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Abstract: Complex-variable chaotic systems (CVCSs) have numerous advantages over real-variable
chaotic systems in chaos communication due to their increased unpredictability, confidentiality, and
the ease of implementation. Synchronization between the master and slave systems in CVCSs is
key to achieving encryption and decryption. However, existing synchronization schemes for CVCSs
require the amplitude of the chaotic signal to be much larger than that of the plaintext. Moreover,
traditional chaotic masking of complete synchronization (CS) requires uniformity between the trans-
mitter and receiver ends. Therefore, we propose a complex modified projective difference function
synchronization (CMPDEFS) of CVCSs to address these issues, where the modified projective matrix
helps address the issues with the amplitude. The receiver end is reconstructed without uniformity
of the transmitter. We design the CMPDEFS controller and propose a new secure communication
scheme for wireless sensor networks (WSNs). The basic principle is fundamentally different from
traditional chaotic masking. Simulation results and security analysis demonstrate that the CMPDFS
communication scheme has a large key space, high sensitivity to encryption keys, high security, and
an acceptable encryption speed. Hence, the proposed scheme can improve the security of WSNs.
Moreover, it also can be applied to similar communication systems.

Keywords: complex-variable chaotic systems (CVCSs); synchronization; communication; control

MSC: 94A14

1. Introduction

In 1963, the American meteorologist A. C. Fowler proposed the butterfly effect and
Lorenz chaotic system, which attracted great attention of scholars all over the world.
Nineteen years later, he and J. D. Gibbon [1] proposed the complex Lorenz system and
investigated its properties given different parameters; complex-variable chaotic systems
(CVCSs) had a significant influence on a number of fields [2-5], particularly in chaos secure
communication [4-6]. Complex variables need more intensive computations with both
real parts and imaginary parts, thus they double the transmitted contents and improve the
confidentiality of the information. Moreover, they can be easily implemented in a wide
range of practical applications using RLC circuits including resistors (R), inductors (L), and
capacitors (C).

Chaos cryptography can be divided into two major parts: (1) chaos communication
based on chaos synchronization technology [7-10] and (2) constructing new stream ciphers
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and block ciphers using chaotic systems [11-13]. In traditional chaotic masking communi-
cation, chaotic signals are employed as carriers produced by the master systems to obscure
the message signals. Then, the message signals are retrieved through chaos synchroniza-
tion, for example, through complete synchronization (CS) between the master system at
the transmitting end and the slave system at the receiving end. Hence, the type of syn-
chronization is critical. New types of synchronization for CVCSs have attracted extensive
increasing attention recently [14-31], including phase synchronization (PHS) [14], complete
synchronization (CS) [15], anti-synchronization (AS) [16,17], lag synchronization (LS) [18],
anti-lag synchronization [19], modified function projective synchronization (MFPS) [20], full-
state hybrid synchronization [21], modified projective phase synchronization (MPPS) [22],
hybrid MFPS [23], complex modified projective synchronization (CMPS) [24], time-delay
chaotic system [25,26], complex function projective synchronization (MFPS) [27,28], complex
anti-synchronization (CAS) [29], difference function synchronization (DFS) [30,31], etc.

Synchronization for CVCSs involves designing a controller that synchronizes the states
variables of two chaotic systems synchronized, which is called a synchronization controller.
More accurately, synchronization is generally for a chaotic system while control involves
any system.

Over the past twenty years, the field of the synchronization and control of CVCSs has
grown rapidly, and so have the communication schemes for CVCSs. In 2014, S. Liu and F.
Zhang [6] developed complex function projective synchronization (CFPS) along with a new
chaos communication scheme. In 2015, F. Zhang et al. applied a self-delay synchronization
scheme [25] and the CS of coupled multiple time-delay CVCSs [26] to communication
systems. In 2018, E. E. Mahmoud and S. M. Abo-Dahab [29] presented CAS and discussed
the corresponding communication schemes.

It is worth noting that as the amplitude of the signal generated by the sender ap-
proaches zero, the denominator in CFPS also approaches zero and will, therefore, affect
synchronization and message recovery. J. Liu et al. proposed fractional difference function
synchronization in 2019 [30]. The type of synchronization in these two papers is modified
difference function synchronization (MDFS). However, these schemes have an amplitude
limitation of chaos communication, which limits its application in general chaos communi-
cation. In 2021, J. Guo et al. proposed modified fractional projective difference function
synchronization (MFPDEFS) for a time-delay fractional complex chaotic system [31]. Inspired
by MFPDFS, we propose a complex modified projective difference function synchroniza-
tion (CMPDEFS) for common complex chaotic system and address issues originating from
the amplitude limitation. Complete synchronization (CS), phase synchronization (PHS),
projective synchronization (PS), modified projective synchronization (MPS), and modified
difference function synchronization (MDEFS) are all special cases of CMPDFS. CMPDFS
combines the advantages from CMPS and MDEFS, because CMPS can adjust the amplitude
of chaotic signals according to plaintext information to be transmitted confidentially while
MDFEFS avoids the denominator being zero.

Recently, significant improvements in hardware technology and wireless commu-
nications have enabled the use of wireless sensor networks (WSNs) in a wide range of
real-world applications. The extensive application of WSNs has also attracted the attention
of criminals; therefore, the security of data transmissions in WSNs is becoming increasingly
crucial. A WSN is composed of at least one sink node and many sensor nodes with a num-
ber of limitations, including battery lifetime, processing power, and memory capacity. The
network topology diagram of a WSN is presented in Figure 1. Because of the low cost and
high security provided by the chaotic signals, the implementation of chaos communication
can significantly improve the security of WSNs.
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Figure 1. The topology diagram of wireless sensor networks.

Chamindra et al. investigated the chaotic modulation approach for secured wireless
medical sensor network (WMSN) in e-healthcare applications [32]. Niu et al. proposed
a novel asymmetric cryptographic algorithm based on matrix decomposition in wireless
body area networks (WBANSs) [33]. However, insufficient information is available on
communication in WSNs based on CMPDEFS of CVCSs in noisy conditions, and the relevant
theoretical developments based on CMPDEFS have seldom been studied in the literature. In
order to make up for the blind spot, the relevant simulation experiments and result analysis
are carried out. The main contributions of this paper are summarized as follows:

(1) We describe CMPDEFS, which is a new synchronization scheme for CVCSs. The mod-
ified projective matrix is able to change the amplitude of complex chaotic signals, and effec-
tively overcome the amplitude limitation of chaos communication. This helps diversify the
available synchronization schemes and increases the security of the transmitted messages.

(2) We design control laws with guaranteed performance to construct the slave system.
These laws take the bounded disturbances into consideration and ensure that the recon-
structed slave system is chaotic. The controller has good robustness to the bounded noise.

(3) We propose a novel communication scheme for WSNs based on CMPDEFS, which
outperforms traditional chaotic masking. The communication scheme is able to theoretically
achieve a bit error rate (BER) of zero. The results from simulation and security analysis
demonstrate that the CMPDFS communication scheme provides a large key space, high
sensitivity to encryption keys, high security, and an acceptable encryption speed.

The arrangements of our paper are as follows: we give the definition of CMPDEFS in
Section 2. In Section 3, we design control schemes to construct a slave system, propose the
communication scheme for a WSN and discuss its special advantages. The process of WSN
communication by simulation experiments are shown in Section 4. Finally, we give the
conclusions of the whole paper.

The descriptions of all notations in the paper are shown in Table 1.

Table 1. The descriptions of all notations.

The Symbol Meanings

n The dimension of system
q The dimension of uncoupled variables

L1 The drive system

L2 The response system

y, z The complex state vector of the drive system
X The complex state vector of the response system
r The real part of a complex variable
i The imaginary part of a complex variable

fpg Nonlinear function of complex variables

v The designed controller
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Table 1. Cont.

The Symbol Meanings
e The error vector
H(t) The difference function vector
D The modified projective matrix which is the private key
s The transmitted signal without noise
s’ The transmitted signal with noise
A(e) The noise where A is the amplitude of the noise
Hg (1) The recovered signal
k The control strength matrix
wi(e) The probability density function of Gaussian distribution
Epr The square of error in the real part of the recovered signal
Egi The square of error in the imaginary part of the recovered signal

2. Complex Modified Projective Difference Function Synchronization (CMPDEFS)

The general form of a controlled coupled complex chaotic system can be expressed by
n dimensional differential equations as follows:

y = g(Y/Z)/
L1: .

z = pyz2), 9]
L2:x=f(x,z)+V,

where y = (y1,y2,- - ,yq)T and z = (z1, 22, -+, zn,q)T are the observable complex
state vectors of the drive system L1. The state vector z is treated as the coupling vec-
tor. x = (x1, X, - -+, x4)T is the complex state vector of the response system L2, which is
controllable and reconstructed using the controller v. The designed controller is represented
byv=v + jvi, where v' = (v], v}, - - - ,ZJZ)T is the real part of a complex variable, and
vi= (va, vé, S, qu)T is the real part of a complex variable.

Definition 1. With regard to two state vectors x(t), y(t) and a desired difference function vector
H(t), if the square of error satisfies

lim e(®)F = lim_[Ix(t) ~ H(t) ~ Dy(o)|"
= Jim |x(#) - H'(t) - D'y"(t) + D'y'(1)|?
+ [X() = H(t) - D'y'(t) - D'y’ (1)||?

where || - || represents the Euclidean norm, then x(t) and y(t) will reach CMPDFS with H(t)
and modified projective matrix D. H(t) = {hy(t),ho(t), -+, hy(t)} is a bounded vector, and
hi(t), ho(t), - -+, hy(t) are difference function factors. hy(t) : C — C(l = 1, 2,---, q) are
bounded complex functions. D = diag{dy,d,, - -- ,dg}, d; € C are bounded complex numbers.

In [14], G. M. Mahmoud and E. E. Mahmoud discussed the phase synchronization
(PHS) of two CVCSs, and designed a special controller to hold the error at a constant value.
CS signifies that there is no difference between the two state variables while PHS indicates
that the differences are constant. Therefore, the following remarks can be made.

Remark 1. CS is a special case of CMPDFS with H(t) = 0and D(t) = 1.

Remark 2. PHS (under controller in [14]) is a special case of CMPDFS with H(t) = Constant
and D(t) = 1.

Remark 3. MDFS is a special case of CMPDFS with D(t) = 1.
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Remark 4. CMPS is a special case of CMPDFS with H(t) = 0.

3. CMPDFS Communication Scheme for WSNs
3.1. CMPDEFS Controller

According to the definition of CMPDEFS, we obtain the synchronization error
e(t) = x(t) — H(t) — Dy(t), (©)]

For brevity, we denote e(t), x(t),y(t), and H(t) as e, x,y, and H, respectively. Next,
we have

¢ = x—H-Dy
= f(x,z) +v—H-Dg(y,z)
= f(X, Z) +v—s (4)

where s = H + Dg(y, z) is the transmitted signal without noise produced by the sender
end and D is the private key known to the sender and the receiver.

According to active control, x is controllable, and y and z are observable, if we design
the controller

v = s—f(x,z)+ke
t
— s f(x,z) +k(x(t) - /0 s dt), )

where k € R is the control strength matrix which is negative. Substituting Equation (5) into
Equation (4), we obtain

é = ke (6)
That is, we achieve the CMPDFS between systems L1 and L2.

3.2. The Communication Scheme for WSNs

Here, we propose a secure communication scheme based on CMPDEFES for WSNs. The
diagram of the proposed communication scheme is presented in Figure 2. The master
system L1 produced by one sensor node represents the sender end. The slave system L2,
which is constructed by the sink node, represents the receiver end. The coupled signal z,
produced by the sender, is transmitted to the receiver. H is the message signal, and D is the
proportional matrix.

T Ae(t) |r 77777777777777777 |
» L wln |
} Lorenz system ) ; \—b 29 : Fblal.tnii- Lorenz system :
| | , : , v(t) I
| y(t) | () y(t) ' |Filter L |
\ ‘ [ bank [ x(t) x(t) |
| o | | ' |
‘ ‘ As(t) | Controller |
| oy \ | 1 Hy |
I Ho | Encryptor s | D S, | Filter | s(0) Decryptor —— " |
\ | | bank |
\ | | I |
} b } As(t) | D :
|

|

o ____ Lo ___ b
Sensor node (Master System L1) Noisy channel Sink node (Slave System L2)

Figure 2. The diagram of communication scheme based on CMPDFS.
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Considering the noise in the communication channel, we obtain the actual transmit-
ted signal

s'(t) = s(t)+ Ae(t)
= H(t) + Dg(y(t), 2(t)) + Ae(t) )

where Ag(t) represents the noise in a given channel generated by all noise sources and A
denotes the amplitude of the noise.

The communication process comprises two parts. First, the initial value of the coupled
signal z(0) is broadcasted to the sink node. For communication, z(0) is applied to provide
the sink node with a command to begin sending the information. For synchronization, z(0)
is used to construct the decryptor at the sink node.

In the second part, after receiving the correct return signal z(0) from the sink node,
the sensor node begins to encrypt the message signal H(t) (which is the plaintext in fact)
and produces the encrypted message s(f). It is sent to the sink node with noise (we denote
s'(t)=s(t) + Ae(t)). The encryption method of the sender end consists of both chaotic
encryption and chaotic masking. At the receiving end, the controller v is designed using
Equation (5) which includes s = s’ — Ae(t) (we filter s’ and obtain the effective transmitted
signal s). As CMPDFS is initiated, x(¢) synchronizes H(t) + Dy(t). Therefore, the recovered
signal is Hg (t) = H(t) = x(t) — Dy(t).

The CMPDFS communication scheme is different from traditional chaotic masking in a
few key ways. Firstly, the method for recovering the signal is different. The recovered signal
in our communication scheme based on CMPDEFS is H; = x — Dy, while the recovered
signal in traditional chaotic masking based on CSis Hy = s’ —y. As s/(t) includes noise,
the recovered signal in traditional chaotic masking is inherently inaccurate. Traditional
chaotic masking also requires that the amplitude of the chaotic signals always largely
outweigh the amplitude of plaintext and noise. In the proposed communication scheme, if
the amplitude of chaotic signals is insufficient, we can select a large proportional matrix
D, which is large enough to outweigh the amplitude of plaintext and noise. Therefore, the
accuracy of the recovered signal in the proposed method is higher than traditional chaotic
masking and the BER is theoretically zero.

Secondly, the actual transmitted signal is s’ (t) = H + Dg(y, z) + Ae(t), which is the
sum of all noise sources, the derivative of the plaintext (message signal), and the function of
the state variables. Chaotic encryption, chaotic masking, and noise masking are developed
to increase communication security. Any state variable from the sender end can be chosen.
Additionally, s'(t) is a complex variable signal and includes the complicated calculations of
complex numbers, which provide more than twice the security of real variables. Moreover,
it is possible to transmit two message signals by utilizing the real part and imaginary
part concurrently.

Thirdly, CMPDEFS can occur between nonuniform transmitter and receiver generators
(that is, f and g can be different function matrices in Equation (1)), while CS in traditional
chaotic masking requires uniformity between the transmitter and receiver ends. In our
method, the receiver system is constructed at the sink node where the controller v is crucial.

All of these advantages have been verified via numerical simulations, which are
presented in the following section.

4. Numerical Simulations and Discussions

As shown in Figure 2, we apply the following coupled complex Lorenz system to the
transmitter L1 at the sensor node and the receiver L2 at the sink node for secure communication.

1 = 35(z1 — 1),
L1:4 Z21 = 55y1 —z1 — 122, ®)
Zy = —8/3zp+ (1/2)(?121 +y121).

L2:x] = 35(21 — X1) + 01,
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where 1, z1, zp, and xp are state variables (7 = 1). The overbar ;(Z;) represents the
complex conjugate of y;(z1). The designed controller is v;. The Lyapunov exponent of
the L1 system is LE1 = 1.1019, LE2 = 0.6602, LE3 = —0.1350 ~ 0, LE4 = —0.6355, and
LE5 = —2.0331, which includes a positive Lyapunov index at least. It indicates that the L1
system is chaotic.

According to Equation (5), we construct the following controller:

v1 = s — Ae(t) —f(x,z) + ke
t
— H 1 D35(z1 — 1) — 35(z1 — x1) + kn (x1 — /O (s' — Ae)dt), )

where s’ — Ae can be processed through a filter bank.
The noise ¢(t) is described by the probability density function of Gaussian distribution

w(e)

1
:mgexp(— 552 ) (10)

where ¢ = 1 and ¢y = 0 are the variance and mean value [34], respectively.

The following initial conditions were selected: {y1,z1,22}(0) = {1+ 2j,3 +4j,1},
x1(0) = {—1 — 2j}. The fourth-order Runge-Kutta method was used with At = 1073 and
was implemented with MATLAB software. We take the following signal as an example:

H(t) = 20sin*(0.57tt) + jcos(rt) (11)
Then, we have
H'(t) = 207sin(0.57tt)cos(0.57tt) (12)
Hi(t) = —msin(mt)

where the derivative of H(t) is continuous during the computer sampling period. Continu-
ous range of general signal is much larger than the sampling period. If the continuous range
is smaller than the computer sampling period, we can reselect a smaller sampling period.

In this section, the same control strength matrix, k = —500, was utilized for a
better comparison.

4.1. Communication Process without Noise

Here, the case where A = 0 is discussed, which represents an ideal noiseless situation.
When D = 10 + 10§, we obtain the projection spaces of L1 and L, shown in Figure 3 and
the state variable shown in Figure 4, where the blue line represents L; and the dotted
line represents Ly. In fact, the receiver end L is reconstructed by the controller based on
CMPDEFS. The CMPDFS process with D = 10 + 10j is demonstrated in Figure 5. It can be
observed that the error H' is larger than that of H’, because the amplitude of H' is much
smaller than that of (Dy;)". Ase!(t) = x| (t) — H'(t) — (Dy1)'(t) ~ x| (t) — (Dy1)'(t), H(t)
can be ignored and cannot be recovered. In fact, the CMPDEFS of imaginary part is achieved.

Next, D = 0.1 + 0.1j is changed, and the CMPDEFS process is shown in Figure 6.
When the amplitude of the chaotic signal (Dy;)" is smaller than that of the message H’,
the transmitted signal s” cannot cover the message H'. The above figures highlight the
effect that D has on s’. Therefore, we can choose the appropriate D to obtain the optional
CMPDEFS process. This will improve the limitation imposed by the amplitude problem.
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proptional matrix D=10+10;

Figure 3. The projection space of chaotic systems L1 and L2 without noise.

proportional matrix D=10+10j

y'().X(t)
o

time(s)

500 I I Ml I

y'(0).X'(t)
o

time(s)

9 10

Figure 4. The diagram of state variables x; and y; without noise.

20
— 10
T
(0]
= o 5
By time(s)
©
o=y
-2 2000
E 1000
E 0
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=
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= time(s)
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o
(0] 5
time(s)

10

The transimitted signal si(t)
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-1
5 10
time(s)
-10000
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Figure 5. The CMPDEFS process without noise when D = 10 + 10j.
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proportional matrixlD:0.1+O.1j

(
H' (1)

time(s) time(s)

50

o

-100

-50 -200
0

5 10
time(s)

0 5 10
time(s)
20 1

The transimitted signal s'(t)
o
The transimitted signal s'(t)

H,(O

0 5 10 o 5 10
time(s) time(s)

Figure 6. The CMPDEFS process without noise when D = 0.1 + 0.1;.

Moreover, from a large number of experiments, when the amplitude of the chaotic
signal Dy, is approximately equal to that of the message signal H, the sum of the error
square is minimized. This conclusion can also be drawn from the bold fonts in Table 2,
where max(Dy;)" and max(Dy; )’ are the maximum amplitudes of the real part and imag-
inary part of the chaotic signal, respectively. The terms 10,000 * Egr and 10,000 * E;;
represent the sum of error square of recovered signal as the simulation program runs 10,000
times. According to (11), the maximum amplitude of H" is 10, while that of H "is 1. When
D = 1+ j, max(Dyp)" is 11.9294, which is the closest to H;, and the sum of error is the
minimum 0.1927 in the fourth column; when D = 0.01 + 0.02j, max(Dy; )" is 0.8632, which
is the closest to H;, and the sum of error is the minimum 0.6959 in the fifth column.

Table 2. The sum of error square with different D.

D max(Dy1)" max(Dy;)* 10,000 * Eg- 10,000 * E g
10 + 10§ 119.2935 615 6.7627 92.8656
10+ 211.2523 392.0710 7.6200 46.0385
10+ 0.1 244.3068 369.7529 10.8091 42.2822
1+ 11.9294 61.5253 0.1927 2.4379
1+0.1j 21.1252 39.2071 0.3279 1.7356
0.5+0.1j 8.7262 20.8434 0.2395 1.1375
0.1+0.1j 1.1929 6.1525 0.2062 0.7844
0.1 +0.02j 1.7452 4.1687 0.2184 0.7573
0.01 + 0.02j 0.4866 0.8632 0.2128 0.6959

4.2. Communication Process with Noise

In this section, the noise is added with A = 50 and D = 0.5 + 0.1j. The CMPDFS
process is demonstrated in Figure 7. The actual transmitted signal s’ (¢) can entirely cover
up the message signal H(t), and H,(t) is recovered without distortion. The projection
diagrams of L1 and L2 are presented in Figure 8 and the state variables are presented in
Figure 9.

For comparison, the same noise was added using the same parameters and processed
with traditional chaotic masking based on CS. The process is presented in Figure 10. Here,
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the message H could not be recovered due to noise, while H can be recovered by CMPDFS
in Figure 7. From Figures 7 and 10, it is clear that the CMPDFS controller in the proposed
communication scheme has more significant robustness for noise.

proportional matrix 1D:0.5+0.1j

N
o

H (1)

H' ()

o
'
=

= O 5 10 - © 5 10
v time(s) o time(s)
g % 400
@ @ 200
g g o
£ E 200
% - é -400
s 0 5 10 = 0 5 10
(O] . [¢] 5
£ time(s) = time(s)
20 1
.:::"m 10 ._;-:‘/cn 0
0 1
0 5 10 0 5 10
time(s) time(s)

Figure 7. The CMPDEFS process with noise when D = 0.5+ 0.1].

[
1 Yy

Figure 8. The projection diagram of chaotic systems L1 and L2 with noise A = 50.
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proportional matrix D=0.5+0.1]

T T T T T T T T T
20
= 10
=
= 0
N
-10
_20 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
time(s)
40 T T T T T T T T T

y'0.X(t)

_40 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time(s)

Figure 9. The diagram of state variables x; and y; with noise A = 50.

traditional chaoticlmasking

20
—_ 10 = O
o -1
— o 5 10 ¢} 5 10
By time(s) & time(s)
S 200 S 200
= K=
w 72}
E (0] B o
= E
2 z
& -200 < -200
= o 5 10 hd [0} 5 10
[} . (5] .
= time(s) = time(s)
200 200
3:@ o —:EC” o
-200 -200
o 5 10 [0} 5 10
time(s) time(s)

Figure 10. The traditional chaotic masking process with noise A = 50 and the same control strength.

5. Security Analysis

In this section, we analyze the security of the proposed CMPDFS communication
scheme for WSNs.

5.1. Key Space Analysis

For the purpose of analyses, we take 4 = 1 as an example in our communication
scheme. If a third party intercepts the signals of transmission channel such as s (t), z; (¢)
and z;(t), as s'(t) = H + Dg(y1,21,22) + Ae, the message signal H cannot be decrypted
without the private keys such as D, z1, z5, the function g and Ag(t). In particular, when the
amplitude of H is much smaller than that of Dg(y1,z1,22) or A, s'(t) ~ Dg(y1,21,22) + Aeg,
it is impossible to decrypt the message signal H using only the signals of transmission
channel. Therefore, for private keys D, z1, and z, the key space of our algorithm is infinite.
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5.2. Key Sensitivity Analysis

In the proposed scheme, the most important private key is the proportion matrix D.
Here, the matrix is one-dimensional. To analyze the sensitivity, the message signal H
was transmitted with two close initial values, D = 0.5 + 0.1j in the sensor node and
D’ = 0.5+ 0.11j at the sink node. A = 0 was selected to remove the effect of noise on the
sensitivity. The CMPDFS process is presented in Figure 11. The error between message
signal H and Hg is shown in Figure 12. The error increases with time. Compared with the
original signal, the recovered signal is slightly distorted. The results demonstrate that the
proposed algorithm has good sensitivity to the private key.

%mryption matrix D=0.5+0.1j, decrlyption matrix D'=0.5+0.11j
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Figure 11. The CMPDFS process with D = 0.5+ 0.1j and D’ = 0.5 + 0.11j.
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Figure 12. The error between message signal H and Hg.

5.3. Speed Analysis

The speed of the proposed scheme was tested using a computer with an Intel(R)
Core(TM) i7-6700HQ 2.60 GHz CPU, 16.00 GB memory and a 500 G solid state drive.
The analysis was conducted using Matlab2018a on a Windows 10 operating system. The
average time required for a single simulation was 0.04 s. The comparison with digital
encryption methods [35,36] are summarized in Table 3, which clearly predicts that the
average encryption rate of the proposed scheme is faster than that of [35,36], thus making
this communication scheme useful in WSNs.
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Table 3. The comparison results with encryption methods.

Encryption Methods Signal Size Average Time
Adapted from [35] 768 kb 1.76 s
Adapted from [36] 768 kb 0.669 s

Our proposed algorithm 75 kb 0.02s

6. Conclusions

We propose CMPDEFS for CVCSs, which has not been previously investigated. CS,
PHS, CMPS, and MDFS are all special cases of CMPDFS. We design an adaptive controller
scheme for CMPDFS, and propose a novel communication scheme for WSNs, which is
fundamentally different from traditional chaotic masking in methodology. The transmitted
signal consists of noises, the derivative of message signal and chaotic signal. The message
signal is retrieved as the desired difference function of the CMPDEFS. The effectiveness of the
proposed method is verified through simulation. The communication system theoretically
has the ability to transmit message signals with significant robustness, zero BER, an infinite
key space, and good key sensitivity at a high speed.

Therefore, the proposed scheme significantly enhances the security of WSNs. It also
can be applied to similar communication systems in many fields, such as the Internet of
Things and the military field.
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