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Abstract: The stochastic process non-homogeneous Markov system in a stochastic environment in
continuous time (S-NHMSC) is introduced in the present paper. The ordinary non-homogeneous
Markov process is a very special case of an S-NHMSC. I studied the expected population structure of
the S-NHMSC, the first central classical problem of finding the conditions under which the asymptotic
behavior of the expected population structure exists and the second central problem of finding which
expected relative population structures are possible limiting ones, provided that the limiting vector
of input probabilities into the population is controlled. Finally, the rate of convergence was studied.
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1. Introductory Notes

The stochastic process of a non-homogeneous Markov system in a stochastic envi-
ronment (S-NHMS) in discrete time was introduced in [1]. The main goal was to satisfy
the need for a more realistic stochastic model in populations with various entities, which
were possible to be categorized in a finite number of exhaustive and exclusive states. The
expected population structure is studied, that is, the distribution of the expected number
of memberships in each state. Note that in the population, apart from the transition of
memberships among the states, there are transitions to the external environment, often
called wastage from the population, and flow of memberships in the population (system)
in the various states, often called recruitment.

The S-NHMS in discrete time is a generalization of the stochastic concept of an NHMS
in discrete time, which incorporated the idea of having a pool =I(t) of transition probability
matrices to choose from, the roots of which were in [2,3], for the special case where the
transition matrices are Leslie matrices.

The stochastic process of an NHMS was first introduced in [4]. This new concept
provided a more general framework for a number of Markov chain models in manpower
systems, which was actually the initial motive. For examples, see [5–10].

There are also a large number and a great diversity of applied probability models that
could be accommodated in this general framework. A simple fact that shows the dynamics
of the concept of an NHMS is, as we will show later, that the well known simple Markov
chain is a very special case of an NHMS.

In the present paper, we study the development of a continuous time version of a
S-NHMS. The choice in practice between a stochastic process in discrete and continuous
time is partly a matter of realism and partly one of convenience. With regard to realism,
for example, usually one would want to deal with the transitions between the states of the
members of the population in continuous time. However, in practice, the computational
advantages of discrete time, as well as the mental process of the researcher, leads all too
often to the choice of a discrete time process. On the other hand, continuous time models
are often more amenable to mathematical analysis and this may count many times in their
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favor. Having developed both versions of the theory of S-NHMS, more choices are at our
disposal, and hence, a more complete version of the entire theory.

A first concise and complete presentation of the theory of non-homogeneous Markov
process exists in [11], Section 8.9. There, apart from building a rigorous foundation of
the subject, in the respective references, one could also find the initial founders of the
subject. Reference [12] started a period of intense study of non-homogeneous Markov
processes. Strong ergodicity for continuous time non-homogeneous Markov processes,
using mean visit times, was studied in [13]. Important results on the strong ergodicity for
continuous time non-homogeneous Markov processes, using criteria on the functions of
intensity transition matrices, were provided by [14–16]. I will make extensive use of these
results in the present paper.

The estimates of rate of convergence for non-homogeneous Markov processes were
studied in a series of papers [17–21]. For Markov systems in continuous time results, could
be found in [22–25].

Estimations of the transition intensities in NHMS in continuous time were provided
by [26] for various cases of missing data. In [27], transition intensities were studied for
homogeneous Markov systems (HMS) in continuous time, as well as the relation between
the volume of the attainable expected population structures at time t and the trace and rank
of the intensity matrix.

In [28], the authors studied, for closed HMS in continuous time, the stability of size
order of elements in an expected population structure as t → ∞. The state sizes of the
elements of the expected population structures and their distributions for an HMS in
continuous time were studied in [29] with the use of factorial moments. In [30], the author
discussed the case of closed HMS with finite capacities of the states. In [31], the close
relation between M/M/k/T/T queues and close HMS in continuous time is presented.
More recent results on NHMS in continuous time could be found in [32], while a more
recent review on the subject was given by [33].

The paper is organized as follows: In Section 2, I define in detail for the first time the
stochastic process S-NHMSC. I also show that the ordinary non-homogeneous Markov
process is a special case of an S-NHMSC. Furthermore, I clarify that the open homoge-
neous Markov models and the ordinary NHMS in continuous time are special cases of
the S-NHMSC.

In Section 3, I evaluate the expected population structure of the S-NHMSC at any time
t, as a function of the basic parameters of the population by establishing the appropriate
differential and integral equation it satisfies.

In Section 4, I study the central classical problem, that of finding the conditions under
which the asymptotic behavior of the expected population structure E[N(t)] as t → ∞
exists, and finding its limit in closed analytic form as a function of the limits of the basic
parameters of the system. The second central problem is finding which expected relative
population structures are possible limiting ones, provided that we control the limiting
vector of input probabilities into the population. We prove that the setA∞ of asymptotically
expected relative population structure E[q(t)], under asymptotic input control of the S-
NHMSC, is a convex hull of the points, which are functions of the left eigenvector of a
certain limiting transition probability matrix and the limiting transition intensity matrices
of the inherent non-homogeneous Markov process.

I conclude this section by studying an important question, which logically arises, that
is, what is the rate of convergence to asymptotically attainable structures in an S-NHMSC.
In fact, I am interested in finding conditions under which the rate is exponential, because
then, the practical value of the asymptotic result is greater.

Finally, in Section 5, I present an illustrative example from manpower planning.

2. The S-NHMS in Continuous Time

I will start by presenting the concept of a non-homogeneous Markov system in a
stochastic environment in continuous time (S-NHMSC). Let {T(t), t ≥ 0}, a known con-
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tinuous function of time or a realization of a known stochastic process denoting the total
number of members in the system. Let S = {1, 2, ..., k} be the set of states that are assumed
to be exclusive and exhaustive. The state of the system at any time t is represented by the
expected population structure:

E[N(t)] = [E[N1(t)],E[N2(t)], ...,E[Nk(t)]],

where E[Ni(t)] is the expected number of members of the population at time t. Another
representation of the state of the system is provided by the relative expected popula-
tion structure:

E[q(t)] = E[N(t)]
T(t)

= [E[q1(t)],E[q2(t)], ...,E[qk(t)]].

Furthermore, among the states of the system, as in the case of a non-homogeneous
Markov process ([11]), at the infinitesimal time interval [t, t + δt), the probabilities of
members of the system to move from state i to state j are generated by the transition
intensities rij(t):

pij(t, t + δt) = rij(t)δt + o(δt), for i 6= j ∈ S. (1)

It is important to note at this point that (1) is valid as long as during the interval
[t, t + δt) the transition intensities rij(t) will operate. When taking a step up the ladder
towards reality, I will assume a stochastic mechanism of selecting the values of rij(t), and
the equation will be altered accordingly.

Furthermore, let state k + 1 represent members leaving the population and assume
that ri,k+1(t) is the transition intensity for a member of the population in state i to leave in
the time interval [t, t + δt):

pik+1(t, t + δt) = rik+1(t)δt + o(δt), for i 6= j ∈ S. (2)

The transition intensities rjj(t) are defined by:

rjj(t) = −
k+1

∑
i=1
i 6=j

rji(t) for j ∈ S. (3)

Let R(t) =
{

rij(t)
}

i,j∈S be the matrix of transition intensities at time t and

r>k+1(t) = [r1,k+1(t), r2,k+1(t), ..., rk,k+1(t)]
> be the vector of leaving intensities at time t.

Now, let p0i(t, t + δt) be the probability of a new member to enter the population in state i,
given that it will enter the population in the time interval [t, t + δt) and let p0(t, t + δt) =
[p01(t, t + δt), p02(t, t + δt), ..., p0k(t, t + δt)]. Define the following probabilities:

p̂ij(t, t + δt) = pij(t, t + δt) + pik+1(t, t + δt)p0j(t, t + δt)

= rij(t)δt + ri,k+1(t)δtp0j(t, t + δt) + o(δt). (4)

Now, let:

qij(t) = lim
δt→0

p̂ij(t, t + δt)
δt

= rij(t) + ri,k+1(t)p0j(t) for i 6= j, (5)

be the transition intensity of a membership to move to state j in the time interval [t, t + δt),
given that it was in state i at time t. To visualize this deeper, let there be T(t) memberships
at the beginning of the interval [t, t + δt), and each member of the population holds one.
During the interval [t, t + δt), members are leaving the population and at the exit they
give their memberships to their replacement, who is distributed among the states with
probabilities p0(t, t + δt) at the end of the interval. Furthermore, let Q(t) =

{
qij(t)

}
i,j∈S be

the matrix of transition intensities of the memberships. Assume that Q(t) is measurable
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and that supij∈S
{∣∣qij(t)

∣∣} is integrable on every finite interval of t. We call the Markov
process defined by the matrix of intensities {Q(t), t ≥ 0} the imbedded or inherent Markov
process of the S-NHMSC.

Assume now that in the infinitesimal time interval [t, t + δt), the system has the choice
of selecting a transition intensity matrix from the pool:

RI(t) = {R1(t), R2(t), ..., Rν(t)}, (6)

such that Ri(t)1> + r>k+1(t) = 0 for i = 1, 2, ..., ν and for every t. Furthermore, assume
that it makes its choice in a stochastic way, and more specifically, in the infinitesimal time
interval [t, t + δt), the probability of selecting an intensity matrix from the set RI(t) is
given by

cij(t, t + δt) = P
{

R(t + δt) = Rj(t + δt) | R(t) = Rj(t)
}

= zij(t)δt + o(δt) for i 6= j, t ≥ 0, (7)

and zii(t) is defined to be:

zii(t) = −∑
j 6=i

zij(t), i, j ∈ I, t ≥ 0,

and let ci(0) for i = 1, 2, ..., k be the probabilities of the initial states.
Let Z(t) =

{
zij(t)

}
i,j∈I be the above intensity matrix and assume that Z(t) is mea-

surable for every t ≥ 0 and that supi∈I{|zii(t)|} is integrable on every finite interval of
time. Then, the intensity matrices {Z(t)}t≥0 define a non-homogeneous Markov process,
which we call the compromise non-homogeneous Markov process of the S-NHMSC. The
word ’compromise’ is selected in the sense that it is the outcome of the choice of strategy
under the various pressures in the environment. We call a process like the one described
above a non-homogeneous Markov system in a stochastic environment in continuous time
(S-NHMSC).

We defined the S-NHMSC in the most general way, in order to provide an inclusive
framework that could accommodate a large variety of applied probability models. Fur-
thermore, in the following, some basic questions will be answered within this general
framework. However, it is of great importance, in order to increase our intuition about
the potential power of applicability of the present theory and in order to place it at the
right position in the pyramid of progress towards reality, to make the following comments.
Firstly, when:

T(t) = 1, pk+1(t) = 0, p0(t) = 0 for every t > 0 and

RI(t) = {R(t)} for every t > 0,

then the S-NHMSC is the ordinary non-homogeneous Markov process, which has found
applications in almost all areas.

Secondly, when:

pk+1(t) = pk+1, p0(t) = p0,RI(t) = {R} for every t > 0 ,

then the S-NHMSC is the open homogeneous Markov model applied extensively in man-
power systems (see [5,34]).

Thirdly, when:
RI(t) = {R(t)} for every t > 0,

then the S-NHMSC is the ordinary NHMS in continuous time, which is a general framework
for many applied probability models (see [35,36]).
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3. The Expected Population Structure of the S-NHMSC

We will now study the problem of finding the expected population structure E[N(t)]
in terms of the basic functions of the parameters of the system. We call basic functions
of the parameters the least number of parameters that uniquely determine an S-NHMSC.
These are the functions {RI(t)}t≥0, {Z(t)}t≥0, {T(t)}t≥0, {rk+1(t)}t≥0, {p0(t)}t≥0, the
initial population structure N(0), and the initial probabilities cj(0). These are defined by:

D(t) = dT(t)/dt or T(t + δt)− T(t) = D(t)δt + o(δt). (8)

Let N0(t, t + δt) be the random variable which represents the number of new members
entering the population in the infinitesimal time interval [t, t + δt). Then, since the number
of losses from the population is a random variable, with the distribution for each state i ∈ S,
the binomial B(Ni(t), ri,k+1(t)δt) conditional on Ni(t), we have:

E[N0(t, t + δt)] =
k

∑
i=1

E[Ni(t)]ri,k+1(t)δt + D(t)δt. (9)

Furthermore, let Nij(t, t + δt) be the random variable representing the number of
members of the system moving from state i to state j in the time interval [t, t + δt). Then,
these flows from i to j ∈ S are multinomial random variables, in the sense that:

E
[
Nij(t, t + δt)

]
= E

[
E
[
Nij(t, t + δt) | Ni(t),RI(t)

]]
= E[Ni(t)]E

[
pij(t, t + δt)

]
= E[Ni(t)]E

[
rij(t)

]
δt + o(δt) for i 6= j ∈ S, (10)

and:
E[Nii(t, t + δt)] = E[E[Nii(t, t + δt) | Ni(t),RI(t)]]

= E[Ni(t)]E[pii(t, t + δt)]

= E[Ni(t)] +E[Ni(t)]E[rii(t)]δt + o(δt) for i 6= j ∈ S. (11)

Consequently, we have:

E
[
Nj(t + δt)

]
= ∑

i 6=j
E[Ni(t)]

[
E
[
rij(t)

]
δt + ri,k+1(t)p0j(t, t + δt)

]
+E
[
Nj(t)

][
1 +E

[
rjj(t)

]
δt + rjk+1(t)δtp0j(t, t + δt)

]
+ D(t)δtp0j(t, t + δt) + o(δt). (12)

Equation (12), for all j ∈ S, could be written in matrix notation:

dE[N(t)]
dt

= E[N(t)]E[Q(t)] + D(t)p0(t), (13)

where:
E[Q(t)] = E[R(t)] + r>k+1(t)p0(t). (14)

We will now prove that the sum of the rows of the matrix E[Q(t)] is equal to zero.
We have:

E[Q(t)]1> = E[R(t)]1> + r>k+1(t)p0(t)1>

=
ν

∑
j=1

P
[
R(t) = Rj(t)

]
Rj(t)1> + r>k+1(t)

= −
ν

∑
j=1

P
[
R(t) = Rj(t)

]
r>k+1(t) + r>k+1(t)
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= −r>k+1(t) + r>k+1(t) = 0. (15)

Hence, the matrix E[Q(t)] is an intensity matrix and defines a non-homogeneous
Markov process which, by analogy with the ordinary NHMS in discrete time [5,35], we call
the expected embedded or inherent non-homogeneous Markov process for the S-NHMSC.
Assume that

∫ t
0 E[Q(u)]du < ∞ for all t ≥ 0, then there exists a unique transition function

(see [36] paragraph 8.9) E
[
Pq(., .)

]
, such that:

lim
h+h′→0

E
[
Pq

(
t− h, t + h

′
)]
− I

h + h′
= E[Q(t)], (16)

for all t /∈ E, where E ⊂ [0, ∞) is a set of Lebesgue measure zero. Moreover, E
[
Pq(., .)

]
satisfies the integral matrix equations:

E
[
Pq(s, t)

]
= I+

∫ t

s
E[Q(u)]E

[
Pq(u, t)

]
du, (17)

and:

E
[
Pq(s, t)

]
= I+

∫ t

s
E
[
Pq(u, t)

]
E[Q(u)]du. (18)

A detailed solution of (17) and (18) could be found in [36], paragraph 8.9, where
apparently E[Q(t)] is a function of {Z(t)}t≥0 and {RI(t)}t≥0 due to the selection of R(t)
by the compromise non-homogeneous Markov process. However, we are not interested in
a closed analytic formula E

[
Pq(s, t)

]
, and it is sufficient that we know that it exists and that

it is unique.
In what follows, I will use a probabilistic argument in order to find E[N(t)], which

will also be the solution of the differential Equation (13). The initial number of mem-
berships T(0) = N(0)1> at time t will be distributed to the various states with proba-
bilities E

[
Pq(0, t)

]
, which are the probabilities of transitions of the expected embedded

non-homogeneous Markov process generated by the intensity matrix E[Q(t)]. Thus, the
expected distribution across the states of the initial memberships will be:

N(0)E
[
Pq(0, t)

]
. (19)

Now, let the time interval be [x, x + δx), then the new memberships entering in that
time interval are D(x)δx, and their expected values in the various states at the end of the
interval are given by p0(x, x + δx)D(x)δx. After time t− x, the expected number of new
memberships will be distributed to the various states of the population and their expected
values will be p0(x, x + δx)D(x)δxE

[
Pq(x, t)

]
; therefore, integrating x from 0 to t, we get:

E[N(t)] = N(0)E
[
Pq(0, t)

]
+
∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx, (20)

4. The Asymptotic Behavior of the S-NHMSC

It is evident from previous studies, for example [1,4,35,37–40], that the central problems
in the theory of NHMS and S-NHMS in discrete time, which will be studied in the present
for S-NHMSC, are basically of two natures. The first classical problem is that of finding
the conditions under which the asymptotic behavior of the expected population structure
E[N(t)] as t → ∞ exists and finding its limit in closed analytic form as a function of the
limits of the basic parameters of the system. The second classical problem is finding which
expected relative population structures are possible limiting ones, provided that we control
the limiting vector of input probabilities in the population.

In what follows, I will use as a norm of matrix A ∈ Mk×k(R) the following:

‖A‖ = sup
i

∑
i

∣∣aij
∣∣.
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I will start by refreshing concepts and borrowing some important results from the
theory of non-homogeneous Markov processes, starting with the following definitions for
non-homogeneous Markov processes with countable state spaces.

Definition 1. A Markov process {Xt}∞
t=0 is weakly ergodic if for every s ≥ 0, limt→∞ δ(P(s, t)) = 0.

In the case of weak ergodicity the probability of the occurrence of any of the states at
time t tends to be independent from the initial probability distribution, but is in general
dependent on t.

Definition 2. A Markov process {Xt}∞
t=0 is ergodic if for every s ≥ 0, there exists a vector

Π = (π1, π2, ...) such that:

lim
t→∞

∣∣pij(s, t)− πj
∣∣ = 0 for every i, j ∈ S.

Definition 3. A Markov process {Xt}∞
t=0 is strongly ergodic if there exists a row-constant matrix

Π such that, for all s ≥ 0:
lim
t→∞
‖P(s, t)−Π‖ = 0. (21)

Remark 1. When the state space S is finite, then the concepts of ergodic and strongly ergodic coincide.

As the reader by now may have recognized, the generator of a non-homogeneous
Markov process is the sequence of intensity matrices {Q(t)}∞

t=0. This is so in the sense that
the transition probability matrix P could be seen as the generator of a homogeneous Markov
chain, and the sequence of transition probability matrices {P(t)}∞

t=1 as the generator of
a non-homogeneous Markov chain. Hence, our goal will now be to find conditions for
strong ergodicity for a non-homogeneous Markov process based on the convergence of the
sequence of intensity matrices {Q(t)}∞

t=1.
I will now borrow a basic theorem concerning strong ergodicity for a non-homogeneous

Markov chain based on its sequence of intensity matrices.

Theorem 1 ([14,15]). Let a complete probability space be (Ω,F ,P) and a non-homogeneous
Markov process {Xt}∞

t=0 with sequence of intensity matrices {Q(t)}∞
t=0, which is such that

supt≥0‖Q(t)‖ ≤ c. Let also a homogeneous Markov process be
{

X̂t
}∞

t=0 with intensity ma-
trix Q, such that ‖Q‖ ≤ c, and which is strongly ergodic. If limt→∞‖Q(t)−Q‖ = 0, then if
Π is the stable stochastic matrix, the limit of

{
X̂t
}∞

t=0, then {Xt}∞
t=0 is also strongly ergodic with

limit Π.

Remark 2. At this point, let us refresh the fact that for finite homogeneous, discrete, or continuous
Markov chains, the concept of ergodicity, strong ergodicity, and weak ergodicity coincide. For an
infinite chain, the notions of ergodicity and strong ergodicity are separated.

I will present an important result from [16]. Let Q be the intensity matrix of a homoge-
neous Markov process {Xt}∞

t=0 and supi∈S{|qii|} < c < ∞ and b > c, define:

P̂ = I+
Q
b

,

then P̂ generates a discrete Markov chain
{

X̂t
}∞

t=0.

Theorem 2 ([16]). Let a complete probability space be (Ω,F ,P) and a finite homogeneous Markov
process {Xt}∞

t=0, then it is ergodic if and only if the Markov chain
{

X̂t
}∞

t=0 generated by P̂ =
I + Q/b is ergodic.

I will now prove the following basic theorem:
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Theorem 3. Let a complete probability space be (Ω,F ,P) and a finite S-NHMSC, as defined in
Section 2. Assume that the following conditions hold:

(1) lim
t→∞

∥∥Rj(t)− Rj
∥∥ = 0, (2) lim

t→∞

∥∥∥r>k+1(t)− r>k+1

∥∥∥ = 0,

(3) lim
t→∞
‖p0(t)− p0‖, (4) lim

t→∞
‖Z(t)− Z‖ = 0, with

sup
t≥0
‖Z(t)‖ < ∞, sup

i∈I
{|zii|} < z < ∞ and let PZ = I +

Z
c1

with c1 > z, PZ an irreducible, aperiodic matrix

(5) sup
i∈S

{
rj,ii
}
< a < ∞, sup

{
ri,k+1

}
< b < ∞

where rj,ii the (i, j) element of Rj,

then, as t→ ∞ E[Q(t)] converges in norm to the intensity matrix:

E[Q] =
ν

∑
j=1

πzj Rj + r>k+1p0,

where ΠZ =
(
πz1 , πz2 , ..., πzk

)
is the left eigenvector of the eigenvalue 1 of the matrix PZ.

Proof. From condition (4), since PZ is an irreducible, aperiodic stochastic matrix, then
there exists a stable stochastic matrix ΠZ with common row ΠZ =

(
πz1 , πz2 , ..., πzk

)
, which

is the left eigenvector of the eigenvalue 1 of the matrix PZ, that is:

lim
t→∞

∥∥Pt
Z −ΠZ

∥∥ = 0. (22)

Furthermore, from condition (4), we have that the intensity matrices {Z(t)}t≥0 con-
verge to the intensity matrix Z, and from (22), we know that it generates an ergodic Markov
process. Therefore, {Z(t)}t≥0, due to Theorem 2, generates an ergodic non-homogeneous
Markov process, and we have that:

lim
t→∞
‖C(s, t)−ΠZ‖ = 0. (23)

We have that:

E[R(t)] =
ν

∑
i=1

ν

∑
j=1

cij(0, t)ci(0)Rj(t). (24)

Now, consider: ∥∥∥∥∥E[Q(t)]−
ν

∑
j=1

πzj Rj − r>k+1p0

∥∥∥∥∥ ≤∥∥∥∥∥E[R(t)]−
ν

∑
j=1

πzj Rj

∥∥∥∥∥+ ∥∥∥r>k+1(t)p0(t)− r>k+1p0

∥∥∥ ≤
∥∥∥∥∥ ν

∑
i=1

ν

∑
j=1

cij(0, t)ci(0)Rj(t)−
ν

∑
i=1

ν

∑
j=1

πzj ci(0)Rj

∥∥∥∥∥+∥∥∥r>k+1(t)− r>k+1

∥∥∥+ ∥∥∥r>k+1

∥∥∥‖p0(t)− p0‖ ≤

ν

∑
i=1

ν

∑
j=1

∥∥∥cij(0, t)Rj(t)− πzj Rj

∥∥∥ci(0)+

∥∥∥r>k+1(t)− r>k+1

∥∥∥+ ∥∥∥r>k+1

∥∥∥‖p0(t)− p0‖ ≤
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ν

∑
i=1

ν

∑
j=1

[∥∥∥cij(0, t)− πzj

∥∥∥∥∥Rj(t)
∥∥+ ∥∥Rj(t)− Rj

∥∥]
+
∥∥∥r>k+1(t)− r>k+1

∥∥∥+ ∥∥∥r>k+1

∥∥∥‖p0(t)− p0‖. (25)

We have that: ∥∥Rj(t)
∥∥ ≤ ∥∥Rj(t)− Rj

∥∥+ ∥∥Rj
∥∥,

and since
∣∣rj,ii

∣∣ = ∑l 6=i

∣∣∣rj,il

∣∣∣+ ∣∣∣rj,i k+1

∣∣∣ , and by condition (5) we have supi∈S
{

rj,ii
}
< a <

∞, we could easily prove that:

∥∥Rj
∥∥ ≤ 2

{
∑
l 6=i

∣∣∣rj,il

∣∣∣}+ sup
i∈S

∣∣∣rj,i k+1

∣∣∣ < b < ∞. (26)

By condition (1), one can choose t∗0 such that for t > t∗,
∥∥Rj(t)− Rj

∥∥ < 1. Let
M∗ = sup0≤t≤t∗

{∥∥Rj(t)− Rj
∥∥} , denoted by M = M∗ + 1 + b. Then:∥∥Rj(t)

∥∥ < M < ∞. (27)

From (25), (27), and the conditions of the Theorem, we get that for t > t0 :∥∥∥∥∥E[Q(t)]−
ν

∑
j=1

πzj Rj + r>k+1p0

∥∥∥∥∥ ≤ ε.

Furthermore, it is not difficult using the conditions of the Theorem to see that:

E[Q]1> =
ν

∑
j=1

πzj Rj1> + r>k+1p01> = −
ν

∑
j=1

πzj r
>
k+1 + r>k+1 = 0.

In analogy with the discrete case for an S-NHMS, we provide the following definition:

Definition 4. We say that an S-NHMSC has an asymptotically attainable expected relative popu-
lation structure E[q(∞)] under asymptotic input control, if there exists a p0 = limt→∞ p0(t) such
that limt→∞ E[q(t)] = E[q(∞)]. We denote by A∞ the set of asymptotically expected relative
population structures under asymptotic input control of the S-NHMSC.

We now provide the following basic theorem concerning the asymptotic behavior of
the S-NHMSC.

Theorem 4. Let a complete probability space be (Ω,F ,P) and a finite S-NHMSC as defined in
Section 2. Assume that the conditions (1) → (5) of Theorem 2 hold and, in addition, that the
following conditions are true (6):

lim
t→∞

T(t) = T,

where T(t) is a non-dicreasing continuous function. (7) The matrix:

Pq = I +
E[Q]

c2
,
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with c2 > supi∈S{|E(qii)|} is an irreducible, aperiodic stochastic matrix. Then, (i) as t → ∞,

E[q(t)] converges to Πq =
(

πq1, πq2, ..., πqk

)
, which is the left eigenvector of the eigenvalue 1 of

the matrix Pq. (ii) The set A∞ is the convex hull of the points:

µi

ei

(
ν

∑
j=1

πzj Rj

)−1
, where µi = ei

(
ν

∑
j=1

πzj Rj

)−1

1>.

Proof. Since Πz is the left eigenvector of the eigenvalue 1 of the irreducible, aperiodic
matrix PZ, we have that 0 ≤ πzj ≤ 1 for j = 1, 2, ..., ν. Furthermore, condition (5) of
Theorem 3 is also valid for the present; hence, supi∈S

{
rj,ii
}
< ∞ and sup

{
ri,k+1

}
< b < ∞.

Consequently, from the expression of E[Q] in Theorem 3 we get that:

c2 > sup
i∈S
{E[qii]} < ∞. (28)

Now, since Pq is an irreducible, aperiodic stochastic matrix, we have that:

lim
t→∞

∥∥∥Pt
q −Πq

∥∥∥ = 0,

where Πq is a stable stochastic matrix with row Πq =
(

πq1, πq2, ..., πqk

)
, which is the left

eigenvector of the eigenvalue 1 of the matrix Pq. From (28), Theorems 1 and 2, we have
that if we denote with E

[
Pq(s, t)

]
the probability transition matrix of the non-homogeneous

Markov process defined by the intensities {E[Q(t)]}t≥0, then:

lim
t→∞

∥∥E[Pq(s, t)
]
−Πq

∥∥ = 0 for every s ∈ N. (29)

Therefore, as t→ ∞ is the first part of the right hand side of Equation (20):

lim
t→∞

N(0)E
[
Pq(s, t)

]
= N(0)Πq = T(0)Πq. (30)

Now, consider:

U(t) =
∥∥∥∥∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx−

∫ t

0
p0D(x)Πqdx

∥∥∥∥
≤
∫ t

0

∥∥p0(x)E
[
Pq(x, t)

]
− p0Πq

∥∥D(x)dx

≤
∫ t

0
‖p0(x)‖

∥∥E[Pq(x, t)
]
−Πq

∥∥D(x)dx +
∫ t

0
‖p0(x)− p0‖D(x)dx

=
∫ t

0

∥∥E[Pq(x, t)
]
−Πq

∥∥D(x)dx +
∫ t

0
‖p0(x)− p0‖D(x)dx

= A(t) + B(t)

From (29), we have that there exists a t0 > 0 such that for t− x > t0:∥∥E[Pq(x, t)
]
−Πq

∥∥ < ε.

Thus:

A(t) ≤
∫ t−t0

0

∥∥E[Pq(x, t)
]
−Πq

∥∥D(x)dx+

∫ t

t−t0

∥∥E[Pq(x, t)
]
−Πq

∥∥D(x)dx

≤ ε{T(t− t0)− T(0)}+ 2{T(t)− T(t− t0)}. (31)
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Now, from condition (3), we have that there exists a t1 > 0 such that for t > t1,
‖p0(t)− p0‖ < ε. Thus:

B(t) =
∫ t

0
‖p0(x)− p0‖D(x)dx ≤

∫ t1

0
‖p0(x)− p0‖D(x)dx +

∫ t

t1

‖p0(x)− p0‖D(x)dx

≤ 2(T(t1)− T(0)) + ε(T(t)− T(t1)).

Hence, we have that limt→∞ A(t) = 0 and limt→∞ B(t) < ∞. Thus, U(t) is an in-
creasing function bounded from above and limt→∞ U(t) = 0. Therefore, from (31), we
have that:

lim
t→∞

∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx =

∫ t

0
p0D(x)Πqdx

= p0Πq[T − T(0)] = Πq[T − T(0)]. (32)

Hence, from (20), (30) and (32), we get that:

lim
t→∞

E[N(t)] = E[N(t)] = TΠq. (33)

Since ‖E[Q]‖ is finitely bounded and defines an ergodic Markov process, it is known that:

ΠqE[Q] = 0. (34)

From Theorem 3 and Equation (34), we get that

Πq

ν

∑
j=1

πzj Rj = −Πqrk+1p0 = ΠqRj1>p0. (35)

The matrix ∑ν
j=1 πzj Rj, due to condition (7), is irreducible and aperiodic and is part of

the intensity matrix E[Q]. Hence, ([41])
(

∑ν
j=1 πzj Rj

)−1
exists and is nonnegative. Therefore:

Πq = ΠqRj1>p0

(
ν

∑
j=1

πzj Rj

)−1

, (36)

and:

Πq = ΠqRj1>
k

∑
i=1

p0iei

(
ν

∑
j=1

πzj Rj

)−1

. (37)

Multiplying both sides of (37) by 1>, we obtain:

1 = ΠqRj1>
k

∑
i=1

p0iei

(
ν

∑
j=1

πzj Rj

)−1

1>. (38)

Let:

µi = ei

(
ν

∑
j=1

πzj Rj

)−1

1>. (39)

Then:

1 = ΠqRj1>
k

∑
i=1

p0iµi. (40)
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Therefore, from (33) and the above, we get that:

lim
t→∞

E[q(t)] = Πq =
k

∑
i=1

p0iµi

∑k
j=1 p0jµj

µ−1
i

ei

(
ν

∑
j=1

πzj Rj

)−1
. (41)

Hence, E[q(∞)] is a convex combination of the vertices:

µ−1
i

ei

(
ν

∑
j=1

πzj Rj

)−1
.

It is well known that for a homogeneous Markov process, with intensity matrix Q
and transition matrix P(t), which is strongly ergotic, the rate of convergence with which
P(t) converges to a stable stochastic matrix is exponential. Logically, this fact creates the
intuition, that possibly for a non-homogeneous Markov process with sequence of intensity
matrices Q(t), the rate at which the transition probability matrices converge to a stable
stochastic matrix is also exponential. The answer to this is negative, since we need one
more condition for this to be true, and that is limt→∞‖Q(t)−Q‖ = 0 with an exponential
rate of convergence. This result is stated formally in the following theorem, the proof of
which could be found in [14].

Theorem 5. Let a complete probability space be (Ω,F ,P) and a non-homogeneous Markov process
{Xt}∞

t=0 with sequence of intensity matrices {Q(t)}∞
t=0, which is strongly ergodic. Let also a

homogeneous Markov process be
{

X̂t
}∞

t=0 with intensity matrix Q, which is strongly ergodic. Let
g : R+ → R+ be a monotonically increasing function. If limt→∞ g(2t)‖Q(t)−Q‖ = 0 then:

lim
t→∞

sup
s≥0
{min(exp(λt)), g(t)‖P(s, t)−Π‖} = 0,

where 0 < λ < β/2 and β > 0 is the constant parameter of the exponential rate of convergence at
which

{
X̂t
}∞

t=0 converges.

An important question which logically arises is: what is the rate of convergence to
asymptotically attainable structures in an S-NHMSC? In fact, I am interested in finding
conditions under which the rate is exponential, because then, the practical value of the
asymptotic result is greater (see [42,43]). Furthermore, as in [20], the problem of construction
of sharp bounds for the rate of convergence of characteristics of Markov chains to their
limiting vectors is very important. That is, all too often, it is easier to calculate the limit
characteristics of a process than to find the exact distribution of state probabilities. Therefore,
it is very important to have a possibility to use the limit characteristics as asymptotic
approximations for the exact distribution. The following Theorem answers the question of
the rate of convergence of the expected structure of an S-MHMSC.

Theorem 6. Let a complete probability space be (Ω,F ,P) and a finite S-NHMSC as defined in
Section 2. Furthermore, let the conditions (1)→ (7) of Theorem 4 hold and in addition assume that
the convergences in conditions (1)→ (4) and (6) are exponentially fast. Then, the convergence of
E[N(t)] as t→ ∞ is exponentially fast.

Proof. Since limt→∞‖Z(t)− Z‖ = 0 is exponentially fast and in addition Z is strongly
ergodic, then in Theorem 5 there are constants c3 and λ1 > 0 such that:

‖C(s, s + t)−Πz‖ ≤ c3e−λ1t for every s, t > 0. (42)
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Since the convergences in conditions (1)–(3) are exponentially fast, we have that:

∃ c0 > 0, a0 > 0 such that ‖p0(t)− p0‖ ≤ c0e−a0t for every t. (43)

∃ c1 > 0, a1 > 0 such that
∥∥∥r>k+1(t)− r>k+1

∥∥∥ ≤ c1e−a1t for every t. (44)

∃ c2 > 0, a2 > 0 such that
∥∥Rj(t)− Rj

∥∥ ≤ c2e−a2t for every t. (45)

From (25), (42)→ (45), we arrive at:

‖E[Q(t)]−E[Q]‖ ≤ ce−at with c > 0, a > 0. (46)

Now, from (46), condition (7), of Theorems 4 and 5 we get that:∥∥E[Pq(s, s + t)−Πq
]∥∥ ≤ cqe−λ2t, cq, λ2, t > 0 for every t. (47)

We now have the following:∥∥E[N(t)]− TΠq
∥∥ = ‖N(0)E

[
Pq(0, t)

]
(48)

+
∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx− TΠq‖ ≤

‖N(0)‖
∥∥E[Pq(0, t)

]
−Πq

∥∥+∥∥∥∥∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx− (T − T(0))Πq

∥∥∥∥
≤ ‖N(0)‖

∥∥E[Pq(0, t)
]
−Πq

∥∥+ ∥∥(T(t)− T)Πq
∥∥+∥∥∥∥∫ t

0
p0(x)D(x)E

[
Pq(x, t)

]
dx− (T(t)− T(0))Πq

∥∥∥∥ ≤
‖N(0)‖

∥∥E[Pq(0, t)
]
−Πq

∥∥+ |(T(t)− T)|+∫ t

0

∥∥E[Pq(x, t)
]
−Πq

∥∥D(x)dx +
∫ t

0
‖p0(x)− p0‖D(x)dx (49)

From (47), condition (3), we obtain the fact that the convergence as t→ ∞ of T(t) is
exponentially fast, and based on (49), we arrive at the following relation:∥∥E[N(t)]− TΠq

∥∥ ≤ ce−λt with c, λ, t > 0 and for every t > 0,

which proves the Theorem.

5. An Illustrative Example from Manpower Planning

In the present section, the previous results are illustrated through an example from
manpower planning. Interesting examples of such systems can be found in [44]. Suppose
that intensities were estimated from the historical records of a firm with three grades, and
they found that three were repeatedly exercised; thus, the pool RI(t) has the elements:

R1(t) =

−4− 2e−3t 3 + e−3t 0
0 −5− 3e−t 3 + 2et

0 0 −7− e−5t

,

R2(t) =

−5− 10e−3t 4 + 9e−3t 0
0 −6− 9e−t 4 + 7et

0 0 −7− e−5t

,
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R1(t) =

−3− 4e−3t 2 + 3e−3t 0
0 −7− 3e−t 5 + et

0 0 −7− e−5t

.

Let also:

rk+1(t) =
[
1 + e−3t, 2 + e−7, 7 + e−5t

]
, p0(t) =

(
0.2 0.3 0.5

)
.

In addition, let us utilize the well-known maximum likelihood estimates for tran-
sition intensities ([44]); the matrix of the transition intensities of the compromise non-
homogeneous Markov process {Z(t)}t≥0, under the assumption that they are time inde-
pendent, was found to be:

Ẑ =

−5 3 2
4 −9 5
2 5 −8

.

Applying Theorem 3 to the above data, we have that conditions (1)–(3) are satis-
fied with:

R1 =

−4 3 0
0 −5 3
0 0 7

, R2 =

−5 4 0
0 −6 4
0 0 7

,

R3 =

−3 2 0
0 −7 5
0 0 −7

 and rk+1 =
(
1 2 7

)
.

Obviously, supt≥0‖Z(t)‖ < ∞, and with c1 = 10, we get:

PZ =

0.5 0.3 0.2
0.4 0.1 0.5
0.3 0.5 0.2

,

which is obviously an irreducible regular stochastic matrix, and thus, condition (4) and
condition (5) of Theorem 3 are satisfied. Now, the asymptotic expected intensity matrix is
found to be:

E[Q] =

−3.8 3.3 0.5
0.4 −5.3 4.9
1.4 2.1 −3.5

,

which, apparently, is a matrix of transition intensities.
Theorems 4 and 5 are straightforwardly applicable with the above data. The present

example could be used as a guide for applying the theoretical results in many areas of
potential applications, such as for example in [44–48].

6. Conclusions

The concept of a non-homogeneous Markov system in a stochastic environment and
in continuous time was introduced. It was found under which conditions, using basic
parameters, the limiting population structure and the relating relative population structure
exist, and they were evaluated in elegant closed analytic forms. The set of all possible
relative population structures was characterized under all possible input probability vectors.
Finally, an illustrative example from manpower planning was presented, which could be
used as a guide for applications in other areas.
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