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Abstract: In this article, a sliding mode control (SMC) is proposed on the basis of an adaptive
neural network (NN) for a class of Single-Input–Single-Output (SISO) nonlinear systems containing
unknown dynamic functions. Since the control objective is to steer the system states to track the
given reference signals, the SMC method is considered by employing the adaptive neural network
(NN) strategy for dealing with the unknown dynamic problem. In order to compress the impaction
coming from chattering phenomenon (which inherently exists in most SMC methods because of the
discontinuous switching term), the boundary layer technique is considered. The basic design idea is
to introduce a continuous proportional function to replace the discontinuous switching control term
inside the boundary layer so that the chattering can be effectively alleviated. Finally, both Lyapunov
theoretical analysis and computer numerical simulation are used to verify the effectiveness of the
proposed SMC method.

Keywords: sliding mode control; neural network (NN); SISO nonlinear systems; Lyapunov stability
theory

MSC: 92B20; 37C75

1. Introduction

In the past decades, owing to the rapid development of industry, scientists have
increasingly used nonlinear control because it is applied for practical engineering systems
more effectively, such as for aircraft flight control systems [1], power systems [2] and
hydraulic robot manipulator control systems [3].

To achieve nonlinear system control, sliding mode control (SMC) has always been one
of the popular strategies due to the advantages of rapid global convergence, simple struc-
ture, low sensitivity for parameter variations and high robustness for external disturbances.
Its basic idea is to force and constrain the systems states to lie within the neighborhood of
prescribed sliding surface. In order to define or design the sliding surface, there are many
different methods are suggested, such as the controllable canonical form method [4], the
Filippov theory [5,6] and the equivalent control method [7].

Among them, the equivalent control method is a straightforward technique coming
from the Filippov theory. With the development of control theory, sliding mode strategy
has been widely extended to different fields [8–12] and has become a favorite control means
for industrial applications, such as mechanical systems [13], robot manipulators [14] and
electric drives [15]. Specifically, it is also studied for nonlinear systems under unknown
dynamics [16–18].

In most published nonlinear control methods, there is a common assumption that the
dynamic function is known or Lipschitz continuous; however, the real-world engineering
system ubiquitously works in complicated and volatile dynamic environments and cannot
acquire accurate system modeling acknowledge. It has been proven that neural networks
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(NNs) or fuzzy logic systems (FLSs) can approximate unknown continuous functions to
any desired accuracy. By taking advantage of the highlighting property, a great number
of nonlinear control methods have been studied in the literature [19–24]. Recently, many
adaptive sliding mode tracking controls combined with NNs have been reported because
NNs can compensate for the system uncertainties and has received considerable attention,
including [25–28].

It is worth mentioning that the SMC is often accompanied by the chattering phenomenon,
which is caused from the discontinuous switching control signal [29–31]. This phenomenon
can seriously affect the system performance or even lead to instability [32]. To handle the
problem, many popular methods have been proposed, such as replacing the discontinuous
control law with a saturation function [33], integral sliding mode control method [34], terminal
sliding mode control method [35], PI sliding mode control method [36], PID sliding mode
control method [37] and boundary layer control technique [38].

Among them, the boundary layer approach is widespread thanks to its simple design
and outstanding performance. As the discontinuous switching control term is replaced by
a continuous proportional function inside the boundary layer, the chattering phenomenon
is significantly alleviated. However, in most articles, the continuous function is selected
to be the PI form function or PID form function, and unfortunately they are difficult to
implement and apply.

Being motivated by the above analysis, for an unknown dynamic high-order SISO
nonlinear system, we design an NN approximation based adaptive SMC for steering the
system states to follow the reference signals. To alleviate the chattering phenomenon, a
simple proportional function is designed to replace the discontinuous control inside the
introduced boundary layer. For demonstrating the effectiveness of the proposed method,
a numerical simulation example is performed to show the desired results. The main
contributions are summarized in the following:

(i) The proposed SMC control can effectively compensate the unknown dynamic. Since
the adaptive NN strategy is integrated in the control design, the proposed nonlinear
SMC control can avoid requiring accurate dynamic acknowledge.

(ii) The proposed SMC control can effectively alleviate the chattering problem by using
the boundary layer. Since this method is to use the continuous proportional function
to replace the discontinuous switching control, it can be more easily implemented.

2. Problem Statement

Consider the following nth-order nonlinear Single-Input–Single-Output (SISO) dy-
namic system modeled in the controllability canonical form:

χ̇1(t) = χ2(t),
χ̇2(t) = χ3(t),

· · ·
χ̇n(t) = f (χ̄) + u,

(1)

where χ̄(t) = [χ1(t), χ2(t), · · · , χn(t)]T = [χ1, χ̇1, · · · , χ
(n−1)
1 ]T ∈ Rn is the state vector,

u ∈ R is the control input variable and f (χ̄) ∈ R is the unknown smooth nonlinear
dynamic function.

Definition 1 (Semi-Globally Uniformly Ultimately Bounded (SGUUB)). The solution of (1)
is SGUUB, if ∀χ̄(t0) = χ̄0 ∈ Ω where Ω is a compact subset of Rn, there exists two positive
constants ρ and T(ρ, χ̄0) such that ‖χ̄(t)‖ < ρ for ∀t > t0 + T.

Control Objective. The control objective is to design an adaptive NN sliding mode con-
troller for system (1), such that all control signals of the closed-loop control are SGUUB. The
system state χ̄ can follow the desired reference trajectory χ̄d(t) = [χd1(t), χd2(t), · · · , χdn(t)]T

= [χd, χ̇d, · · · , χ
(n−1)
d ]T ∈ Rn, which can be exactly measured.
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The tracking error vector ξ(t)∈ Rn is defined as

ξ(t) =[ξ1(t), ξ2(t), · · · , ξn(t)]T

=χ̄(t)− χ̄d(t)

=[χ1(t)− χd1(t), χ2(t)− χd2(t), · · · , χn(t)− χdn(t)]T (2)

Furthermore, the sliding variable s(t) ∈ R is constructed as

s(t) =c1ξ1(t) + c2ξ̇1(t) + · · ·+ cn−1ξ
(n−2)
1 (t) + ξ

(n−1)
1 (t)

=c1ξ1(t) + c2ξ2(t) + · · ·+ cn−1ξn−1(t) + ξn(t)

=
n−1

∑
i=1

ciξi(t) + ξn(t), (3)

where these coefficients c1, c2, · · · , cn−1 are selected to make the polynomial h(λ) = λn−1 +
cn−1λn−2 + · · ·+ c1 to be Hurwitz, i.e., all the eigenvalues are in the open left half-plane,
and λ is the Laplace operator.

In terms of (1), the sliding dynamic can be yielded as

ṡ(t) =c1ξ̇1(t) + c2ξ̇2(t) + · · ·+ cn−1ξ̇n−1(t) + ξ̇n(t)

=
n−1

∑
i=1

ciξi+1(t)− χdn(t) + f (χ̄) + u. (4)

According to the sliding control mechanism, the control task can be accomplished by
finding the adaptive NN sliding mode control law to steer the dynamic system (1) to keep
on the sliding surface s(t) = 0.

For reaching the sliding surface s(t) = 0, a sufficient condition is

1
2

ds2(t)
dt

≤ −η|s(t)|, η > 0, (5)

where η is a constant [39].
To meet the sufficient condition (5), the SMC u will be designed to contain two basic

control terms, which are the continuous equivalent control term ueq and the discontinuous
switching control term usw formulated as

ueq =−
n−1

∑
i=1

ciξi+1(t) + χdn(t)− f (χ̄),

usw =− kps(t)− ηswsgn(s), (6)

where kps(t) is the high-gain proportional function with kp > 0, ηsw ≥ η > 0 is a positive
constant, and sgn(s) is the sign function as

sgn(s) =


1, f or s > 0,
0, f or s = 0,
−1, f or s < 0.

(7)

Remark 1. With respect to the switching control term usw, if we choose a greater parameter ηsw, it
will yield a faster convergence rate. However, this will also cause a high scale chattering phenomenon.
Hence, it is difficult to balance convergence rate and the magnitude of chattering.

Consequently, the SMC law can be obtained as

u =ueq + usw,
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=−
n−1

∑
i=1

ciξi+1(t) + χdn(t)− f (χ̄)− kps(t)− ηswsgn(s). (8)

In order to verify effectiveness of the control law, consider the following Lyapunov
function candidate as

V1(t) =
1
2

s2(t) (9)

Calculate the first derivative of (9) along (4) and implement (8) to have

V̇1(t) =s(t)ṡ(t)

=s(t)
( n−1

∑
i=1

ciξi+1(t) + f (χ̄) + u− χdn(t)
)

=− kps2(t)− ηsws(t)sgn(s)

≤− ηsw|s(t)| ≤ −η|s(t)|. (10)

The above inequality (10) implies that the SMC (8) can meet the sufficient condition (5).
Then, tracking error variable ξ(t) will converge exponentially to the desired equilibrium point.

3. Main Results

However, the function f (χ̄) is often unknown in practical engineering, and thus the
control law (8) is unavailable. To solve the problem, the unknown continuous function
f (χ̄) will be approximated by using the adaptive NN technology in the following form.

f (χ̄) =ω∗Tf Ψ f (χ̄) + ε f . (11)

where ω∗f ∈ Rq×m is the ideal NN weight matrix, and q is the neuron number, Ψ f (χ̄) ∈ Rq

is the Gaussian activation function vector, and ε f ∈ Rm is the bounded approximation error
(the detailed introduction concerning NN approximation in [40]).

Using the NN approximation (11), the SMC (8) becomes

u = −
n−1

∑
i=1

ciξi+1(t) + χdn(t)− (ω∗Tf Ψ f (χ̄) + ε f )− kps(t)− ηswsgn(s). (12)

It should be mentioned that the ideal weight ω∗f is an unknown constant matrix, and
thus the NN-based SMC (12) is invalid in the actual control. To derive the available NN
controller, we need to replace the unknown constant weight ω∗f via using its adaptive
estimation ω̂ f (t). Then, the sliding mode control (8) can become the following form as

u =−
n−1

∑
i=1

ciξi+1(t) + χdn(t)− ω̂T
f (t)Ψ f (χ̄)− kps(t)− ηswsgn(s). (13)

The NN weight ω̂ f (t) is trained by the following adaptive updating law,

˙̂ω f (t) =κ f

(
Ψ f (χ̄)s(t)− σf ω̂ f (t)

)
(14)

where κ f is a positive proportional coefficient for the NN’s learning speed, σf is a positive
constant for the system robustness [41].

However, due to the existence of the discontinuous sign function in (13), the high
frequency chattering will be caused around the sliding surface. To deal with this problem,
the boundary layer method is adopted by introducing a thickness Φ [42]. In order to
execute the boundary lay method, the switching control term usw is redesigned according
to the following situation.
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When the sliding variable s(t) is outside the boundary layer, i.e., |s(t)| ≥ Φ, the
control (13) is retained, where the discontinuous sign function−ηswsgn(s) aims for fast con-
vergence speed. When the sliding variable s(t) is inside the boundary layer, i.e., |s(t)| < Φ,
the control (13) is switched to the situation that only the high-gain proportional function
−kps(t) is kept and the discontinuous sign function −ηswsgn(s) is removed for alleviating
the chattering phenomenon.

Thus, we can obtain the following actual control law for system (1)

u = −
n−1

∑
i=1

ciξi+1(t) + χdn(t)− ω̂T
f (t)Ψ f (χ̄) + usw, (15)

where

usw =

{
−kps(t)− ηswsgn(s), |s(t)| ≥ Φ,

−kps(t), |s(t)| < Φ.
(16)

Remark 2. According to the definition (16) of the switching control term, it can be easily concluded
that the control (15) is only continuous or C1 continuous inside the boundary layer. However, in the
outside of boundary layer, the control (15) is discontinuous because the switching term usw involves
the sign function sgn(s). Although the discontinuity may cause the controller oscillation, it can
achieve a fast convergence rate.

4. Stability Analysis

Lemma 1 ([43]). The positive continuous function V(t) ∈ R is with the bounded initial value
V(0). If it meets V̇(t) ≤ −pV(t) + q, where p > 0 and q > 0, then it will also satisfy the
following inequality,

V(t) ≤ V(0)e−pt +
q
p
(
1− e−pt). (17)

Theorem 1. Consider the class of SISO nonlinear systems (1). If the adaptive sliding control (15)
with the NN updating law (14) is performed, and appropriate design constants are selected, then the
following control objectives can be achieved.

(1) All error signals ξ(t), ω̃ f (t) of the closed loop control are SGUUB.
(2) The tracking error ξ(t) converges to a small neighborhood of zero.

Proof. Select the Lyapunov function candidate as

V2(t) =
1
2

s2(t) +
1

2κ f
ω̃T

f (t)ω̃ f (t), (18)

where ω̃ f (t) = ω̂ f (t)−ω∗f .
Calculate the time derivative of V2(t) along (4) and (14) as

V̇2(t) =s(t)ṡ(t) +
1
κ f

ω̃T
f (t) ˙̂ω f (t)

=s(t)
( n−1

∑
i=1

ciξi+1(t) + f (χ̄) + u− χdn(t)
)

+ ω̃T
f (t)

(
Ψ f (χ̄)s(t)− σf ω̂ f (t)

)
. (19)

Substituting (11) and (15) into the above Equation (19) results in

V̇2(t) =s(t)
(
− ω̃T

f (t)Ψ f (χ̄) + usw + ε f

)
+ ω̃T

f (t)
(

Ψ f (χ̄)s(t)− σf ω̂ f (t)
)

. (20)



Mathematics 2022, 10, 1182 6 of 12

After several simple mathematical operations, the above Equation (20) can be transformed as

V̇2(t) =s(t)usw + s(t)ε f − σf ω̃T
f (t)ω̂ f (t). (21)

Using the fact ω̃ f (t) = ω̂ f (t)−ω∗f , there is the following equation,

ω̃T
f (t)ω̂ f (t) =

1
2

ω̃T
f (t)ω̃ f (t) +

1
2

ω̂T
f (t)ω̂ f (t)−

1
2

ω∗Tf ω∗f , (22)

Substituting (22) into (21), it can be rewritten as

V̇2(t) ≤s(t)usw + s(t)ε f −
σf

2
ω̃T

f (t)ω̃ f (t) +
σf

2
ω∗Tf ω∗f . (23)

Next, the system stability will be analyzed for two situations corresponding to (16),
i.e., |s| ≥ Φ and |s| < Φ.

(1) For the condition |s| ≥ Φ, the sliding variable is outside the boundary layer.
According to (16), the switching control part usw is selected as usw = −

(
kps(t) + ηswsgn(s)

)
.

Inserting it into (23) leads to

V̇2(t) ≤ −kps2(t)− ηsw|s(t)|+ s(t)ε f −
σf

2
ω̃T

f (t)ω̃ f (t) +
σf

2
ω∗Tf ω∗f . (24)

Using the fact s(t)ε f ≤ 1
2 s2(t)+ 1

2 ε2
f , the above inequality (24) can become the following one

V̇2(t) ≤−
(

kp −
1
2

)
s2(t)− ηsw|s(t)| −

σf

2
ω̃T

f (t)ω̃ f (t) + τ(t)

≤−
(

kp −
1
2

)
s2(t)− ηsw|s(t)|+ β, (25)

where τ(t) = 1
2 ε2

f +
σf
2 ω∗Tf ω∗f that is bounded by a constant β, i.e., τ(t) ≤ β.

Through selecting the designed constant satisfies ηsw ≥ β
Φ and kp ≥ β

Φ2 +
1
2 , we can

ensure V̇2(t) ≤ 0. It implies that the sliding variable will be decreased until into the inside
of the boundary layer.

(2) For the condition |s| < Φ, the sliding variable is inside the sliding surface. In view
of (16), the switching control part usw becomes usw = −kps(t). Substituting it into (23) has

V̇2(t) ≤− kps2(t) + s(t)ε f −
σf

2
ω̃T

f (t)ω̃ f (t) +
σf

2
ω∗Tf ω∗f

≤−
(

kp −
1
2

)
s2(t)−

σf

2
ω̃T

f (t)ω̃ f (t) + β. (26)

Let α = min{2kp − 1, κ f σf }, then the inequality (26) can become as

V̇2(t) ≤− αV2(t) + β. (27)

According to Lemma 1, there is the following result

V2(t) ≤ e−αtV2(0) +
β

α

(
1− e−αt) (28)

The above inequality (28) can ensure that (1) all error signals of closed-loop system are
SGUUB; and (2) the tracking error ξ(t) can converge to the small neighborhood of zero by in-
creasing the value of α, which implies that the system tracking control can be achieved.



Mathematics 2022, 10, 1182 7 of 12

5. Simulation Results

The third-order nonlinear simulation system is introduced as

χ̇1(t) =χ2(t),

χ̇2(t) =χ3(t),

χ̇3(t) =χ1(t) + 0.5sin2(χ1(t)χ2(t)) + 1.5cos2(χ2(t)χ3(t)) + u, (29)

where the initial values are set as χ1(0) = 8, χ2(0) = 4, χ3(0) = 2. The desired tracking
trajectory is described as

χ̇d1(t) =χd2(t),

χ̇d2(t) =χd3(t),

χ̇d3(t) =− 1.6 cos(0.6t), (30)

Corresponding to the sliding term (3), these coefficients are chosen as c1 = 10, c2 = 10,
and thus the sliding surface is obtained as s(t) = 10ξ1 + 10ξ2 + ξ3. The NN corresponding
to (11) is set to have 12 neurons, and the centers µi are also evenly spaced from −6 to 6.

Corresponding to the adaptive law (14) and the adaptive controller (15), the design
parameters are set as kp = 120, ηsw = 4, κ f = 0.15 and σf = 5.8, and the initial values of
the NN weight are ω̂ f (0) = [0.5]12×1, and the thickness of sliding surface is selected as
Φ = 1.5.

Figures 1–6 show the simulation results of applying the proposed adaptive SMC
law (15) with the adaptive law (14). Figure 1 displays the tracking performance in the three
state variables χ1(t), χ2(t), χ3(t). Figure 2 shows the tracking errors corresponding to the
three variables, and they decrease to zero with time . Figure 3 shows the boundedness of
the NN weights. Figures 4 shows the convergence of the sliding variables. These simulation
figures further demonstrate that the proposed sliding mode control law can achieve the
desired control tasks and objectives.

Figures 5 and 6 show the sliding mode variable and controller of the proposed method.
Figures 7 and 8 show the two variables of applying the traditional sliding method that
does not consider the boundary layer method. In comparison, the proposed method can
significantly alleviated the chattering phenomenon; therefore, it can be concluded that the
sliding controller can have better stability than the traditional method.

0 2 4 6 8 10 12 14 16 18 20
-100

0

100

System state

Reference

0 2 4 6 8 10 12 14 16 18 20

-10

0

10

0 2 4 6 8 10 12 14 16 18 20

-10

0

10

Figure 1. The tracking performance of three state variables χ1, χ2 and χ3.
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Figure 2. The convergence of three tracking errors ξ1, ξ2 and ξ3.
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Figure 3. The boundedness of the adaptive NN weight ‖ω̂ f ‖.
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Figure 4. The convergence of sliding variable s(t).
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Figure 5. The sliding variable |s(t)| of implementing the proposed method.
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Figure 6. The controller u of the proposed method.
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Chattering phenomenon

Figure 7. The chattering phenomenon is arisen in the sliding variable |s(t)| of implementing the
control u without the boundary layer.



Mathematics 2022, 10, 1182 10 of 12
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Chattering Phenomenon

Figure 8. The chattering phenomenon is arisen in the control u without the boundary layer.

6. Conclusions

In this article, in order to obtain a better tracking performance with system robustness
and to eliminate the undesired chattering phenomenon in the control input signal, we
propose an adaptive NN sliding mode control algorithm for a class of unknown dynamic
high-order SISO nonlinear systems. Since the system dynamic is assumed to be unknown,
we introduce NN to compensate those unknown functions. Furthermore, we replace the
discontinuous switching control with a continuous proportional function. In this way, the
chattering in control input will be suppressed well. According to the Lyapunov stability
theorem, we can verify the effectiveness of the control law. Finally, the simulation results
also show that our controller can achieve the desired tracking performance.
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