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Abstract: We consider in this article the stochastic fractional Zakharov system derived by the mul-
tiplicative Wiener process in the Stratonovich sense. We utilize two distinct methods, the Riccati–
Bernoulli sub-ODE method and Jacobi elliptic function method, to obtain new rational, trigonometric,
hyperbolic, and elliptic stochastic solutions. The acquired solutions are helpful in explaining certain
fascinating physical phenomena due to the importance of the Zakharov system in the theory of
turbulence for plasma waves. In order to show the influence of the multiplicative Wiener process
on the exact solutions of the Zakharov system, we employ the MATLAB tools to plot our figures
to introduce a number of 2D and 3D graphs. We establish that the multiplicative Wiener process
stabilizes the solutions of the Zakharov system around zero.

Keywords: fractional Zakharov system; stochastic Zakharov system; Riccati–Bernoulli sub-ODE
method; Jacobi elliptic function method
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1. Introduction

In 1972, Zakharov [1] developed the Zakharov system. It is a group of coupled nonlin-
ear wave equations that explains the interaction of high-frequency Langmuir (dispersive)
and low-frequency ion-acoustic (roughly nondispersive) waves. In one dimension, the
Zakharov system can be authored as

vtt − vxx + (|u|2)xx = 0, (1)

iut + uxx + 2uv = 0,

where v : Ω×R+ → R denotes the plasma density as determined by its equilibrium value,
and u : Ω×R+ → C denotes the high-frequency electric field’s envelope. The Zakharov
system is similar to nonlinear Schrödinger equations and significant in plasma turbulence
theory. As a result, the Zakharov system has piqued the interest of many physicists and
mathematicians, and has been extensively studied both theoretically and numerically [2–6].
To solve system problems (1), researchers have used a variety of methods. For example,
Song et al. [7] introduced unbounded wave solutions, kink wave solutions, and periodic
wave solutions by utilizing bifurcation theory method. Wang and Li [8] used the extended F-
expansion method to obtain periodic wave solutions. Javidi et al. [9] applied the variational
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iteration technique to obtain solitary wave solutions. Taghizadeh et al. [10] obtained some
exact solutions using infinite series method. Hong et al. [11] obtained a few new doubly
periodic solutions utilizing the Jacobian elliptic function expansion method.

In recent years, the fractional derivatives are utilized to describe numerous physical
phenomena in engineering applications, signal processing, electromagnetic theory, finance,
physics, mathematical biology, and various scientific studies, see for instance [12–17]. For
instance, the fractional derivative is utilized in control theory, controller tuning, optics,
seismic wave analysis, dynamical system, signal processing, and viscoelasticity.

On the other hand, the benefits of taking random effects into consideration in pre-
dicting, simulating, analyzing and modeling complex phenomena has been extensively
distinguished in biology, engineering, physics, geophysical, chemistry, climate dynamics,
and other fields [18–21]. Stochastic partial differential equations (SPDEs) are suitable mathe-
matical equations for complicated systems subject to noise or random influences. Normally,
random influences can be thought of as a simple estimate of turbulence in fluids. Therefore,
we have to generalize the Zakharov system by taking into account more elements due to
some important effects such as ion nonlinearities and transit-time damping.

To achieve a higher level of qualitative agreement, we consider here the follow-
ing stochastic fractional-space Zakharov system (SFSZS) with multiplicative noise in the
Stratonovich sense:

iut +Tα
xxu + 2uv + iσu ◦Wt = 0, (2)

vtt −Tα
xxv +Tα

xx(|u|
2) = 0, (3)

where Tα is the conformable fractional derivative (CFD) [22], W(t) is standard Wiener
process (SWP).

In [23,24], the stochastic dissipative Zakharov system are obtained by utilizing the
global-random attractors provided with normal topology, while in [25], the uniqueness
and existence of solutions of the Zakharov system with stochastic term are obtained by
applying the method of Galerkin approximation.

The novelty of this paper is to construct the exact fractional stochastic solutions of the
SFSZS (2)–(3). This study is the first one to obtain the exact solutions of the SFSZS (2)–(3).
We use two distinct methods including the Jacobi elliptic function and the Riccati–Bernoulli
sub-ODE to achieve a wide range of solutions, including hyperbolic, trigonometric, rational,
and elliptic functions. Besides that, we employ Matlab tools to plot 3D and 2D graphs for
some of the analytical solutions developed in this study to check the effect of the Wiener
process on the solutions of SFSZS (2)–(3).

The following is how the paper is arranged. In Section 2, we define the CFD and
Wiener process and we state some features about them. To obtain the wave equation of
SFSZS (2)–(3), we use a suitable wave transformation in Section 3. In Section 4, we apply two
different methods to construct the exact solutions of SFSZS (2)–(3). In Section 5, we study
the effect of the SWP on the obtained solutions. Finally, we present the paper’s conclusion.

2. Preliminaries

In this section, we introduce some definitions and features for CFD, which are reported
in [22] and SWP.

Definition 1. Assume f : (0, ∞)→ R; hence, the CFD of f of order α is defined as

Tα
x f (x) = lim

h→0

f (x + hx1−α)− f (x)
h

.

Theorem 1. Let f , g : (0, ∞)→ R be differentiable, and also α differentiable functions; then, the
next rule holds:

Tα
x( f ◦ g)(x) = x1−αg′(x) f ′(g(x)).
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Let us state some properties of the CFD:

1. Tα
x[a f (x) + bg(x)] = aTα

x f (x) + bTα
xg(x), a, b ∈ R,

2. Tα
x[C] = 0, C is a constant,

3. Tα
x[x}] = }x}−α, } ∈ R,

4. Tα
xg(x) = x1−α dg

dx ,

In the next definition, we define standard Wiener processW(t):

Definition 2. stochastic process {W(t)}t≥0 is called a Wiener process if it satisfies

1. W(0) = 0,
2. W(t), t ≥ 0 is continuous function of t,
3. For t1 < t2,W(t1)−W(t2) is independent,
4. W(t2)−W(t1) has a Gaussian distribution with mean 0 and variance t2 − t1.

We know the stochastic integral
∫ t

0 ΘdWmay be interpreted in a variety of ways [26].
The Stratonovich and Itô interpretations of a stochastic integral are widely used. The
stochastic integral is Itô (denoted by

∫ t
0 ΘdW) when it is evaluated at the left-end, while

a Stratonovich stochastic integral (denoted by
∫ t

0 Θ ◦ dW) is one that is calculated at the
midpoint. The next is the relationship between the Stratonovich and Itô integral:∫ t

0
Θ(τ, Zτ)dW(τ) =

∫ t

0
Θ(τ, Zτ) ◦ dW(τ)− 1

2

∫ t

0
Θ(τ, Zτ)

∂Θ(τ, Zτ)

∂z
dτ, (4)

where Θ is supposed to be sufficiently regular and {Zt, t ≥ 0} is a stochastic process.

3. Wave Equation for SFSZS

To acquire the wave equation for the SFSZS (2)–(3), the next wave transformation is
applied:

u(x, t) = ϕ(µ)e(iθ−σW(t)−σ2t), µ = k(
1
α

xα − λt) and θ =
λ

2α
xα + ρt, (5)

where ϕ is a deterministic function and k, λ, ρ are nonzero constants. Plugging Equation (5)
into Equation (2) and using

du
dt

= (−λkϕ′ + iρϕ− σϕWt −
1
2

σ2 ϕ)e(iθ−σW(t)−σ2t),

= (−λkϕ′ + iρϕ− σϕ ◦Wt)e(iθ−σW(t)−σ2t), (6)

Tα
xx = (k2 ϕ′′ + iλkϕ′ − 1

4
λ2 ϕ)e(iθ−σW(t)−σ2t),

where we used (4). We obtain, for the real part,

k2 ϕ′′ − (
1
4

λ2 + ρ)ϕ + 2ϕv = 0. (7)

Now, we suppose
v(x, t) = ψ(µ),

where ψ is real deterministic function, to obtain

vt = −λkψ′, vtt = λ2k2ψ′′, Tα
xxv = k2ψ′′. (8)

Substituting Equation (8) into Equation (3), we attain

(λ2 − 1)ψ′′ + (ϕ2)′′e(−2σW(t)−2σ2t) = 0. (9)
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Taking expectation E(·) on both sides, we have

(λ2 − 1)ψ′′ + (ϕ2)′′e−2σ2tE(e−2σW(t)) = 0. (10)

SinceW(t) is standard Gaussian process; hence, E(e}W(t)) = e
}2
2 t for any real constant }.

Now, Equation (10) has the form

(λ2 − 1)ψ′′ + (ϕ2)′′ = 0, (11)

Integrating Equation (11) twice and putting the constants of integration equal zero yields

(λ2 − 1)ψ + ϕ2 = 0. (12)

Hence, Equation (12) becomes

ψ =
−ϕ2

(λ2 − 1)
. (13)

Putting Equation (13) into Equation (7), we obtain the next wave equation

ϕ′′ − γ1 ϕ3 − γ2 ϕ = 0, (14)

where
γ1 =

2
k2(λ2 − 1)

and γ2 =
1

4k2 (λ
2 + 4ρ). (15)

4. The Analytical Solutions of the SFSZS

To find the solutions of Equation (14), we utilize two different methods: Riccati–
Bernoulli sub-ODE [27] and the Jacobi elliptic function method [28]. Therefore, we acquire
the analytical solutions of the SFSZS (2)–(3).

4.1. Riccati–Bernoulli Sub-ODE Method

Assume the following Riccati–Bernoulli equation:

ϕ′ = }1 ϕ2 + }2 ϕ + }3, (16)

where }1,}2,}3 are undefined constants and ϕ = ϕ(µ).
Differentiating Equation (16) with respect to µ, we obtain

ϕ′′ = 2}1 ϕϕ′ + }2 ϕ′,

and using Equation (16) yields

ϕ′′ = 2}2
1 ϕ3 + 3}1}2 ϕ2 + (2}1}3 + }2

2)ϕ + }2}3. (17)

Substituting (17) into (14), we have

(2}2
1 − γ1)ϕ3 + 3}1}2 ϕ2 + (2}1}3 + }2

2 − γ2)ϕ + }2}3 = 0.

Equating each coefficient of ϕi(i = 0, 1, 2, 3) to zero, we achieve the next algebraic equations

}2}3 = 0,

(2}1}3 + }2
2 − γ2) = 0,

3}1}2 = 0,

2}2
1 − γ1 = 0.

When the above equations are solved, the result is
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}1 = ±
√

1
2

γ1, }2 = 0, }3 =
γ2

2}1
= ± γ2√

2γ1
. (18)

There are numerous solutions to the Riccati–Bernoulli Equation (16) depending on }1
and }3.

First case: If }3
}1

= 0, then Riccati–Bernoulli Equation (16) has the solution

ϕ(µ) =
−1

}1µ + C
.

Hence, the SFSZS (2)–(3) has the analytical solutions

u(x, t) = ϕ(µ)e(iθ−σW(t)−σ2t) =
−1

}1(
k
α xα − kλt) + C

e(iθ−σW(t)−σ2t) , (19)

v(x, t) =
−ϕ2

(λ2 − 1)
=

−1

(λ2 − 1)
(
}1(

k
α xα − kλt) + C

)2 . (20)

Second case: If }3
}1

> 0, then the Riccati–Bernoulli equation (16) has the solution

ϕ(µ) =

√
}3

}1
tan

(√}3

}1
(}1µ + C)

)
,

or

ϕ(µ) = −

√
}3

}1
cot
(√}3

}1
(}1µ + C)

)
.

Therefore, SFSZSs (2)–(3) have the following solutions:

u(x, t) = e(iθ−σW(t)−σ2t)

√
}3

}1
tan

(√}3

}1
(}1(

k
α

xα − kλt) + C)
)

, (21)

v(x, t) =
−}3

(λ2 − 1)}1
tan2

(√}3

}1
(}1(

k
α

xα − kλt) + C)
)

, (22)

or

u(x, t) = −e(iθ−σW(t)−σ2t)

√
}3

}1
cot
(√}3

}1
(}1(

k
α

xα − kλt) + C)
)

, (23)

v(x, t) =
−}3

(λ2 − 1)}1
cot2

(√}3

}1
(}1(

k
α

xα − kλt) + C)
)

, (24)

respectively.

Third case: If }3
}1

< 0 and |ϕ| <
√
− }3

}1
, then Riccati–Bernoulli Equation (16) has

the solution

ϕ(µ) = −

√
−}3

}1
tanh

(√−}3

}1
(}1µ + C)

)
.

Thus, the SFSZS (2)–(3) have the following analytical solutions:

u(x, t) = −e(iθ−σW(t)−σ2t)

√
−}3

}1
tanh

(√−}3

}1
(}1(

k
α

xα − kλt) + C)
)

, (25)

v(x, t) =
−}3

(λ2 − 1)}1
tanh2

(√−}3

}1
(}1(

k
α

xα − kλt) + C)
)

. (26)
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Fourth case: If }3
}1

< 0 and ϕ2 > −}3
}1

, then Riccati–Bernoulli Equation (16) has
the solution

ϕ(µ) = −

√
−}3

}1
coth

(√−}3

}1
(}1µ + C)

)
.

Consequently, the analytical solutions of the SFSZS (2)–(3) are

u(x, t) = −e(iθ−σW(t)−σ2t)

√
−}3

}1
coth

(√}3

}1
(}1(

k
α

xα − kλt) + C)
)

, (27)

v(x, t) =
−}3

(λ2 − 1)}1
coth2

(√}3

}1
(}1(

k
α

xα − kλt) + C)
)

, (28)

where }1 and }2 are defined in Equation (18).

4.2. The Jacobi Elliptic Function Method

Assuming that the solutions to Equation (14) are of the form

ϕ(µ) = a + bsn(δµ), (29)

where sn(δµ) = sn(δµ, m), for 0 < m < 1, is the Jacobi elliptic sine function and a, b, δ are
unknown constants. Differentiate Equation (29) two times and we have

ϕ′′(µ) = −(m2 + 1)bδ2sn(δµ) + 2m2bδ2sn3(δµ). (30)

Substituting Equations (29) and (30) into Equation (14), we attain

(2m2bδ2 − γ1b3)sn3(δµ)− 3γ1ab2sn2(δµ)

−[(m2 + 1)bδ2 + 3γ1a2b + γ2b]sn(δµ)− (γ1a3 + aγ2) = 0.

Setting each coefficient of [sn(δµ)]n(n = 0, 1, 2, 3) equal to zero, we attain

γ1a3 + aγ2 = 0,

(m2 + 1)bδ2 + 3γ1a2b + γ2b = 0,

3γ1ab2sn2 = 0,

and
2m2bδ2 − γ1b3 = 0.

Solving the above equations, we have

a = 0, b = ±

√
−2m2γ2

(m2 + 1)γ1
δ2 =

−γ2

(m2 + 1)
.

Hence, the solution of Equation (14), by using (29), has the form

ϕ(µ) = ±

√
−2m2γ2

(m2 + 1)γ1
sn(

−γ2

(m2 + 1)
µ).

Therefore, the analytical solutions of the SFSZS (2)–(3) are

u(x, t) = ±

√
−2m2γ2

(m2 + 1)γ1
sn
(√ −γ2

(m2 + 1)
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (31)
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v(x, t) =
k2m2γ2

(m2 + 1)
sn2
(√ −γ2

(m2 + 1)
(

k
α

xα − kλt)
)

, (32)

for γ2 < 0 and γ1 > 0. When m→ 1, the solutions (31)–(32) transfer into

u(x, t) = ±
√
−γ2

γ1
tanh

(√−γ2

2
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (33)

v(x, t) = − k2γ2

2
tanh2

(√−γ2

2
(

k
α

xα − kλt)
)

. (34)

Analogously, we can replace sn in (29) by cn and dn in order to obtain the solutions of
Equation (14), respectively, as follows:

ϕ(µ) = ±

√
−2m2γ2

(2m2 − 1)γ1
cn(

−γ2

(2m2 − 1)
µ),

and

ϕ(µ) = ±

√
2m2γ2

(2−m2)γ1
dn(

−γ2

(2−m2)
µ).

Consequently, the solutions of the SFSZS (2)–(3) have the following forms:

u(x, t) = ±

√
−2m2γ2

(2m2 − 1)γ1
cn
(√ −γ2

(2m2 − 1)
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (35)

v(x, t) =
k2m2γ2

(2m2 − 1)
cn2
(√ −γ2

(2m2 − 1)
(

k
α

xα − kλt)
)

, (36)

for γ2
(2m2−1) < 0, γ1 > 0, and

u(x, t) = ±

√
−2m2γ2

(2m2 − 1)γ1
dn
(√ −γ2

(2m2 − 1)
(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (37)

v(x, t) =
k2m2γ2

(2−m2)
dn2
(√ −γ2

(2−m2)
(

k
α

xα − kλt)
)

, (38)

for γ2 < 0, γ1 > 0, respectively. When m→ 1, the solutions (35)–(36) and (37)–(38) transfer into

u(x, t) = ±
√
−2γ2

γ1
sech

(√
−γ2(

k
α

xα − kλt)
)

e(iθ−σW(t)−σ2t) , (39)

v(x, t) = k2m2γ2sech2
(√
−γ2(

k
α

xα − kλt)
)

, (40)

for γ2 < 0, γ1 > 0.

5. The Influence of Noise on SFSZS Solutions

The influence of the noise on the analytical solution of the SFSZS (2)–(3) is addressed
here. Fix the parameters k = 1, ρ = 1, m = 0.5, and λ = 3. We introduce a number of
simulations for various values of σ (noise intensity) and α (fractional derivative order). We
employ the MATLAB tools to plot our figures. In Figures 1 and 2, if σ = 0, we see that the
surface fluctuates for different values of α:
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σ = 0, α = 1 σ = 0, α = 0.5

Figure 1. 3D graphs of the solution (31).

σ = 0, α = 1 σ = 0, α = 0.5

Figure 2. 3D graphs of the solution (32).

In the following Figures 3–5, we can see that after minor transit patterns, the surface
becomes considerably flattered when noise is included and its strength is increased σ = 1, 2.

σ = 1, α = 1 σ = 2, α = 1

Figure 3. 3D graphs of the solution (31) with α = 1.
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σ = 1, α = 0.5 σ = 2, α = 0.5

Figure 4. 3D graphs of the equation (31) with α = 0.5.

σ = 1, α = 0.5 σ = 2, α = 0.5

σ = 1, α = 0.5 σ = 2, α = 0.5

Figure 5. 3D graphs of the equation (21) with α = 1.

In Figure 6, we introduce 2D plots of the u in (31) with σ = 0, 0.5, 1, 2 and α = 1, which
emphasize the results above.

Figure 6. 2D graphs of the u in (31).

From Figures 1–6, we deduce the following:

1. The surface expands as the fractional order α increases;
2. Multiplicative Wiener process stabilizes the solutions of SFSBE around zero.
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6. Conclusions

In this article, we provided a wide range of exact solutions of the stochastic fractional
Zakharov system (2)–(3). We applied two different methods such as the Riccati–Bernoulli
sub-ODE method and Jacobi elliptic function method to attain rational, trigonometric,
hyperbolic, and elliptic stochastic fractional solutions. Such solutions are critical for com-
prehending certain essential, fundamental, complex phenomena. The solutions obtained
will be extremely useful for further studies such as fiber applications, spatial plasma,
quasi particle theory, coastal water motion, and industrial research. Finally, the effect of
multiplicative Wiener process on the exact solution of Zakharov system (2)–(3) is demon-
strated. In future research, we can address the fractional-time Zakharov system (2)–(3) with
multidimensional multiplicative noise.
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