x) + &)

where &, (x) is the Euler polynomials.

In g-calculus, we consider the first order of the g-Bernoulli equation Dy + p(x)y —
g(x)y™ = 0. When m = 0 in Equation (1), the g-Euler polynomials is the solution of the
following g-differential equation of the first order.

5n(x) =0, (2)

q(&0,4(1) +29x) 2

Dqgn—l,q(x) + El,q(l) gn—l,q(x) + qnilgl,q(l)

5n,q(‘7x) =0, (3)
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where Dy is the derivative in g-calculus and &, 4(x) is the g-Euler polynomials. We note
that Equation (3) becomes Equation (2) when g — 1.

Through Equation (3), the goal of this paper is to find out the form of differential
equations of a higher order. We also find several symmetric properties of differential
equations of a higher order, the structure of differential equations of a higher order, the
properties of polynomials at 4 — 1, and so on. To introduce g-Euler polynomials and
g-Genocchi polynomials, we will summarize the definitions and make the arrangements
required in this paper as follows.

The g-number, which is important in g-calculus, was first introduced by Jackson,
see [4,5]. From the discovery of the g-number, various useful results were considered
and studied in g-series, g-special functions, quantum algebras, g-discrete distribution,
g-differential equation, g-calculus, and so on; see [2,6-15]. Here, we would like to briefly
review several significant concepts of g-calculus, which we need for this paper.

Let n,q € Rwith q # 1. The number

is called the g-number. We note that lim, 1 [n]; = n. In particular, for k € Z, [k], is called
the g-integer.
The g-Gaussian binomial coefficients are defined by

[m] { 0 ifr>m
= (17qm)(1iqm71)...(1,qm—r+1) . ,
g A-q) (-3 (-7 ifr <m

where m and r are non-negative integers. For r = 0, the value is 1 since the numerator and
the denominator are both empty products. One notes [n];! = [n],[n —1]; - - - [2]4[1]; and

[O]q! =+

Definition 1. The g-derivative of a function f with respect to x is defined by
x) — f(qx
Dyxf(x) := Dyf(x) = f(x)—f(q ), for x#0,

and D, £(0) = £(0).

One can prove that f is differentiable at zero, and it is clear that Dyx" = [n];x" 1. Let

us point out that D,gk,z f(x) converges to f¥)(x) as g goes to 1. From Definition 1, we can

see some formulae for the g-derivative.

Theorem 1. From Definition 1, we note that

(i) Dy(f(x)g(x)) = q(x)Dyf (x) ¢ (qx)Dyg(x)
= f(x)Dyg(x) + g(qx)Dyf (x),
. f(x)\ _ 8(qx)Dyf(x) — f(qx)Dyg(x)
(i Dq(g(x)) S (V)3(qv)
_ 8(x)Dgf (x) — f(x)Dyg(x)
g(x)g(gx) ’

(iii) ~ for any constants a and b,
Dy(af(x) +bg(x)) = aDyf(x) + bDyg(x).

Definition 2. Let z be any complex numbers with |z| < 1. We introduce the following two series,
called g-exponential functions
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We note that lim, 1 e;(z) = €*.
Theorem 2 ([15]). From Definition 2, we note that

(D) eq(x)eq(y) = eq(x+y), i yx=qxy.
(i) eq(x)Es(—x) = 1.
(iii)  e,1(x) = Eq(x).

Due to the above two types of g-exponential functions, Euler, Bernoulli, and Genocchi
polynomials are defined as new types of polynomials, and many mathematicians have
studied their properties; see [2,3,12,16-19]. In addition, it is studied in various fields, such
as the structure of approximations of polynomials and their relevance to fractals by using
computers; see [17,20,21]. The definition of each polynomial used in this paper can be
confirmed in Definitions 3 and 4.

Definition 3. The q-Euler numbers and polynomials can be expressed as

ad " 2 ad t" 2
& = , Eng(x = e;(tx), respectively.
n;) " Talyl  eg(f) + 1 ;0 mal )[n]q! eq(f) +1 q(tx), respectively

When g — 1 in Definition 3, we can find the Euler numbers and polynomials.

Definition 4. The q-Genocchi numbers and polynomials can be expressed as

iG o2 iG (x) oA eq(tx), respectively
ST T (D 11 2T Tt T e () 1 :

When g — 1 in Definition 4, we can find the Genocchi numbers and polynomials as

o o L
ngf)cnm:eﬂ—l' ZGn(mﬁzet%—le'

Based on the previous content, our purpose is to find various g-differential equations
of higher order that contain g-Euler polynomials and g-Genocchi polynomials as solutions
of the equation of a higher order. In Section 2, we find a g-differential equation of higher
order that has g-Euler polynomials as the solution and check its associated properties. In
Section 3, not only are we able to find a g-differential equation of a higher order that is the
solution of g-Genocchi polynomials, but we can also address a g-differential equation of a
higher order in combination with the g-Euler number or polynomials. Various properties
can be identified based on these equations of a higher order.

2. Several g-Differential Equations of Higher Order and Properties of
g-Euler Polynomials
In this section,we show that the g-Euler polynomials are solutions to some g-differential
equations of a higher order. Moreover, we introduce a special g-differential equation of a
higher order which is related to a symmetric property for g-Euler polynomials.
Let
tl’l
ors

From Definition 3, we find the g-Euler numbers in Equation (4). From Table 1, we also
can see a few g-Euler numbers &, ; and polynomials &, 4(x) as follows.

Fy(t,x) :=

eq(tx) = iogn,q(x) (4)

e(t)+177
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Table 1. g-Euler numbers and polynomials.

n Enyg Enq(x)

0 1 1

1 % x—%

2 2l -3 x? = 3[2)gx + 3[2]g — 3

3 4Bl + 3Bl -1 2 — 4Bl + (4081412l — 1081g)x — §314[2)g + 413, — 3

Lemma 1. For 0 < g <1, we have

[n— k]! (k)gnq( ),

(i) 5n—k,q(x) =
B _ ki — k]! -~
(i1) 5n—k,q(‘1 1x) = WDE}QSW(Q 1x).

Proof. (i) We will use induction to show the lemma. Applying g-derivative in (4), we have

pm i Ena(x) o 2 ), i ) t"
, n, =
1x = q [n]g!  eq(t) + 1 x q( = En-14(x n]q!

From the above equation, we find a relation such as
D Eng(x) = [1]gEn_1,4(x).

In a similar way, we have

2

DR Eng(x) = [nlg[n — 1]gE,(x).
Therefore, we can find
k
Dy (x) = [nlg[n — 1]+ [ — (k= 1)]g€_pq(x),

which is the desired result.
(ii) We omit the proof of (ii) in Lemma 1 because we can derive the required result if

we use a similar method in the proof of (i) in Lemma 1. O

Theorem 3. The g-Euler polynomials £, 4(x) is a solution of the following q-differential equation
of a higher order.

En-141) _(n-1) 9En-2,4(1) _(n-2) 0" 3E,4,(1) (2

21,1 Dy 'En1,4(x) + T DYy Y& (x) +- -+ A Dyt En—1,4(x)
28 ,(1 “1E,4(1) +2x)g"

- %ng},zgn_l,ﬂx) G (2) )1 En1,4(%) + Englgx) = 0.

Proof. Using the g-derivative, we can note

2 L 2e4(t)
D‘“(eqm +1> = o) T D) (e ) T 1) ©)

We consider the g-derivative after substituting gx instead of x in (4). From Equation (5),
we have
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2

B —2e,(t) 2gx
= ¢latx) < COERCOE 1))

= Fy(qt, x) (qx — e(t)l—i—leq(t)>
— 2( n+l 2 1 2 n kgkq )Enk,q(x)> [

tTl

To make the calculations easier, we multiply ¢ in Equation (6). Then, we find

tDg,Fy(t, qx)

n—1

k=0
Additionally, we can obtain the following equation from (4).

tDy,Fy(t, qx) = i)[n}qgn,q (%) [”Tq'

By comparing the coefficients of Equations (7) and (8), we find

n—1
_ n—10 ,_x n
2 1]{20 [ k } q k 15k,q(1)5n7k71,q(x> =4 xgnfl,q(x) - gn,q(qx)-
= q

From (i) in Lemma 1, we consider the following equation.

[n—k—1],!

gnfkfl,q(x) = [n— 1] = D( )gnfl,q(x)'

Substituting the right hand side of (10) to the left hand side of (9), we obtain

nil n—1 sn—k—1

— n—11 ,_k_ B q £eo(1)

2 { k ] gt 15qu(1)gn7k71,q(x) =21 2,7q
k=0

g k=0 [kq!] "

Using Equations (9) and (11), we complete the required result. [J

We can see Corollaries 1 and 2 when g — 1 in Theorem 3.

njg!”

_ i [n]q <qnxgn_1’q(x) _o-1 Z |:1’l ; 1:| qn—k—lgk,q(1)5n_k_1’q(x)> ]!
q T

DIE, 1 0().

(11)

Corollary 1. The Euler polynomial £, (x) is a solution of the following differential equation of a

higher order.
1 Enn(1) dr2 & (1) 42
( = )) L dxn 5”‘1(x>+ 2(n i<2§!d::n25"—1(’C)+”'Jr 24 )@5”—1(’()
d E(1)+2
2 )a En—1(x) + %Sn,l(x) +&u(x) =0.

Corollary 2. In (9), one holds

26, =256 10— & ("))

where £, (x) is the Euler polynomials.
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Theorem 4. The g-Euler polynomial £, 4(x) satisfies the following q-differential equation of a
higher order.

v il (n-1) S (n-2)
1=0 2[”_1_1]q'[l]q!Dw En1g(2) + Z 2n—1— ]q'[l]q'Dq’x En-1,4(x) +
2 n—3
17751,;] (2 Slq (1)
+l§02[2_l]q![l]q!D grEn-1(x +2 1_1 e D2 En1,4(%)
1 n
q 50, —ZX)q
q2 En—1,4(x) +Englqx) =0,

where &y q is the q-Euler numbers.

Proof. To find the g-differential equation of higher order including g-Euler numbers, we
transform Equation (6) as follows.

puntan) = & (¢ a6 -2 £ 5[] 1] o esiinm) o

01=0 njy!
From the similar method in Theorem 3, we find

n—1 k
- n—1 L
Lk [ | 1] teicia) = 381~ Englan. (12
k=01=0 gLt dg
Using (i) in Lemma 1 in the left hand side of (12), we can find the desired result. O

From Theorem 4, we can find Corollaries 3 and 4 when g — 1

Corollary 3. The Euler polynomials £, (x) satisfy the following differential equation of a higher order
; n_l_l)llldxn TEn- 1 ; (n—1—2)11 dxn— 5En— 1(x) + -
2 2
Z d < & d

1
—lde“ ; 2(1 =D dx o1 ()

dn72

8 —2x

En1(x) + En(x) =0,

where &, is the Euler numbers.

Corollary 4. In Equation (12), the following holds:

2! ];”é (n ; 1> (Il(> E€p—k-1(x) = xEy_1(x) — En(x),

where &, is the Euler numbers and &, (x) is the Euler polynomials

From Theorems 3 and 4, we obtain Corollary 5

Corollary 5. Let 0 < q < 1. Then, one holds

n—1

v g (e fi n-1 nk-lg g (x)
= k qq k.q n—k— 1q == ] l qq Lg¢n—k—1,4q .

Theorem 5. The g-Euler polynomials £, 4(x) are a solution of the following g-differential equation
of a higher order.
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& —1, (1) n— ( ) n —
ﬁDé,x Ve, 1,097 %) + [ 2] qu 2)5n—1,q(q )+
E3,4(1) 24(1) 1, S .
+ S Di a0 )+ Sy D a7+ D (a7

Eoq(1) —2x N B
+ (,17(27>)gn71’q(q 1x) + ql n(‘:n,q(x) - 0.
Proof. Using the g-derivative in Equation (4) we have

tn

Replacing gt instead of t and applying the g-derivative in (4), we also find

tl’l

[n]gt

tDq,tFy(qt, x) Z ( 2LxE, 199~ x) —27! Z [ ] 2n_k_1gk/q(1)5"kl/ﬂ(q_lx)>
q

Comparing the coefficients of Equations (12) and (13), we obtain
15 [ =17 nka 1 2n—1 1
2 | e a7 = P a0~ () (15)
= q
From (ii) in Lemma 1, we note
Kin—k —1]
En_k_Lq(qilX) = q[_—l]qugyggn lq(q x) (16)
Using (16) in the left hand side of (15), we derive

nl n—1 ,2n—1
no1) onke - 7", (1)
Z [ k :| q2 k 15k,q(1)8n7k71,q(q 1x) = Z 1 ~kq\J
q

k=0 = k!

We can find a equation combining the right hand side of (17) and (15), which shows
the required result. [

DEn14(g7 ). (17)

We find Corollary 6 when g — 1 in Theorem 5.

Corollary 6. The Euler polynomials £, (x) are a solution of the following differential equation of a

higherorder
(1) d Ena(1) d"2 &(1) d°
o P T + 2(n - 2y der2 1 o oy g ()
1) d & —2x
o0& e i+ D e+ B2 e, =0
Theorem 6. The g-Euler polynomials &, ;(x) are a solution of the following g-differential equation
q poty A 84 q
of a higher order.
(Sl Eiq (n-1) (S Eig (n-2)
= Z[H—l—l]q'[l]q qu gn 14 q X lgo Zn—l—Z]q'[l]q qu gn lq(q X)+
+i W p@le oy i " pWe | (gl
lzoz[z_l]q'[l] gxn—1,q\9 - 1_1] [l] gxCn—1,q\9
Eoo—2x
+( O'qz )En 14(q x)+q! "Enq(x) =0
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Proof. Substituting g%, 3~ !x instead of 4" and x, respectively, in Corollary 3, we have
n—1
n—1 —k—
Z |: k ] an k 1gkq(1)5n k-1 q(q x)
q

18
— & [n—1] (K] onk1 -1 1o
= Z{ K } H q EgEn—k-14(q x).
gLig

Replacing (18) instead of (14), we derive

_ Kl B ) .

’ Z Z[ } H 9 ELgEnt1q(071%) = xEp1,4(q70) = " Eng(x). (19)

=01=0 q q

From (16), the left hand side of (19) is changed as

n—1

1 Y. tgk)ggn s ).
k=0

i[n_l} Hq E1gEn—rk-1,(0 'x _le(:)zz(:)

Therefore, we have

-1 k E
27! Z Y G D18 1x) = 2 En1g(g ) = ' Eng ),
=0 1=0 [k —Uq![lg!
which obtains the desired result by using the similar method in Theorem 4. O

Here, we have Corollary 7 when g — 1 in Theorem 6.

Corollary 7. The Euler polynomials £, (x) are a solution of the following differential equation of a
higher order.

dn—l n—2

n—1 5
gl 51 An
Z 2(n —1—=1)t dxn—1 Ena(x) + IZO 2(n—1—=2101 dxnfzgn—l(x) +--

2 & & ! & d
; —1)'1'1125”1 ; 1—l)'l'd5” 1)
—2
+ M&H(x) +Eu(x) = 0.

Theorem 7. Let ab # 0, x, X € Rand 0 < q < 1. Then, we have

Enq(bx) bEn_1,4(bX) (4 b 28, ,(bx)
T Dy EngaX) = DI g aX) S DR g (0)

+ 6" 718 g (bx) DY £ g (aX) + " Eg g (b) g (aX)

Englax) o
- nfﬁq! D0 0% +

a&n—1,4(ax) _(4—

n—2
' a" & (ax) o
[n—1],! 7,X )5n,q(bX) NI q 2

2, " g xEna(bX)
+a"71E; 4 (a2) D410 (DX) + " 0 g (ax) En g (bX).

Proof. To find the g-differential equation of a higher order using a symmetric property of
g-Euler polynomials, we can construct form A, such as

4e,(abtx)ey(abtX)
(eg(at) +1)(eq(bt) +1)
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Using the generating function of g-Euler polynomials and Cauchy products, form A is
transformed as

A=Y (Z H akb"—kgk,q(bx)gn_k,,,(ax)) . (20)
n=0 \k= k q [Tl]q!
and
=Y (Z m bka”—kgk,q(ax)snk,q(b)()> . (21)
=0 \k=0 k q [n]y!

Applying the coefficient comparison method on Equations (20) and (21), we find a
symmetric property such as

n

Y m AV RE  (02)Ey g (aX) = Z [Z] bra" R (ax) €, (0X).  (22)
q k=0 q

From (ii) in Lemma 1, we can remark

[n —klq!

i, (k) Enq(aX), fora # 0. (23)

gnfk,q (aX) =

Using (23) in the both sides of (22), we obtain

n —

Z

n
(bx D,S +Enq(aX) Z (ax) D( )é’nq(bX).

From the above equation, we express the required result and complete the proof of
Theorem 7. O

Corollary 8. Setting a = 1 in Theorem 7, we have

En,q(bx) (n) bgn_qu(bx) (n—1)
[”]q! q,XEn,q( ) WD%X 5n,q(X)+~--+Tq! qrxgn,q(x)

+ b 18 g (03) DY £ (X) + " En g (b) £ (X)

_5n,q(x) (1) gnfl,q(x) (n—1)
= OF Dq,Xg"/q(bX)"‘WDq,X Eng(bX) +

+ E1,4 ()DL Eng (bX) + En g (x)Eng (bX).
Corollary 9. Let ab # 0,0 < g < 1 and g — 1 in Theorem 7. Then, the following holds

En(bx) d" £,(aX) + b€, 1(bx) a1
n! dxm " (n—1)! dxn-1

+ b”’lé’l(bx)dixé’n(aX) + 1" E(bx)Ey(aX)

b"2E (bx) d*
21 dx?

En(aX)+---+ En(aX)

_ Eulax) d" a&,_1(ax) d"! a"2&(ax) d?
= axn o (OX) Ty g (0X) e e o (0X)
+arlg (ax)dixgn(bx) "€y (ax)En (bX).

3. Some g-Differential Equations of Higher Order Related to g-Genocchi Polynomials

In this section, we find several g-differential equations of higher order for g-Genocchi
polynomials. We also obtain g-differential equations of a higher order of g-Genocchi polynomi-
als including g-Euler numbers. From the symmetric property of g-Genocchi polynomials, we
derive g-differential equations of a higher order of mixed g-Genocchi and g-Euler polynomials.
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Let )
t ad "
Qq(t,x) = Weq(tx) = ,;)Gn'q(X) [n}q!.

(24)

Theorem 8. The g-Genocchi polynomials Gy q(x) is a solution of the following q-differential
equation of a higher order.

-1
9" Gng () Gn-1,4 (n-1)
2! Dy,x Gu,g(x) + 2 1), D Gug(x) +
7" 3G, 7" %G1, (Gog +2)q"
- z[z]qﬂnﬁ,;w %) + 5D} G (x) + =G (x)

- [”]an,q(ﬂlx) + (x — q72)[n]qq”Gn,1,q(x) =0,

where Gy 4 are the g-Genocchi numbers.

Proof. Using the g-derivative and multiplying ¢ in Equation (24), we have

o] n

Applying the g-derivative in the generating function of g-Genocchi polynomials,
we find

(25)

D;:Gy(t,qx) = G4(qt, x) (q(eq(t)—l—l) b1t qx)

00 th nfl (26)
Z "Gp,g(x [ <2q 12Gnq il +q71t1 ql—i-qx).

11]g!

Multiplying ¢ in (26), we have

tDg,1Gq(t, 4x)

n—k— n— t
Z < k—;) [k] qq ¢ 1Gk,an—k,17(x) +q lG’W(x)> [ (27)

ny!

i a qq "Gy lq( ) tn,
= (]!

From (25) and (27), we obtain
[”]an,q(qx) - qn_lcn,q (x) = (x = 5/_2) [n]qq"Gn_Lq(x)

IR 7] B (28)
=27 Z {k} q" k 1Gk,anfk,q(x)-
k=0 q

By using mathematical induction to find the relation of G, 4(x) and Dy x G 4(x), we

note that [ K.
n— !
[n]q!q DGy g (). (29)

Substituting the right side of Equation (29) instead of G,,_4(x) in (28), we find

ank,q(x) =

[1]4Gn, (qX) — 4" Gug(x) = (x — 721" Guor,4 (%)

q
9" Grg i) (30)
TMD”GM( X).

From the above Equation (30), we can obtain the desired result. O
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Corollary 10. Let g — 1 in Equation (28). Then, one holds
(11— 1)Gu(x) — n¥Gy 1 (x) =271 2 ( )chn (%),

where Gy, is the Genocchi numbers and Gy, (x) is the Genocchi polynomials.

Theorem 9. The q-Genocchi polynomials G, 4(x) satisfies the following g-differential equation of
a higher order

q_ n—1,9 ~(n) En 2,9 (n 1) qgn—?),q (n—2)

2[71_1] quG”q( ) 2[ _2] D Gn,q(x)+2[n_3] ,Dqlx G”/‘i(x)+
9" & 3) P840 9" €04 1)

+ 20 Dy Gng(x )+ 5 D3 Gug(x) + 5 Dy%Guq(x)

+ qnilcn,q(x) + [”]qqn(x - qiz)Gn—l,q(x) - [”]an,q(qx) =0

where &y q is the q-Euler numbers.

Proof. To find the desired result, we note a relation between g-Euler numbers and g-
Genocchi numbers as

GW] = [n]qgi’lfl,qr

Using (31), we can express the other form of (28) as follows.

where n > 1. (31)

[1]4Gnq(92) = 4" Gug(x) = (x = 472) [1]gq" Gp1,4(%)
=271 L[] 7 G0 2
Applying Equation (29) in (32), we have
[1]4Gng(4%) — 4" G (%) — (x = 2 1]0" Gr-1,4 (%)
=27y WDQQGM( )
which obtains the required result, immediately. O

Corollary 11. From Theorems 8 and 9, the following holds.

n n—k— 1G n n—k— 15
Zq quL(,aanq( ) = Eq k— 1qD(k)Gnq( %),
i [Klg! P U

Theorem 10. The g-Genocchi polynomials Gy,q(x) is a solution of the following q-differential
equation of a higher order.

Gng (n) -1 Gn-14 (n-1) ) Gn-24 -2 B
Z[Tl]q qu Gn q(q X) + MD%X Gn,q(q X) + MD Gn,q(q X) +
G3‘7 (3) -1 GZ,q (2 1 Gl,q (1)
+2[3]q PyxGnalq x)+2[z]q!DWG”q(q X) + —"DgxGngg™" %)
(G(), +2) B B B -
+ %Gw(q lx) - [”]q(‘il nGn,q(x) —(x—q 1)Gn,1lq(q 1x)> =0,

where Gy q is the g-Genocchi numbers.
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Proof. We remark the following relation between G, 4(x) and D,(ik,z Gu,q(x) by mathematical
induction.
q"[n — k!

ank,q(qilx) = T!WDL(]?Gn,q(qflx). (33)

Using the g-derivative in Equation (24), we find

[ee] n

tDg,tGq(qt, x) = ), [1]qq" Gnq(x) =5, (34)
n=0 [ ]q'
and

th,tgq(qt,x)
= iz_l i [n] G Gy Guieg (97 %) -

= hokq AT [1]! (35)

n— n— _ "

+ 2( Gy (0719) + (0 = Dlnlga™™ G (671))

Comparing the coefficients of the right hand sides on (34) and (35), we obtain

[n]qq”Gn,q(x) - qzn_lcn,q(q_lx) — (qx — 1)[”}qqz(n_l)cn—l,q(q_lx)

I [n ke _ (36)
=2 1 Z |:k:| qZH k le,an—k,q(q 1X).
k=0 q
Replacing Gn—k,q (q’lx) of (36) with (33), we have
[”]qqnGn,q(x) - qznilcn,q(qilx) — (qx — 1)[”}qqz(nfl)cn—l,q(qflx)
(37)

& Grg Lk _
=21 Z —[k] q'DL(,,,an,q(q 1x).
k=0 q:
From Equation (37), we finish the proof of Theorem 10. [

Theorem 11. The g-Genocchi polynomials G 4(x) satisfy the following q-differential equation of

a higher order.
0" &, 1 - 0" *En—24 (-2 _
o Db G870 T D Gy g7+
- 53, _ n7252/ _ _
+ q [3]11! qD‘gi?anl,q(q 1x) + 1 [Z]q! qugzngn 1q(q X) qn 251,qD,g,132Gn,1,q(q 1x)

+ (E0q +2(gx = 1)g" 2Guo14(q710) +2([1] 19" Gug(47%) = Gug(x)) =0,
where &y 5 is the g-Euler numbers.
Proof. In the process of the proof of Theorem 10, we consider substituting (31) on (35) to
replace g-Euler numbers. We omit the proof of Theorem 11 since we use a similar pattern

of proof in Theorem 10. [

Corollary 12. For q — 1 in Theorem 11, the Genocchi polynomials G, (x) satisfy the following
differential equation of a higher order.

51171 dn1 Enn dn—2 53 43
(= 1)1 w1 O 1)+ gyt ez Cr () o 515G (3)
& d? d B
+ %ﬁc 1(0) + E12-Gua (1) + (€0 +2(x = 1)) Gya (%) +2(n 1 1)Gn(x) —0,
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where &, is the Euler numbers.

Theorem 12. Let 0 < q < 1. Then, we find

Gi,g(bx) _(n) bGy_1,4(bX) _(n 1)

[n]q! Dq,XGn,q(ﬂX) + WDq'X Gn,q(ﬂX) N

b""2Ga (b)
[2],!

_Gnlq(ax)D(n) aGn_Lq(ax) (
[y X

n—1)
1 D G (bX) +
"Gy g (ax) (2) 1 1)
—a D3 Grg(bX) +a""1Gy 4 (ax) D G g (bX) + 0" Go g (ax) Gy (X).

Proof. We present the form B; to find a symmetric property for g-Genocchi polynomials
as follows.

D3 Gug(aX) +b" 1G4 (bx) DL G g (aX) + 5" Go g (bx) Gy (aX)

Gu,g(bX) +

+

_— 4abt?eq (abtx)eq (abtX)
VT eg(at) + 1) (eq(bt) + 1)

ti’l

Z (2 m qakb"—kck,[,(bx)cnk,q(aX)> i

Jq!

e8] n n

Z Z [ } B a" Gy g (ax)Gy_g (BX) | s

=0 \k=0 [n]4!
From the above equation, we obtain a symmetric property such as

"y _ " n _
)3 M a0 G g (b) Gy (aX) = ) [k] V"G (ax)Gy g q(aX).  (38)
k=0 L"1yq k=0 L1 yg

To replace G, y4(aX), Gy_,q(bX) with D( )Gnq(aX) (k )Gn ,4(bX), respectively

in (38), we find
Gn—k,q(ﬁX) [,Bk[ ]LZ D(k Gug(BX) where B #0. (39)
Applying Equation (39) in (38), we have
- k ) n an_k ®
k;) o +Giq (bx)D, G g (aX) = k;) R Gl (ax) D)% G g (bX).

From the above equation, we complete the proof of Theorem 12. [

Corollary 13. Putting a = 1 in Theorem 12, the following holds

Gn,q(bx) bGn,l,q(bx) b”_sz,q(bx) )

(n) (n=1)
(]! Dy xGnqa(X) + [n—1],! Dox  Gng(X) 4o+ 2], a,xGn.q(X)
+ 5" 71 G g (03) DY G g (X) + " o (03) G g (X)
~ Gug(x) ) Gn 1q( ) (n 1) Goq(x) _(2)

+ G4 (%) D G g (bX) + Go,q(x) W(bx).

Corollary 14. Let q — 1 in Theorem 12. Then, one holds
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bG,_1(bx) d"! b"2Gy(bx) d?
1 1( X) Gn(ﬂX)"’"'ﬁ_%@Gn(ax)

Gp(bx) d"
ar axe o)+ T T e
+ 571G, (bx) dixcn(ax) + " Go(bx) G (aX)
n—2 2
a" Gy (ax) d Ga(bX)

_ Gu(ax) da" aG,_q(ax) d"! a4
ar - axe on(bX) (n—1)! dXHG”(bX)+ + 2! ax2 "

+anlG, (ax)%Gn(bX) + 4" Go(ax) Gn (bX).

Theorem 13. Let 0 < g < 1 and ab # 0. Then, we derive

bilgn’q(bx) (n) 5n_1,q(bx) ( 1)
WD‘%XG”"](HX) + W q, X Gn q(ﬂX) +
b 38 ,(b
Wﬁ” Gg(aX) + bnfzgl,qwx)D;};cn,q(aX) + 6" 1 4 (bx) G g (aX)
q-
a 1E4(ax) (n é’n_w(ax) ( 1)
a"3& ,(ax) _ 1 -
+ T:' 2 Grg (bX) + 0" 281 4 (ax) D\ Gy g (bX) + "1 E0,9(42) G g (bX).
Proof. To use the other symmetric property, we construct form B, as
B — 4abte, (abtx)e,(abtX)
277 (eq(at) +1)(eq(bt) + 1)
_ abtx) 27%3 (abtX)

eq(at) + 7 eq(bt) +1°7

2b 2at
= Weq(abtx) W&] (ﬂth)

From the above equation, we find a mixed symmetric property, combining g-Euler

polynomials and g-Genocchi polynomials as

n n
y m AR E  (53)Gy g (aX) = ) m P kg (ax)Gy i (aX).  (40)
q q

k=0 k=0

Using Equation (39), we transform (40) as

L

which obtains the result that is desired, at once.

n—k—1 ( )

pr— k—1 nog
& (02)D} DN Gug(aX) = Y Eiq(ax)D
iz [k &

Ging (bX),

O

Corollary 15. Putting a = 1 in Theorem 13, the following holds
b”’352,q(bx) 2)

b1E,,(bx) En_14(bx)
T]Z!Dég)(cn,q(}() + ﬁ ¢§X )Gn q( ) +---+ Tq' q,XG”rq(X)

+ 5" 281 4 (53) DY G g (X) + b 10 4(b7) G (X)

En14(*) j(n-1)
ﬁ Gu,q(bX) +

E24(x) _(2)
g P 3 X Cna (0X)

Eng(x) ()
~ Tl Dy xGng(bX) +

+ &1,4 ()DL G g (bX) + En,g (%) Ging (bX).
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Theorem 14. Let 0 < g < 1 and ab # 0. Then, we obtain

b~ (‘:n (c/‘n 1, bn7352, 2
! qD‘gx)Gn q(ax) + = 1]q D( )Gn,q(ﬂx) 4+ + 2,1 1 Dt(irx)Gn,q(ax)
b”fzé'l qulﬁ Gu,q(ax) + 0"~ 180,,7Gn,q(ax)
ey (n) nlg o \(n-1) "8 (2)
[Tl]q D Gn q(bX) [ — 1]q!Dq,x Gnq(bx) + + [Z]q Dq,xGn,q(bX)

+a" 28, ;DN Gy g (bx) + a1 €0 g G g (b).
Proof. Consider form B3 as

4abteg(abtx)

B = @ T ) (e 0D + 1)

From form B3, we can find a symmetric property which is related to g-Euler numbers
and g-Genocchi polynomials. Additionally, we have a relation between G,,_,(8X) and

D(k) Gu,q(BX) in Equation (39). Therefore, we omit the proof of Theorem 14, because we
can apply the proof technique from Theorem 13. O

Corollary 16. Setting a = 1 in Theorem 14, one holds

b~ Eng (1) En-14 (n-1) &y, 2)
o Dy Guq(x) + FEIN Dy Gn,q(x)+..._|_ [z]q' Dy Gng(x)
D" 214Dy G g (x) + 1" 1€ 4Gy (x)
n n—1,4 gi

Enn in .
— [n]:! D‘glx)Gn,q(bx) + = ”q!DfM 1>G,w(bx) 4ot

+ &1y DSN G (0x) + E0 g Ging (b).

2
5 :! D\ Gy g (bx)

Corollary 17. From form B3 of Theorem 14, we have

bGuq (n) V’Gy_1,4 (n-1) V"G )
[}’1} D gn q(ax) + WD 5;1 q(ux) + -+ WD%X 5n,q(ax)
+b"Gy 4D tgl,zé'n,q(ax) +ptl Go,gEn,q(ax)
_ %G 2Gn1g (1-1) " Gay )
= [n]q D g?’l q(bx) WD Sn q(bx) -4 Tq!Dq'xgn'q(bx)
+ "Gy DY) € (bx) + 0" 1 Go g En g ().
Corollary 18. Setting a = 1 in Corollary 17, the following holds:
bG b?G,_ _ b"1G
il gx)an( )+ D e, (x) + -+ —= D) €y (%)
[”]q n [Z]q!

G G -1, n— GZ,
= Tq D;x)gnq(bx) o= 1]1 Di Vg (bx) -+ W;!D,g?ggn,q(bx)

T Gl/qDﬂ(i,ngn/q(bx) + Go,gEn,q(bx).

4. Conclusions

In this paper, we find several g-differential equations for g-Euler polynomials and
g-Genocchi polynomials. This work obtains symmetric properties of the g-differential
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equation, which is related to g-Euler and g-Genocchi polynomials. Based on this paper, we
believe that many readers can generate and visualize new concepts for special polynomials.
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