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Abstract: The aim of this study is to develop an automatic segmentation algorithm based on paranasal
sinus CT images, which realizes automatic identification and segmentation of the sinus boundary
and its inflamed proportions, as well as the reconstruction of normal sinus and inflamed site volumes.
Our goal is to overcome the current clinical dilemma of manually calculating the inflammatory sinus
volume, which is objective and ineffective. A semi-supervised learning algorithm using pseudo-labels
for self-training was proposed to train convolutional neural networks, which consisted of SENet,
MobileNet, and ResNet. An aggregate of 175 CT sets was analyzed, 50 of which were from patients
who subsequently underwent sinus surgery. A 3D view and volume-based modified Lund-Mackay
score were determined and compared with traditional scores. Compared to state-of-the-art networks,
our modifications achieved significant improvements in both sinus segmentation and classification,
with an average pixel accuracy of 99.67%, an MIoU of 89.75%, and a Dice coefficient of 90.79%. The
fully automatic nasal sinus volume reconstruction system was successfully obtained the relevant
detailed information by accurately acquiring the nasal sinus contour edges in the CT images. The
accuracy of our algorithm has been validated and the results can be effectively applied to actual
clinical medicine or forensic research.

Keywords: artificial intelligence; semi-supervised learning; MobileNet; SENet; ResNet; three-dimensional
CT; Lund-Mackay score

MSC: 68T01; 68T07; 65Z05

1. Introduction

The incidence of chronic rhinosinusitis (CRS) is growing even with medical treatment
advances, and sufferers’ quality of life continues to be influenced significantly. Clinically,
the most frequently used tool for evaluating the condition of paranasal sinuses is computed
tomography (CT) [1], and the Lund-Mackay Score (LMS) is the most universally accepted
marking standard. The obstruction conditions can be divided into grades 0, 1, and 2
based on a 2D-CT image. A score of 0 points represents non-obstruction, 2 points is
full obstruction, and 1 point is an intermediate condition. In terms of the advantages of
conventional LMS, doctors with little clinical experience can handle it, and the marking
standard is simple and objective. Nevertheless, people still attempt to improve this method,
including using a 3D method to quantize the volume of inflamed mucosa. However, prior
studies mostly used manual measurements when calculating the volume of paranasal
sinuses [2–8]. These attempts are not extensively accepted in clinical medicine, as the
complexity of grading is increased, and the objectivity is reduced.
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Before the size of the paranasal sinuses in the CT image is calculated, the contours
of different paranasal sinuses in the image should be segmented. As the sinus contour is
complex and has numerous interconnected openings, automatic CT image segmentation
is challenging. Prior studies mostly boxed the paranasal sinuses in the CT image slices.
Labeling each patient’s data would take at least one hour, meaning a lot of time was
spent on collecting mass data to calculate the sinus volume [9–11]. Gomes et al. [12]
used the semiautomatic image processing method to study the sinus volume of male and
female individuals. A professional doctor manually selected the region of interest (ROI)
in the CT image, and then the contour of the paranasal sinuses was segmented using
the image processing thresholding segmentation method. The paranasal sinuses were
connected to the nasal cavity region, but they were difficult to segment accurately. Souza
et al. [13] used the thresholding segmentation method to obtain a binary image of the CT
and then cut the gray histogram, after which the contour of the frontal sinus region could
be segmented effectively. Goodacre et al. [14] combined the template matching method
with the backpropagation neural network to extract the ROI of the maxillary sinus, used the
seed growth method to automatically segment the region contour of the maxillary sinus,
and reconstructed the 3D volume of the maxillary sinus. Giacomini et al. [15] used the
image processing watershed, morphology, and thresholding segmentation to automatically
segment the contour of air in the maxillary sinus and paranasal sinuses in order to obtain
the severity of maxillary sinusitis and calculate the volume of the maxillary sinus in the
CT image. Souadih et al. [16] used the deep learning semantic segmentation method to
segment the sphenoid sinus in the CT image. As the aperture of the sphenoid sinus and
the nasal cavity are interconnected, it is difficult to use conventional image processing to
mark out their boundary; deep learning semantic segmentation can better segment the
aperture of the sphenoid sinus. In order to calculate the ratio of inflamed sinus mucosa,
Humphries et al. [17] used deep learning semantic segmentation to segment the region of
paranasal sinuses in CT images, but this method cannot subclassify paranasal sinuses from
the segmented contour of the paranasal sinuses. Jung et al. [18] analyzed the maxillary
sinus volume and mucosa inflammation volume in the domain of dentistry and used the
UNet model for training with finite data volume. The model could segment the maxillary
sinus region, the maxillary sinus mucosa inflammation region could be 75.0%. Jung et al.
indicated that as the maxillary sinus is connected to the nasal cavity, the ethmoid sinus,
and the frontal sinus and is adjacent to the orbit and cranial bone above, it is difficult to
segment diseases in the maxillary sinus, and it is difficult to perform segmentation using
the conventional image segmentation method. Kim et al. [19] used a convolutional neural
network to diagnose maxillary sinusitis in X-ray images of paranasal sinuses. They also
calculated the heat map to predict and segment the maxillary sinus mucosa inflammation
region by relying on the feature map learned by the last convolution layer to simply label
and classify areas as inflammation or non-inflammation. However, using the heat map to
segment regions of maxillary sinus inflammation is a form of unsupervised learning, which
has no pre-labeled maps for training; therefore, the effect on maxillary sinus inflammation
contour segmentation is poor. Ahmed et al. [20] developed a quantitative biomarker
for computer-aided diagnosis. They used a deep belief network to train the model as
unsupervised and a deep belief network-deep neural network for supervised learning of
the liver CT images. Qadri et al. [21] proposed a method to segmented vertebrae using
deep learning primitives and stacked Sparse autoencoder. Stacked sparse auto encoder
used to extract high-level features from CT images by unsupervised learning technique.
These featured are then fed to the logistic regression classifier to fine tune the model for
classification if vertebrae and non-vertebrae patches. The finding showed the adaptability
of unsupervised and supervised learning in the field of medical image processing.

Practical calculation of sinus volume by full automation can greatly increase the
efficiency of research on paranasal sinuses. According to the literature, the present nasal
sinus segmentation systems aim at segmenting one single nasal sinus [15–19], the use of the
image processing method will result in segmentation errors in the joint of the nasal sinus
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and nasal cavity [12,16,18], and fully automatic segmentation only segments the common
range of paranasal sinuses [17]. The analytical study of diagnostic treatments for nasal sinus
disease or nasal sinus volume [22,23] and their volume can provide important information.
The innovation and purpose of this proposed study: (a) a fully automatic system for the
accurate segmentation of five different paranasal sinuses in head CT, including the maxillary
sinus, anterior/posterior ethmoid sinus, frontal sinus, and sphenoid sinus, (b) automatic
identification of sinus disease, (c) preoperative planning for nasal surgery and (d) rapid
calculation of volume, so as to assist doctors with making a clinical diagnosis.

2. Methods and Experimental Data

All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee. (Project identification code: C202105070).

This study collected data from 175 patients, comprised of 117 male and 58 female
subjects, who received head CT in Tri-Service General Hospital from 2018 to 2019 and aged
from 16 to 80 years. The datasets were 512 × 512 gray level JPG images, out of which
50 datasets were images jointly labeled by doctors, as shown in Figure 1. These images
labeled data contain five different nasal sinus regions, namely maxillary sinus, frontal sinus,
anterior ethmoid sinus, posterior ethmoid sinus, and sphenoid sinus. The datasets were
split into training and validation datasets by k-fold cross-validation. The 125 groups of
unlabeled data were split into training datasets for semi-supervised learning and testing
datasets for the doctors to evaluate effectiveness. The overall data allocation is shown in
Figure 2.
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The datasets are detailed below:

(1) Training dataset: For the labeled dataset, the number of images was doubled by
the data augmentation method. The basis of the gradient descent backpropagation
algorithm was calculated by the input image and actual labeling result.

(2) Validation dataset: For the labeled dataset, the gradient descent backpropagation
algorithm was not calculated. Only the difference between labeling and prediction
was calculated in each iteration to evaluate the effect of the model in every iteration.

(3) Semi-supervised learning dataset: For the unlabeled dataset, a dataset for generating
pseudo-labels after a model was trained.

(4) Testing dataset: The unlabeled dataset was a dataset for evaluating effectiveness after
model training was completed. Doctors would give evaluation scores to confirm
model accuracy.

This study proposed a fully automatic system for accurate segmentation of five kinds
of paranasal sinuses in the head CT (i.e., maxillary sinus, anterior ethmoid sinus, posterior
ethmoid sinus, frontal sinus, and sphenoid sinus) and volume reconstruction 3D printing.
The system flow includes image data augmentation, deep learning semantic segmentation,
k-fold cross-validation, morphology, marching cube 3D reconstruction method, and 3D
printing technique.

2.1. Image Data Augmentation

This study employed data augmentation to increase the object feature learning dif-
ficulty of the model, reduce the overfitting problem, and overcome data deficiencies to
improve model effectiveness [24].

2.1.1. Gaussian Blur

Some images are blurred in the imaging process. In order to overcome the problem
and make sufficient data for the training, data augmentation was adopted to obtain more
fuzzy characteristics such as brightness, deblur, rotation, etc. in the model training process,
thereby increasing the difficulty level of model training. The Gaussian blur [23] function
distribution is expressed as Equation (1):

G(r) =
1

2πσ2 e
Ir2
2σ (1)

where γ is the blurred radius; σ is the standard deviation of normal distribution.
To equally allocate the weights of the images in two-dimensional space, the value

of each pixel in the image is the weighted average of adjacent pixels. As the value of the
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original pixel has the maximum Gaussian distribution value, the weight is the largest.
Further, the weight of the adjacent pixel decreases as the distance to the original pixel
increases. Consequently, the edge effect is maintained better.

2.1.2. Gaussian Noise

As the CT imaging equipment employed in this study sometimes has image noise, the
model adaptability can be enhanced by adding noise to the image data [25].

2.1.3. Mixup

This study adopted the Mixup Data Augmentation method [26] to combine the aug-
mented data in order to accelerate the semantic segmentation model training process.
Thus, the model learned images of different conditions, thereby learning different features,
enhancing the model generalization effectiveness, and reducing the number of training
iterations, defined as Equations (2) and (3):

x̃ = λxi + (1 − λ)xj (2)

ỹ = λyi + (1 − λ)yj (3)

where xi and xj represent two different input image samples; yi and yj represent the one-hot
label encoding corresponding to the two different input image samples respectively; λ is
the ratio of the two image samples.

2.2. Semi-Supervised Learning

It was difficult to obtain the image segmentation data in this study and label all the
obtained data. Thus, the unlabeled data were utilized using semi-supervised learning to
enhance model effectiveness. Some labeled data were first employed in training, and then
the trained model generated pseudo-labels for the unlabeled data to train the next model
trained by a larger dataset.

In order to make the deep learning neural network model correctly learn the features
of various nasal sinus regions—after the loss between neural network output layer value
is correctly calculated—the neural network uses gradient descent and gradient to work
out backpropagation to modify the neural network parameters. The gradient descent is
expressed as Equation (4):

Wi = Wi−1 − γ
∂L
∂W

(4)

where W is the weighting parameter; γ is the learning rate; L is the loss function.

Vi = βVi−1 − γ
∂L
∂W

(5)

Wi = Wi−1 −Vi (6)

This study adopted the gradient descent with momentum to solve the local optimal
solution when the gradient was 0 so that the parameters cannot be updated continuously,
expressed as Equations (5) and (6): where V is the directional velocity of momentum; β is
the momentum.

2.2.1. Convolution Layer

Many convolution layers were employed in the semantic segmentation to learn the
feature contours of different paranasal sinuses [17]. The convolution layer is a set of parallel
feature maps and learning features from an input image (e.g., line or edge) and is composed
of sliding different convolution kernels on the input image or feature map, executing certain
operations [19]. Additionally, in each slide position, a neuron corresponding product and
summing operation is executed between the convolution kernel and input image project
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the information in the receptive field to a neuron in the feature map. The output size after
convolution kernel operation of the input image or feature map is expressed as Equation (7):

N =
(W − F + 2P)

S
+ (7)

where N is the length-width size of the output feature map; W is the length-width size of
the input image or feature map; P is the length-width size of convolution kernel; is the
padding quantity to avoid ignoring the farthest edge of an image or feature map when the
convolution kernel performs an operation. To keep output and input feature maps of equal
size, P = 1 was used in this study and S was employed as the step of convolution kernel
(i.e., the sliding distance of each operation).

The deep learning model has numerous parameters that slow down or fail training and
prediction in the hardware facilities with small memory. In order to increase the instruction
cycle and reduce parameters, MobileNet [27] proposed depthwise separable convolution.

It has two steps. First, the depthwise convolution performs a convolution operation in
a width of 1 for each width dimension in the upper feature map, as shown in Figure 3, which
is different from the general convolution operation in Figure 4. The general convolution
operation calculates all convolution kernels (width larger than 1) for each width dimension
in the feature map. This method performs operations separately and uses 1 × 1 pointwise
convolution to fuse these independent feature maps. Thus, the parameters can be reduced
effectively when the convolution kernel is large, and the computing time can be shortened
greatly [28]. Therefore, the general convolution was replaced by depthwise separable
convolution in this study.
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This study not only employed the depthwise separable convolution method to effec-
tively reduce the amount of computation and lighten the weight of the architecture but
also adopted squeeze-and-excitation networks [29] to train the influence weights among
various feature maps. The important information of the feature map is further highlighted,
as shown in Figure 5.

After the convolution operation, the squeeze-and-excitation network method em-
ployed global average pooling (GAP) to calculate the average value of different width
dimensions and performed two fully connected layer neural networks to train the weights
of different width dimensions. Finally, the learned weight was multiplied by the corre-
sponding feature map width dimension, and the feature map was weighted, through which
the importance of different width dimensions could be highlighted [30]. To make the output
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of the fully connected layer keep a normalized weight of 0~1, the Sigmoid function was
used, expressed as Equation (8):

Sigmoid(x) =
1

1 + e−x (8)
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Additionally, this study adopted the residual connection of residual neural network
(ResNet) [31–34]; the training degradation problem in the very deep neural network was
solved successfully, as shown in Figure 6.

xL = xl +
L−1

∑
i=1

F(xi, Wi) (9)

∂Loss
∂xl

=
∂Loss
∂xL

• ∂xL
∂xl

=
∂Loss
∂xL

•
(

1 +
∂

∂xl

L−1

∑
i=1

F(xi, Wi)

)
(10)

where xl represents the input of the layer; xL represents the output of the layer. The
effectiveness sometimes declines when the depth of the neural network is increased, leading
to training degradation of the neural network. The residual connection guarantees at
least identity mapping when computing gradient by backpropagation, and the gradient
vanishing in multiple backpropagation processes is solved [35].
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2.2.2. Activation Function

In this study, an activation function was added behind the convolution layer in the
semantic segmentation model to increase the nonlinear characteristics of the model [19].
The common activation function in the convolutional neural network was rectified linear
units (ReLU). The ReLU is more frequently used than the other activation functions because
its functional operation is simple, where the instruction cycle of the neural network can
be enhanced without a significant impact on the generalization accuracy of the model.
Compared with the Sigmoid and Tanh functions used by conventional deep learning, the
positive derivative of the ReLU function is 1. This special design alleviates the neural
network gradient vanishing problem. Besides the ReLU function, the Mish function is
extensively used in neural networks [36], expressed as Equation (11). When the input is a
positive number, there is no limit value to the ReLU function. The main advantage is that the
negative part is smoother than the ReLU function, which is different from the derivative 0
of ReLU in calculating the derivative by neural network gradient descent backpropagation.
This activation function will not fail the update of corresponding neuron parameters.

Mish(x) = x•tanh(ln(1 + ex)) (11)

2.3. K-Fold Cross-Validation

The K-fold cross-validation was employed to select the model for the next experiment.
First, all the datasets were randomly divided into K equal parts; the data of the K − 1 part
were used as a training dataset, and the residual part was used as a validation dataset.
Afterward, one part was selected from the data, which was not used as a validation dataset.
The data used as a validation dataset were added to the training dataset. Meanwhile,
the K − 1 part remained for training and one part for validation. Then, the distribution
was repeated until each part of the data had been used as a validation set, and the K
iterative training and validations were performed. The single estimate could be obtained
by averaging the K results. Further, similar to most deep learning methods, the data were
randomly distributed into 80% training and 20% validation datasets. This study employed
K = 5 to evaluate and select the optimal model [37].

2.4. Morphology

In this study, the region filter generated by the deep learning semantic segmentation
model would be distorted by noise and texture so that the image might contain defects.
This study also adopted morphology [38] to improve the filter. The shape of the structuring
element was compared with the corresponding pixel neighborhood to generate dilation,
erosion, opening, and closing results.
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2.4.1. Erosion and Dilation

Erosion is the method that reduces the object image inward for several pixels. It
has sets A and B, where B is the structuring element, A is eroded by B, as expressed in
Equation (12).

The erosion shrinks or thins the object of the binary image and is most frequently used
to remove the incoherent noise details in the binary image.

A	 B = {z|(B)z ⊆ A} (12)

In contrast to erosion, dilation dilates the boundary of the object image outwards for
several pixels. It has sets A and B, where B is the structuring element, A is dilated by B, as
expressed in Equation (13).

A⊕ B = {z|[(B)z ∩ A] ⊆ A} (13)

The dilation expands the object of the binary image.

2.4.2. Opening

This study employed an opening to improve the left and right nasal sinus filters, which
cannot be segmented. The opening made the object contour smoother, and the image was
eroded before it was dilated. If Set A is opened by structuring element B, Set A is eroded
by B, and B is dilated by the erosion result, as expressed in Equation (14):

A ◦ B = (A	 B)⊕ B (14)

2.4.3. Labeling

After the filters of different paranasal sinuses were predicted by the semantic seg-
mentation model, this study adopted the labeling method to distinguish the left or right
paranasal sinuses. The labeling of image processing meant that the adjacent pixels in the
image were given the same label, and the connected pixels were regarded as the same
region. The original image was divided into multiple regions based on this principle, and
these regions were labeled to complete the labeling process [39].

2.5. Marching Cube 3D Reconstruction

This study employed deep learning semantic segmentation to obtain the nasal sinus
region filter and adopted the Marching Cube 3D reconstruction algorithm [40] to reconstruct
the image of various nasal sinus regions. The Marching Cube algorithm assumes the data
to be discrete rule data points in 3D space. Taking the samples in this study as an example,
the length and width of each head CT image are 512 × 512; if there are 10 slices of nasal
sinus regions, one continuous function collects samples 512, 512, and 10 times in x, y,
and z directions, respectively, continuous nasal sinus region slice images can be obtained.
Therefore, based on this characteristic, this study adopted the Marching Cube algorithm
for filter as the method for reconstructing various nasal sinus regions. Its main procedure
is described below.

First, the nasal sinus region slice images in the 2D image were filled with unit blocks
of equal size. The unit block had eight vertices, which were defined as voxels, as shown in
Figure 7. The eight vertices of the unit block comprised the pixels of two layers of head CT
scan slices, and the pixels of each layer were connected in this way to define the continuous
function f (xi, yi, zi) in the space.
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vertices of voxels. First, the iso-value was given; if the eight voxels of the unit block were 
greater than or equal to the iso-value, they were inside the iso-surface, otherwise outside. 
Similar to 2D data, the iso-surface would have passed through a unit block with one end 
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Figure 7. Schematic diagram of unit block and voxels.

After the continuous function in the space was defined, the iso-value was given, so
that f (xi, yi, zi) = C constructed a surface, and the intersecting region of the unit block
and surface was obtained. Before the intersecting region of the unit block and surface
was obtained, the contour was described with 2D data, as shown in Figure 8 First, pixels
greater than or equal to the iso-value were defined as black dots, while those smaller
than the iso-value were white dots. As shown in Figure 8b, four adjacent pixels form a
square, and each vertex has a chance to be black or white. The pattern symmetry has three
combinations, as shown in Figure 8a. When four vertices were all black or all white, it
implies that the square was inside or outside the isocontour, and the opposite isocontour
must have passed through a square with black dots at one end and white dots at the other
end. For convenient demonstration, the pixels were represented only by 1~10, the iso-value
was 6, and the isocontour was generated, as shown in Figure 8b.
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The 2D data were extended into the 3D dataset to find the iso-surface, the original 2D
square was changed into a 3D unit block, and the four vertices were changed into eight
vertices of voxels. First, the iso-value was given; if the eight voxels of the unit block were
greater than or equal to the iso-value, they were inside the iso-surface, otherwise outside.
Similar to 2D data, the iso-surface would have passed through a unit block with one end
smaller than the iso-value and the other end greater than or equal to the iso-value. If all
the voxels were larger than or smaller than the iso-value, the iso-surface would not pass
through the unit block, as shown in Figure 9.
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Subsequently, the unit block was processed by line-search. As the eight voxels in
the unit block were inside or outside the iso-surface, there were 28 combinations, which
could be reduced to 15 according to the symmetric property of the method. The unit block
illustration described the process of generating triangular iso-surface in the unit block.

Whether the iso-surface passes through the unit block was analyzed, the intersection
point at the edge was obtained by linear interpolation, and the triangular iso-surface
was generated online. The triangular facets of each unit block were connected to form a
triangular mesh for 3D reconstruction.

2.6. Implementation Challenges

CT images are an important element to find sinusitis disease using the deep learning
method. If the CT images are not good enough and labeled not properly then the deep
learning method fails to learn. Therefore, acquiring CT images during data collection, the
clinician must be careful. After collecting the data, the next challenge is to decide data
augmentation technique. If the data augmentation doesn’t meet the requirement based
on CT images and based deep learning network, then also model fails to perform well.
Therefore, the data augmentation technique must be done carefully and reasonably. Tuning
hyperparameters is also a challenge; however, this can be overcome by training the model
with a greater number of epochs and filters in the network.

3. Results

This experiment was divided into four major parts. Part 1 is the image data augmenta-
tion. Part 2 is the nasal sinus region segmentation, using different deep learning semantic
segmentation models to train the datasets collected in this experiment. Part 3 employs
the unlabeled image data for semi-supervised learning training, and the last part exhibits
the volume reconstruction and analysis. The experimental system flow chart is shown in
Figure 10.

3.1. Image Data Augmentation

This study adopted the image data augmentation technology, making finite data
generate more equivalent data to augment the training dataset. The data deficiencies were
overcome, and the data augmentation method could increase the difficulty of the model
for object features. In addition, the overfitting problem can be reduced [41], improving
model effectiveness.
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3.1.1. Gaussian Blur

The imaging blurred image samples often occur in the research on experimental data
samples. Partial images were also blurred in the course of imaging in this study. Thus,
the blurred image samples were intentionally made using Gaussian blur, and more fuzzy
characteristics were obtained in the model training process, as shown in Figure 11.

3.1.2. Gaussian Noise

After the CT image was blurred, the Gaussian noise was employed for the Gaussian
distribution of the original blurred image, and the training difficulty of the semantic
segmentation neural network model was further increased. Increasing noise in the input
image is similar to using the Dropout method to reduce overfitting, as shown in Figure 12.

3.1.3. Mixup

Besides the two data augmentation methods of Gaussian blur and Gaussian noise,
some common data augmentation methods for deep learning image recognition were
adopted, such as random rotation, mirror reflection, contrast, and brightness control. Fi-
nally, a randomly selected original training dataset input image and another augmented
similar data were combined using the Mixup method, forming a new data augmentation
training dataset. The result is shown in Figure 13. The Mixup data refers to the superimposi-
tion of the original image and it is one of the augmented images. Figure 13a,b are the Mixup
images which has original and random rotation augmented images in them. The purpose
of this type of data is to feed images with more noise to the model for better identification.

3.2. Nasal Sinus Region Segmentation

To calculate the volume of each nasal sinus, the system should segment all kinds of
nasal sinus contour regions for subsequent calculation. This section will detail the result of
deep learning semantic segmentation used in this procedure.
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3.2.1. Loss Function Selection

The selection of the loss function is significant in optimizing the semantic segmentation
model to accurately classify the paranasal sinuses of various pixels. For semi-supervised
learning of probable pseudo labels, this study used Cross − Entropy as a loss function
method.

Cross− Entropy =
C

∑
c=1

n

∑
i=1
−yc,i log(pc,i) (15)

where C is the number of classes; n is the number of data; yc,i is the actual answer; pc,i
is the predicted probability of No. i data belonging to class C. The closer the predicted
probability is to the actual answer, the closer the value is to 0. On the contrary, if the
predicted probability is quite different from the actual answer, the value is close to 1. In
order to calculate the class probability of each pixel, the softmax is used in the output layer,
expressed as Equation (16). Since there are multi-class classifications involved in the model,
softmax is used to classify the output with the probability of each class [42].

So f tmax =
ezi

K
∑

i=1
ezi

(16)

where Zi is the output of No. i output layer.

3.2.2. Semantic Segmentation Model Training

This study employed various famous deep learning semantic segmentation models,
including UNet [43], PSPNet [44], DeepLab v3+ [45], and HRNet [46] to train and iterate
the datasets 100 times. After preliminary training of these semantic segmentation models,
the losses have converged. UNet has a minimum loss, followed by DeepLab v3+, shown in
Figure 14. The training result prediction images are shown in Figure 15, where green is the
maxillary sinus; blue is the anterior ethmoid sinus; red is the posterior ethmoid sinus; cyan
is the frontal sinus; pink is the sphenoid sinus.

Besides basic convolution operation, the depthwise separable convolution, squeeze-
and-excitation networks, and residual connection were used in this study’s deep learning
semantic segmentation model. The entire model was divided into three main stages:
high-resolution feature, low-resolution feature, and expanded receptive field feature, as
shown in Figures 16 and 17. The expanded receptive field feature part employed dilated
convolution and Atrous Spatial Pyramid Pooling to further enhance the receptive field
of the model, which was integrated with the peripheral information of the nasal sinus
region. The low-resolution feature was combined with the expanded receptive field feature
information and combined with a high-resolution feature, respectively. Different detail
features of different feature map scales were fused to make the nasal sinus contour more
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legible and complete. The up sampling adopted bilinear difference to guarantee a larger
receptive field and maintain clear contour detail.
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The common ReLU of the first fully connected layer activation function in the squeeze-
and-excitation was changed to the latest activation function Mish [36]. The Mish activation
function has been proven more accurate in other experiments [47]. The first 1 × 1 con-
volution dilated the feature map. The feature was extracted using depthwise separable
convolution and multiplied by squeeze-and-excitation to obtain the weighted feature map.
Then, a linear 1 × 1 convolution was adopted to compress the feature map, which was
added by residual connection to deliver the neural network gradient to the next layer.

3.2.3. Effectiveness Evaluation Indexes

This study employed Pixel Accuracy, Mean Intersection-Over-Union, and Dice Coeffi-
cient as evaluation indexes.

(1) Pixel Accuracy (PA):

Pixel Accuracy is the correct rate of all pixels in the image.

(2) Mean Intersection-Over-Union (MIoU)
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A ∩ B
A ∪ B

=
TP

(TP + FP + FN)
(17)

The IoU is the Intersection over Union. When the predicted image and the labeled
image are not intersecting, the output is 0. On the contrary, when the predicted image and
the labeled image are fully intersecting, the output is 1. The Mean IoU was adopted for the
multi-class segmentation of images in this study.

(3) Dice Coefficient

The Dice Coefficient is similar to IoU, a double intersection of pixels of the predicted
image and the labeled image.

2|A ∩ B|
|A|+ |B| =

2 ∗ TP
(TP + FN) + (TP + FP)

(18)

3.3. Semi-Supervised Learning

After the semantic segmentation model training was completed, this study employed
a semi-supervised learning training method for further training [48] to further optimize
the semantic segmentation model. For the data in this study, the data volume of 6319 CT
images was adequate; labeling all these image data to train the model would take a lot
of time.

3.3.1. Pseudo Label Generation

Besides 1506 labeled image data, 1141 unlabeled image data were prepared for semi-
supervised learning. The pseudo label should be generated for these unlabeled image data
before training. The CT images were imported into the trained semantic segmentation
model so that the semantic segmentation model could predict the probability class of
various paranasal sinuses of various pixels through softmax. In predicting the contour of
the maxillary sinus region, as shown in Figure 18, the probability higher than a value was
adopted as new label data through a predicted self-confidence threshold. This threshold is
the optimum threshold selected by calculating the maximum Dice score of the validation
dataset, as shown in Table 1.

Figure 18d is derived from subtracting the pseudo label image from the predicted im-
age, showing that the self-confidence threshold can filter the pixels without the confidence
of the semantic segmentation model [49] to increase the Dice score of the corresponding
validation dataset.

3.3.2. Semi-Supervised Learning Results

After the semantic segmentation model generated the pseudo label, the former could
be trained for semi-supervised learning with labeled data. Finally, the difference between
the minimum losses of the third and second training is only 0.0003, as shown in Table 2.

In the semi-supervised learning training process, more data augmentation noise was
added to the unlabeled image to avoid overfitting in the semantic segmentation model.
Each feature map of the low-resolution feature and the expanded receptive field was
normalized using dropout [50]. The dropout was employed in the part of a high-resolution
feature in the experimental process. As the Gaussian noise had been added in the CT image,
the features of various nasal sinus region contours of model training would be damaged.
Further, the convolution kernel width was modified to double VGG16 of the previous
width whenever a depthwise separable convolution kernel in step size of 2 was passed
by [51]. The new neural network feature map width trained three times was increased from
8 to 1.5, 2, and 2 times to train the features of more dimensions in each training process. The
training result is shown in Figure 19, where the teacher represents the original semantic
segmentation model, and the student represents the frequency of repetitive semi-supervised
learning training.
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label image; (d) Difference image.

Table 1. Optimum threshold table.

Self-Confidence Threshold Dice

0.3 90.79%
0.4 90.79%
0.5 90.79%
0.6 90.81%
0.7 90.83%
0.8 90.67%
0.9 90.16%

Table 2. Semi-supervised learning training table.

Frequency of Repetitive Training Minimum Loss

0 0.0211
1 0.0192
2 0.0175
3 0.0172

3.4. Volume Reconstruction

After the contours of five kinds of nasal sinus regions were predicted by the semantic
segmentation model to further clarify the 3D nasal sinus contour to provide clinical refer-
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ence observation for doctors, the morphology and 3D reconstruction were adopted in this
study for processing.
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Figure 19. Semi-supervised learning validation dataset loss.

3.4.1. Morphology

In terms of the contours of nasal sinus regions predicted by the semantic segmentation
model, left or right paranasal sinuses cannot be recognized successfully because a small part
of paranasal sinuses does not have an apparent edge. Therefore, this study employed the
opening method of morphology and subsequently adopted the connection representation
of morphology to distinguish left and right paranasal sinuses. The result is shown in
Figures 20 and 21.
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Figure 20. Schematic diagram of sphenoid sinus segmented by morphology. (a) Input image; (b) Pre-
dicted image; (c) Morphology processed image; (d) Input image; (e) Predicted image; (f) Morphology
processed image.
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The left and right paranasal sinuses can be distinguished effectively using the open-
ing method. After the left and right paranasal sinuses were recognized using labeling and 
the air section (black) and mucosa inflammation region (gray) under the nasal sinus region 
were segmented by the threshold, the severity of sinus mucosa inflammation in the CT 
image could be clarified directly to calculate the mucosa inflammation condition of differ-
ent paranasal sinuses. The final segmentation is shown in Figure 22, and the system exe-
cution output is shown in Figure 23.  
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Figure 21. Schematic diagram of frontal sinus segmented by morphology. (a) Input image; (b) Pre-
dicted image; (c) Morphology processed im-age; (d) Input image; (e) Predicted image; (f) Morphology
processed image.

The left and right paranasal sinuses can be distinguished effectively using the opening
method. After the left and right paranasal sinuses were recognized using labeling and the
air section (black) and mucosa inflammation region (gray) under the nasal sinus region
were segmented by the threshold, the severity of sinus mucosa inflammation in the CT
image could be clarified directly to calculate the mucosa inflammation condition of different
paranasal sinuses. The final segmentation is shown in Figure 22, and the system execution
output is shown in Figure 23.
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Figure 22. (a–e) are the final segmentation results from the system. Figure 22. (a–e) are the final segmentation results from the system.

3.4.2. 3D Reconstruction

Furthermore, this study employed the Marching Cube algorithm to reconstruct the
image of paranasal sinuses in order to clearly observe the shape or the mucosa inflammation
condition of paranasal sinuses. First, the obtained 2D nasal sinus images were overlapped
to form 3D matrix data. The unit block was added to each layer of the 2D matrix, and the
voxels were defined to evaluate whether or not the voxels in each unit block were larger
than the iso-value. Subsequently, the triangular mesh in each unit block was established.
Finally, all the triangular structures were connected to reconstruct the image, as shown
in Figure 24. The maxillary sinus, ethmoid sinus, frontal sinus, and sphenoid sinus were
reconstructed, with the gold being the right nasal sinus, the blue being the left nasal
sinus, and the red arrow being the orientation of the face. The sinus mucosa inflammation
proportions are shown in Figure 25, with the gold being the right nasal sinus, the blue
being the left nasal sinus, the gray being the uninflamed region, and the red arrow is
the orientation of the face. Figure 26 shows the 3D reconstruction image of the overall
paranasal sinuses.
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4. Discussion

Normal sinuses appear black in CT scan images because the sinuses are filled with air,
and as long as there are symptoms of gray mucosal inflammation in the sinuses, it can be
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called sinusitis. Therefore, CT scans can evaluate the scope of sinus inflammation, severity
and help diagnose the assessment and decide on the treatment of the disease [1]. The
Lund-Mackay grading system is a method used by physicians to observe the severity of
sinusitis using computed tomography, so it can be known that if the Lund-Mackay score is
0, it means that there is no sinusitis. However, if physicians are required to view continuous
two-dimensional image CT images, they cannot accurately know how serious it is. Garneau
et al. [3] used a grading system that calculated the proportion of mucosal inflammation
as a standard for evaluating the severity of sinusitis. The study achieved better results
than the general Lund-Mackay score. However, it takes more than an hour to manually
select various sinus contours in all computed tomography slice images. Compared with
the grading system that calculates the proportion of sinus mucosal inflammation in the
same system and the experiment, there is a big difference of only 9.7 s. Therefore, the study
provides a more rapid, objective, and accurate tool for assessing the severity of sinusitis, as
the gold standard for measuring the severity of sinusitis in the future.

Despite the high incidence of chronic rhinosinusitis, the optimal strategy for treating
chronic rhinosinusitis has so far been uncertain, so there is no specific relationship between
the degree of sinus inflammation and the decision to perform sinus surgery or use of
medication. In the Lund-Mackay study [52], it was also stated that the score is only
a method of assessing and quantifying the degree of inflammation in sinusitis, so as a
study of clinical criteria, there is no absolute score threshold for sinusitis surgery. Patients
improved better after surgery, but there was no certain score threshold to tell patients how
much they must have surgery. Therefore, in order to better recommend whether patients
with chronic rhinosinusitis should undergo surgery, this study traced the past medical
records of chronic rhinosinusitis and calculated a grading system for the proportion of
sinus mucosal inflammation as a recommendation index for surgery. Through the Youden
index and the optimal threshold to assess whether the need for surgery can be effectively
diagnosed. The optimal threshold is 6.92 when the appropriate score is 99.67%, 90.79%,
and 88.75% for the PA, Dice, and mIOU respectively, which proves that the system can
provide good surgical advice to physicians.

The three effectiveness evaluation indexes were worked out according to the trained
semantic segmentation models. The result is shown in Table 3. UNet has the best effect,
followed by DeepLab v3+, PSPNet, and HRNet. The semantic segmentation models used
in this study were compared using different prominent convolutional neural network back-
bone methods, such as MobileNet [53], ResNet [31], ResNext [27], and Inception [54–56].

Table 3. Semantic segmentation model effectiveness comparison table.

Method PA Dice mIOU

UNet 99.56% 89.68% 87.83%
PSPNet 99.31% 87.52% 85.78%
HRNet 99.12% 86.68% 83.02%

DeepLab v3+ 99.55% 89.64% 87.69%
Our + MobilenNet [53] 99.62% 90.41% 88.53%

Our + ResNet50 [31] 99.63% 90.47% 88.57%
Our + ResNet101 [31] 99.63% 90.51% 88.58%
Our + ResNext50 [31] 99.63% 90.49% 88.58%

Our + ResNext101 [31] 99.64% 90.55% 88.59%
Our + Inception [56] 99.65% 90.57% 88.59%

Our + DWS + SE 99.67% 90.79% 88.75%

According to the experimental results in Table 4, the nasal sinus region segmentation
accuracy can be enhanced greatly by combining the semantic segmentation model with
semi-supervised learning training. Besides accuracy, the difference from the UNet comput-
ing time was worked out. The time for predicting each of the 100 head CT images is shown
in Table 5. The nasal sinus segmentation effectiveness has enhanced a lot.
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Table 4. Semi-supervised learning effectiveness comparison table.

Method PA Dice mIOU

UNet 99.56% 89.68% 87.83%
Our 99.67% 90.79% 88.75%

Our +
Semi-supervised learning 99.75% 91.57% 89.43%

Table 5. Validation dataset performance comparison of various models.

Computer Equipment 1 Computer Equipment 2

CPU Intel®Core™

i5-7300
Intel®Xeon®

Silver-4110
Memory 16GB DDR4 64GB DDR4

Graphic card NVIDIA
GTX1050 4 GB

NVIDIA
Quadro GP100 16 GB

UNet prediction time 0.076 s 0.057 s
Prediction time of this

model 0.082 s 0.062 s

In order to analyze the predicted result in more detail, the confusion matrix was
employed to analyze the predicted and actual results of different paranasal sinuses. The
result of the confusion matrix is shown in Figure 27, where 0 represents the background;
1 is the maxillary sinus; 2 is the anterior ethmoid sinus; 3 represents the posterior ethmoid
sinqualityus; 4 represents the frontal sinus; 5 represents the sphenoid sinus.
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The final training result is the most effective in segmenting the contour of the maxillary
sinus from the validation dataset, followed by the sphenoid sinus; their pixel segmentation
accuracy is 98.53% and 98.03%, respectively. The anterior ethmoid sinus and posterior
ethmoid sinus were the most difficult to distinguish. Of them, 0.31% and 0.32% were pre-
dicted to be each other, and 0.04% of anterior ethmoid sinus pixels were falsely segmented
as frontal sinus.

Besides the labeled validation dataset, three otorhinolaryngologists from Tri-Service
General Hospital were invited to accurately score the 100 additional groups of different
patients’ CT data (testing dataset) predicted by the semantic segmentation model. The
evaluation method is that each nasal sinus region in each group of head CT images is given
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0 to 2 points; 0 is a severe error, 1 is a partial error, and 2 is correct. As 100 groups of
different patients’ data were evaluated, the maximum score of each nasal sinus region was
200 points, and the final score was divided by 200 points to obtain the scoring rate. The
result is shown in Table 6.

Table 6. Doctors’ grading results.

Maxillary
Sinus

Anterior
Ethmoid

Sinus

Posterior
Ethmoid

Sinus

Frontal
Sinus

Sphenoid
Sinus

Left 98% 88.5% 92.5% 95% 98.5%

Right 98.5% 88.5% 91% 96% 99.5%

According to the doctors’ evaluation in Table 6, the average score is 94.6%. Anterior
ethmoid sinus occurs when the patient is in a characteristic condition of Frontal Cells
in the CT image. As it is connected to the frontal sinus region from three angles, the
segmentation of the anterior ethmoid sinus and frontal sinus is likely to be false, leading to
worse grading results.

The volume of different paranasal sinuses in the CT can be calculated rapidly in this
study. In most paranasal sinus studies, the volume of an Asian’s paranasal sinuses is
seldom studied. Hence, statistical analysis was conducted based on the data collected in
this study, and the relationships between Taiwanese subjects’ age and sex and different
nasal sinus volumes were worked out. This study investigated 144 subjects, composed of
95 male and 45 female subjects, whose ages ranged from 16 to 80 years old, body heights
from 146 to 188 cm, body weights from 43 to 102 kg, and BMIs from 17.18 to 36.58, as shown
in Table 7. The result shows that the males have larger body heights and weights than
females and larger paranasal sinuses, showing a significant difference (p-value < 0.05).

Table 7. Nasal sinus volume comparison table.

Males’ Average
Males’

Standard
Deviation

Females’
Average

Females’
Standard
Deviation

Age 46.19 16.35 51.16 14.31

Height (cm) 171.06 7.64 159.32 5.54

Weight (kg) 71.16 11.10 58.06 10.71

BMI 24.30 3.35 22.87 3.98

Left maxillary sinus (cm3) 15.39 6.27 11.05 5.60

Right maxillary sinus (cm3) 15.50 6.45 11.27 5.60

Left anterior ethmoid
sinus (cm3) 1.60 0.72 1.28 0.52

Right anterior ethmoid
sinus (cm3) 1.58 0.57 1.34 0.50

Left posterior ethmoid
sinus (cm3) 1.50 0.61 1.21 0.57

Right posterior ethmoid
sinus (cm3) 1.47 0.57 1.13 0.54

Left frontal sinus (cm3) 1.68 1.30 0.91 0.92

Right frontal sinus (cm3) 1.64 1.33 0.77 0.69

Left sphenoid sinus (cm3) 3.64 2.04 2.70 1.77

Right sphenoid sinus (cm3) 3.81 2.47 2.70 1.90
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In addition, the symmetry of the left and right paranasal sinuses were analyzed and
calculated as (1-left/right). When the left nasal sinus was larger than the right nasal sinus,
the value was negative. The calculation result is shown in Table 8. It is observed that the
left frontal sinus and sphenoid sinus were larger than their right counterparts.

Table 8. Nasal sinus symmetry comparison table.

Overall
Average

Males’
Average

Females’
Average

Overall
Average

(Absolute
Value)

Males’
Average

(Absolute
Value)

Females’
Average

(Absolute
Value)

Maxillary sinus −0.014 −0.022 0.003 0.145 0.143 0.148

Anterior
ethmoid sinus 0.005 −0.015 0.045 0.144 0.138 0.153

Posterior
ethmoid sinus −0.011 −0.006 0.044 0.161 0.163 0.158

Frontal sinus −0.207 −0.153 −0.315 0.452 0.398 0.549

Sphenoid sinus −0.143 −0.137 −0.155 0.446 0.455 0.432

Additionally, many documents (e.g., forensic medicine) studied the relationship be-
tween the size of paranasal sinuses and physiological parameters. Therefore, this study
adopted the p-value to analyze the correlation between the size of paranasal sinuses and the
other physiological parameters. The correlation between the sex and the size of paranasal
sinuses is most extensively studied. Some studies [7,8] indicated that there is not any
relationship between the sex and the size of paranasal sinuses, while others indicated
that females have larger [51] or smaller [57] paranasal sinuses. However, the relationship
between an Asian person’s sex and the size of paranasal sinuses was seldom mentioned.
Females have smaller paranasal sinuses (p-value < 0.05) in terms of the Taiwanese subjects
investigated in this study. According to the analyzed correlation coefficient, the sizes of
various paranasal sinuses have a high significance (p-value < 0.001). It is noteworthy that
the age and left maxillary sinus (p value < 0.05) and right sphenoid sinus (p-value < 0.05)
also have significance; the larger the age is, the smaller is the volume. Notably, this result is
similar to [58]. The body height and the size of all paranasal sinuses have a high significance
(p-value < 0.001), the body weight and anterior, posterior, left and right ethmoid sinuses
have significance (p-value < 0.05), and the BMI and right sphenoid sinus (p-value < 0.001)
have a high significance, as shown in Table 9.

In the Lund-Mackay grading system, the complexity of sinus orifice score is still a
controversial issue, and its interpretation will vary greatly with the thickness and number of
slices in computed tomography. This is an indicator that has not yet reached a consensus. If
there is a clearer way to define this indicator in the future, the system will definitely be more
accurate. The slice thickness of the head computed tomography images used in this study is
3 mm, and the spacing is large. As shown in the 3D reconstruction results in Figures 24–26,
the reconstruction results are relatively rough, and there may be sinus edges just right. It is
ignored by slicing, which makes the system unable to obtain complete contour information
accurately. On the other hand, if the slices of the head computed tomography scan just hit
the edge of the sinus, it is difficult to distinguish between inflammation and nasal polyps
due to the blurry gray on the image. In the same way, when the patient has frontal cells
specific condition, the contours of the frontal sinus and ethmoid sinus are difficult to be
well segmented in slices with a thickness of 3 mm, and since there are few cases with frontal
cells specific conditions, 50 strokes have been marked. Only 1 data appeared in the data,
the sample is too small, and 6 data out of 100 in the test data set had the problem of Frontal
Cells. If a slice thickness of 1 mm is used to make more detailed observations and collect
more such special cases, the accuracy of the segmentation of the anterior ethmoid and
frontal sinuses will surely be improved.
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Table 9. Relevance analysis table.

Item
Maxillary Sinus Anterior Ethmoid Sinus

Left Right Left Right

Age Pearson Correlation
p-value

−0.169
0.042

−0.155
0.063

−0.006
0.944

−0.006
0.944

Height (cm) Pearson Correlation
p-value

0.412
0.001

0.417
0.001

0.305
0.001

0.299
0.001

Weight (kg) Pearson Correlation
p-value

0.151
0.071

0.149
0.074

0.241
0.004

0.199
0.017

BMI Pearson Correlation
p-value

−0.098
0.241

−0.106
0.207

0.079
0.348

0.032
0.705

Item
Posterior Ethmoid Sinus Frontal Sinus

Left Right Left Right

Age Pearson Correlation
p-value

−0.110
0.189

−0.107
0.203

−0.068
0.418

−0.088
0.294

Height (cm) Pearson Correlation
p-value

0.370
0.001

0.387
0.001

0.367
0.001

0.343
0.001

Weight (kg) Pearson Correlation
p-value

0.196
0.019

0.208
0.012

0.129
0.122

0.094
0.260

BMI Pearson Correlation
p-value

−0.028
0.735

−0.019
0.818

−0.093
0.266

−0.117
0.163

5. Conclusions

The fully automatic nasal sinus volume reconstruction system in this study successfully
obtained the relevant detailed information by accurately acquiring the nasal sinus contour
edges in the CT images, expanding the model perception. The volume of important
paranasal sinuses in clinical medicine can be quantized rapidly. The accuracy of this
study has been validated, and the results can be effectively used by physicians in different
departments or hospitals. At present, a doctor spends more than one hour accurately
calculating the volume of one patient’s paranasal sinuses. This study can shorten the
time for the diagnosis to accelerate treatment and save resources. As the anatomical
structure of paranasal sinuses and endonasal skull base surgery is a complex 3D space
structure, this study can be combined with a 3D printing technique for doctors to print
out nasal sinus samples through a computer or entity for observation. Further, the CT
image can be converted into more visual 3D objects so that doctors can observe the shape
or mucosa inflammation condition of various paranasal sinuses from the computer. In
this way, the paths from the nostrils to the frontal sinus or maxillary sinus are obtained,
assisting surgical judgment, and the shape and size of the patient’s paranasal sinuses can
be observed effectively. In addition, the paths from the nostrils to different paranasal
sinuses are obtained, which helps doctors make detailed plans for dissection and surgery of
paranasal sinuses. The normal volumes of Taiwanese patients were analyzed in this study,
and the correlation between the volume of different paranasal sinuses and physiological
parameters was analyzed. Furthermore, it is proved that males have larger nasal sinus
volume than females, and the greater the body height, the greater the volume of paranasal
sinuses. Moreover, this result can provide a more accurate assessment of forensic anatomy.
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