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Abstract: In this study, a numerical investigation of photonic quasi-periodic Generalized Fibonacci
(GF) (m, n) sequences is carried out in the visible spectrum. The transfer matrix method is employed
to study the behavior of wave propagation through the photonic structures. Firstly and to highlight
the importance of the GF structure, its transmittance spectrum is compared to those of periodic and
ordinary Fibonacci structures. It is shown that the GF structure permits one to obtain multi-photonic
band gaps (PBGs) separated by several resonance modes. The variation in the parameter m of the GF
(m, 1) structure allows for the tuning of the number, the position and the width of these bands. By
changing the parameter m, the wavelengths (650, 850, 1300, and 1550 nm) of the plastic and glass
optical fibers can be allowed or forbidden to transmit through the structure according to the value
of this parameter. In contrast, the variation in the parameter n for GF (1, n) hides all PBGs and only
permits the appearance of several Kiessig fringes. The proposed structures can find application as
tunable multi-band-stop filters for optical fiber wavelengths.

Keywords: generalized Fibonacci sequences; photonic; transfer matrix method; band-stop filters;
optical communication; photonic band gap

MSC: 37M10

1. Introduction

An ordinary periodic photonic structure can be designed by iterating a finite unit
cell several times, and each cell is composed of two or more different layers of materials.
However, a random structure follows no particular rule, and the distribution of layers is
chaotic. Quasi-periodic structures present another category of structures, and they are
neither periodic nor random but a sequence that is located between these two sequences [1].
These quasi-periodic structures are made up of two or more different layers with differ-
ent materials, and they follow a well-determined mathematical distribution [2,3]. Their
impressive property in transmission spectra permits the continuity of the existing central
forbidden gaps (PBGs) in periodic photonic structures with strong resonance modes to be
broken. These modes localize light very effectively [2–7]. The most well-studied and well-
known quasi-periodic sequences are the Fibonacci sequence (FS) [3,5,8–10], the Thue–Morse
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sequence (TMS) [3,4,11] and the Cantor sequence (CS) [3,12,13]. These quasi-periodic struc-
tures find application in several optical, infrared, and microwave fields. They are proposed
as structures that allow light to be slowed down and localized [3,4,14], which paves the
way toward the realization of optical microprocessors [15], optical connectors [16], optical
memories [17,18], and quantum computers [19,20]. In addition, these quasi-periodic struc-
tures [3,21,22] are used as filters [5,6,8,23,24] and high omnidirectional reflectors [25–31]
in optical communication devices. These filters permit undesirable frequencies or noises
to be discarded. In addition, omnidirectional reflectors are used to construct micro-cavity
lasers and photonic quantum computers (as a substrate of the antennas to improve their
directivity [32]) and to improve the gain for THz photoconductive antennas [33]. The local-
ization of light makes it possible to enhance the interaction between the photon and matter,
which then makes it possible to slow down the group velocity of light [3]. This property
paves the way toward the construction of optical memories [34,35] and photonic quantum
computers [36]. Optical memories will then use photons instead of electrons in ordinary
memory. In addition, optical memories will then have a huge capacity to store information.
To develop a photonic quantum computer, recently, Ben Bartlett et al. [36] experimented
with a new device composed of a photonic cavity, waveguides, an optical fiber storage
ring, and optical switches. This device permits the development of a quantum information
processor, where optical qubits have very long coherence times, are maintainable at room
temperature, and are optimal for quantum communication. In addition to all of the above
applications, the resonance modes provided by quasi-periodic photonic structures make it
possible to design new sensors, for example, for biomedical sensing [37], for water quality
control [38], and for humidity sensing [39]. In addition to solid materials permitting the
control of light, liquid materials can take the same role. For example, Lio, G.E. et al. [40]
proposed an optical beam steering device operating at a wavelength of 1550 nm and based
on a high index material such as molybdenum disulfide (MoS2), where the direction of
light is actively controlled by means of a liquid crystal. This dynamic beam steering for
light detection and ranging (LIDAR) applications can be achieved by controlling the am-
plitude, losses, and deflection of light with elements of an optical array [40]. In addition,
Shaltout, A.M. et al. [41] proposed ultrathin optical cavities with embedded photonic
metasurfaces, which permit high spatial resolution color filtering and spectral imaging to
be obtained. These optical cavities find application in compact integrated optical systems
on a chip, such as high-resolution spatial light modulators, VCSELs, bio-sensors, and
imaging spectroscopy systems. Furthermore, Giuseppe, E.L. et al. [42] proposed plasmonic
metal–insulator nanocavities that can be exploited as tunable color filters, photonics, optical
sensors, and physical security agents. The resonant wavelengths of these nanocavities
have extraordinary transmission with zero reflection for different incident polarizations.
In the field of frequency-selective filters, previous studies can be presented. For example,
S. Tibuleac et al. [43] used dielectric waveguide gratings and, by embedding the gratings
in layered antireflection structures, proposed a frequency-selective structure based on
guided-mode resonance effects. The proposed filters were built and tested in the 4–20 GHz
frequency range. Tsitsas et al. [44] investigated periodic grating waveguides by using a
rigorous integral equation method, which combined semi-analytical techniques and the
Method of Moments with entire domain basis functions. In their work [44], they provided a
showcase for the effect of the incident field’s and grating’s characteristics on the diffraction
process, as well as the grating structure’s efficient operation as a narrow-band reflection
filter. In addition, Norton et al. [45] used the rigorous coupled-wave analysis method to
provide physical insights into the factors contributing to filter bandwidth. Moreover, by the
means of rigorous semi-analytical integral equation, Tsitsas [46] proposed a methodology
that is characterized by high numerical stability and controllable accuracy. His obtained
solution helped to investigate the operation of a metasurface as a narrow-band reflection
frequency filter [46]. In this simulation work, we are not limited to the filtering of visible
color, but we study the configuration of Fibonacci and Generalized Fibonacci structures
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that allow the construction of high- and low-pass filters for the wavelengths (650, 850, 1300
and 1550 nm) of plastic and glass optical fibers.

2. Method and Problem Formulation
2.1. Transfer Matrix Method

In this numerical simulation, the transfer matrix method (TMM) is exercised to study
optical wave propagation through periodic and quasi-periodic (Fibonacci and Generalized
Fibonacci) photonic crystals. The transmittance T and the reflectance R of the wave are
studied in this paper. Based on the TMM method, the amplitude of the input electric
field E+

0 , the reflected one E−0 , and the output (transmitted) one E+
m+1 after m layers are

correlated using the following Equation [5]:[
E+

0
E−0

]
= ∏m

j=1

Cj

tj

[
E+

m+1
E−m+1

]
(1)

Here, Cj is the complex transfer matrix, and tj is the transmittance Fresnel coefficient.
The wave has two polarization modes (transverse electric (TE) and transverse magnetic

(TM)).
For both polarization modes, the matrix Cj is expressed as follows [5]:

Cj =

(
exp

(
iϕj−1

)
rjexp

(
−iϕj−1

)
rjexp

(
iϕj−1

)
exp

(
−iϕj−1

) )
(2)

Here, ϕj−1 represents the phase shift of the wave between the jth/(j − 1)th layers (or
boundaries) [5]:

ϕj−1 =
2π

λ
n̂j−1dj−1 cos θj−1 (3)

In Equations (1) and (2), tj and rj represent the transmittance and reflectance Fresnel
coefficients, respectively.

For TM (P-mode) polarization mode and TE (S-mode) mode, the Fresnel coefficients
are expressed as follows [5]:

rjp =
n̂j−1 cos θj − n̂j cos θj−1

n̂j−1 cos θj + n̂j cos θj−1
(4)

tjp =
2n̂j−1 cos θj−1

n̂j−1 cos θj + n̂j cos θj−1
(5)

rjs =
n̂j−1 cos θj−1 − n̂j cos θj

n̂j−1 cos θj−1 + n̂j cos θj
(6)

tjs =
2n̂j−1 cos θj−1

n̂j−1 cos θj−1 + n̂j cos θj
(7)

Here, n̂j and θj represent the complex refractive index of the materials and the complex
refractive angle of the wave, respectively.

For both polarizations, the transmittance energies T are simplified as [5]

tjs =
2n̂j−1 cos θj−1

n̂j−1 cos θj−1 + n̂j cos θj
(8)

Trp = Re
(

n̂m+1 cos θm+1

n̂0 cos θ0

)∣∣tp
∣∣2 (9)
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2.2. Fibonacci and Generalized Fibonacci Quasi-Crystals Models

The Fibonacci multi-layer structure [7,13,27] can be built up using two different ma-
terial layers, H and L. Here, the symbols H and L represent layers with a high (nH) and
low (nL) refractive index, respectively. The geometric thicknesses of the H and L layers are
dH and dL, respectively. The first two sequences of the Fibonacci model start with S0 = H
and S1 = L; then, using the substitution rule L→LH and H→L, we can determine the next
generations. The resulting 1D Fibonacci structure is quasi-periodic. For example, the sixth
iteration has the form S6 = LHLLHLHLLHLLH.

The interest in GF (m, n) quasi-periodic structures has increased since it appears that
the physical properties of the Fibonacci sequence may not be genetic in some fundamental
respects [1,2]. In addition, the Generalized Fibonacci (GF) (m, n) sequence [4,5,23] consists
of two different layers (H and L). The starter sequences are S0 = H and S1 = L, and, after
that, the recursion relation of the GF (m, n) sequence is expressed as Sl+1 = Sm

l Sn
l−1 for

l ≥ 1. Here, the parameters m and n represent the power (the successive repetition) of the
sequence. For example, when m = 2 and n = 1, the recursive sequences will be S2 = LLH,
S3 = LLHLLHL, S4 = LLHLLHLLLHLLHLLLH, etc. [4]. In addition, when m = 1 and n = 2,
we obtain S2 = LHH, S3 =LHHLL, S4 = LHHLLLHHLHH, etc. The geometric photonic
structure of this latest sequence (S4 = LHHLLLHHLHH) is illustrated as an example in
Figure 1.
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Figure 1. Schematic representation showing the geometry of the 4th generation of Generalized
Fibonacci photonic GF (1, 2) structure.

3. Results and Discussion

In this work, we simulate the optical behavior of periodic, Fibonacci, and Generalized
Fibonacci photonic structures. The materials that constitute the layers of the photonic
structures are silicon dioxide (SiO2, nL = 1.45) and titanium dioxide (TiO2, nH = 2.3).
These materials are chosen in view of their availability and low price in the global market
compared to other semiconductor materials. In addition, the range of the refractive index
between these two materials makes it possible to obtain broad PBGs. The thicknesses dL,H
of the H and L layers satisfy the Bragg condition, nLdL = nHdH = λ0/4, where λ0 = 1 µm
represents the reference wavelength. For the proposed photonic structures, the optical
transmittance properties are investigated in the visible frequency spectrum and for normal
wave incidence. Figure 2 shows the transmittance spectra as a function of the frequency
f 0 (THz) for the periodic, Fibonacci, and GF photonic structures. First, we fix the number
of layers of the periodic structure to 34, and this number is chosen so that the PBG is
clear and wide. To compare the transmittance spectra of the three photonic structures, the
geometric thicknesses and the number of layers are nearly the same. For this, the number
of layers (P) of the Fibonacci and the GF structures is chosen to be 34 and 31, respectively.
Here, the iteration number of the Fibonacci and GF sequences is chosen to be 8 and 3,
respectively. In addition, for the GF sequence, the parameters m and n are chosen to be 5
and 1, respectively. Here, the parameters m and n are chosen in such a way that the number
of layers of all structures (periodic, Fibonacci and GF) is approximate. For the periodic
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structure, Figure 2 shows the presence of one large photonic band gap (PBG) centered at
the reference frequency (f 0 = 299.22 THz). The Fibonacci structure presents two symmetric
PBGs at about f 0, and they are in juxtaposition with that of the periodic structure. The GF
(5, 1) structure has three pseudo-PBGs: one centered at f 0 and the other two symmetrical
at about this frequency. Therefore, it is clear here that the Fibonacci structure permits two
resonance peaks (two propagation modes) and two PBGs located inside and outside the
PBG of the periodic structure to be obtained, respectively. This physical phenomenon is
due to the chaotic dispersion (quasi-periodicity) of the layers of the Fibonacci structure. In
addition, the GF sequence permits this disorder of layers to be amplified, which allows the
presence of three pseudo-PBGs. The locations of these three bands appear as a merging
of the periodic and the Fibonacci bands. Therefore, the GF structure permits the area
of the PBGs to be enlarged and the number of the resonance peaks to be increased. This
physical phenomenon is due to the parameters m and n of the GF (Sl+1 = Sm

l Sn
l−1) sequence.

The variation in these parameters permits the redundancy of the periodic subsequences
(Sm

l and Sn
l−1), which allows the perturbation of wave propagation through the structure.
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Figure 2. Transmittance spectra versus the frequency f (THz) for (a) periodic (34 layers, d = 4.78 µm),
(b) Fibonacci (8th iteration, 34 layers, d = 5.03 µm), and (c) GF (5, 1) (3rd iteration, 31 layers,
d = 5.02 µm).

Later and for the GF (m, n) sequence, the effect of varying the parameters m and
n on the transmittance behavior is studied. We try to achieve tunable multi-band-stop
filters using this structure. Figure 3a–d show the effect of varying the parameter m from
5 to 20. Here, the parameter n and the iteration number are fixed at 1 and 3, respectively.
Figure 3a–d display the presence of consecutive PBGs separated with several resonance
modes. Therefore, it is clear from this figure that the GF (m, 1) structure forms a selective
band-stop filter. In addition, we can notice that the number, the position, and the width of
these PBGs depend on the parameter m of the GF (m, 1) structure.
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Figure 3. Transmittance spectra versus frequency for 1D GF sequence (3rd iteration) and for (a) GF (5,
1), (b) GF (10, 1), (c) GF (15, 1), and (d) GF (20, 1).

Figure 4 shows the relationship between the number of PBGs and the parameter m. It
is clear that this dependence is linear, and the regression fit of this graph is NPBGs = 0.5
+ 0.52 × m, where the parameter NPBGs represent the number of PBGs. The pattern of
data and the trend line in Figure 4 are indicative of the type of correlation between the two
variables (NPBGs and m). Therefore, it is clear that the correlation is positive and strong. In
addition, the Pearson correlation factor represents a statistic parameter showing the degree
of relation between these two variables. In fact, the Pearson factor measures the nature and
the strength between any two variables of the quantitative type. Using the data in Figure 4
and statistical software, we found that the Pearson factor between the parameter m and the
number of NPBGs is equal to 0.997, so this correlation is positive and strong. Therefore, by
adjusting the parameter m of the GF (m, 1) structure, we can tune the number, the position,
and the width of these PBGs.
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Figure 4. Number of PBGs as a function of the parameter m for 1D GF (m, 1) sequence (3rd iteration).

The optical communication wavelengths used by the different types of optical fibers
(plastic and glass optical fibers) are 650, 850, 1300, and 1550 nm, which correspond to the
frequencies 461, 352.69, 230.46, and 193.37 THz, respectively. Table 1 shows the percentages
of transmittance for these optical communication wavelengths with different GF (m, 1)
photonic structures. The green cells represent the maximum percentage of transmittance for
a given wavelength. For instance, the 650 nm wavelength fully passes (T = 100%) through
the GF (5, 1) structure, and the 1550 nm wavelength is reflected by the same structure.
The GF (10, 1) structure is suitable to allow the 1300 nm wavelength of the multi-mode
graded-index fiber to pass through. At the same time, the last wavelength is forbidden
from transmitting by the GF (20, 1) structure. Table 1 demonstrates the possibility of using
these tunable GF multi-band-stop filters in optical communication applications.

Table 1. Transmittance (%) for optical fiber wavelengths using the 3rd iteration of GF (m, 1) structures.

Optical Fiber Wavelengths

Structures 650 nm 850 nm 1300 nm 1550 nm
GF (5, 1) 100 92.0 93 6
GF (10, 1) 70 87.0 100 75
F (15, 1) 96 96.0 64 90
GF (20, 1) 26 77.8 0 55

Figure 5a–d show the effect of the parameter n of the GF (1, n) structure on the
transmittance spectra. This figure only displays the presence of the Kiessig fringes, and no
PBG appears. This physical phenomenon is due to the distribution of layers; for example,
for the GF (1, 5) structure, the distribution of layers is LHHHHHLLLLL. This structure
works as though it is made by concentrating two successive thick H/L layers. Thus,
there is no chaotic distribution of the H and L layers, which decreases the amount of
reflection between the different layer interfaces. Therefore, the role of the transfer matrix
is approximately negligible in the transmittance computation, and only the propagation
matrix, through the same kind of layers, has a great effect on this computation.
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Figure 5. Transmittance spectra versus frequency for 1D GF sequence (3rd iteration) and for (a) GF (1,
5), (b) GF (1, 10), (c) GF (1, 15), and (d) GF (1, 20).

4. Conclusions

The numerical investigation of the Generalized Fibonacci (GF) (m, n) structures in this
study permits us to conclude that only the parameter m permits the number, the position,
and the width of several successive PBGs to be determined. The correlation between
the parameter m and the number of PBGs is positive and strong (the Pearson correlation
factor is 0.997). These phenomena permit us to consider the GF (m, 1) structure as tunable
multi-band-stop filters for the optical telecommunication wavelengths of 650, 850, 1300
and 1550 nm. In fact, by varying the parameter m, we can allow the transmission of a given
optical fiber wavelength and forbid others. In contrast, the variation in the parameter n
for the GF (1, n) structures permits only several Kiessig fringes to be obtained, without
noticing any PBGs, and this physical phenomenon is due to the distribution of two material
layers when only two successive blocks of H and L layers are found.



Mathematics 2022, 10, 1240 9 of 10

Author Contributions: Conceptualization, N.B.A. and Y.T.; methodology, H.A.; software, N.B.A. and
Z.E.; validation, N.B.A. and S.A.; formal analysis, N.B.A.; investigation, S.A.; resources, H.A.; data
curation, N.B.A. and O.K.; writing—original draft preparation, N.B.A. and Y.T.; writing—review
and editing, N.B.A. and O.K.; visualization, Z.E.; supervision, N.B.A.; project administration, N.B.A.;
funding acquisition, all authors. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Scientific Research Deanship at the University of Ha’il—
Saudi Arabia through project number RG-21 077.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Augustyniak, A.; Zdanowicz, M.; Osuch, T. Self-Similarity Properties of Complex Quasi-Periodic Fibonacci and Cantor Photonic

Crystals. Photonics 2021, 8, 558. [CrossRef]
2. Kohmoto, M.; Sutherland, B.; Iguchi, K. Localization in Optics: Quasiperiodic Media. Phys. Rev. Lett. 1987, 58, 2436. [CrossRef]

[PubMed]
3. Ali, N.B.; Zaghdoudi, J.; Kanzari, M.; Kuszelewicz, R. The slowing of light in one-dimensional hybrid periodic and non-periodic

photonic crystals. J. Opt. 2010, 12, 045402. [CrossRef]
4. Trabelsi, Y.; Ali, N.B.; Segovia-Chaves, F.; Posada, H.V. Photonic band gap properties of one-dimensional photonic quasicrystals

containing Nematic liquid crystals. Results Phys. 2020, 19, 103600. [CrossRef]
5. Ali, N.B.; Trabelsi, Y.; Kanzari, M. Stop band filter by using hybrid quasi-periodic one dimensional photonic crystal in microwave

domain. IJMOT 2009, 4, 195–204.
6. Ali, N.B.; Dhasarathan, V.; Alsaif, H.; Trabelsi, Y.; Nguyenb, T.; Bouazzi, Y.; Kanzari, M. Design of output-graded narrow

polychromatic filter by using photonic quasicrystals. Phys. B Condens. Matter 2020, 582, 411918. [CrossRef]
7. Ali, N.B.; Kanzari, M. omni-directional high reflectors using one-dimensional deformed quasi-periodic Cantor band gap structure

at optical telecommunication wavelength band. Mediterr. J. Electron. Commun. 2010, 6, 1–6.
8. Segovia-Chaves, F.; Posada, H.V.; Trabelsi, Y.; Ali, N.B. Transmittance spectrum in a one-dimensional photonic crystal with

Fibonacci sequence superconductor–semiconductor. Optik 2020, 217, 164803. [CrossRef]
9. Han, P.; Wang, H.Z. Effect of invariant transformation in one-dimensional randomly-perturbed photonic crystal. Chin. Phys. Lett.

2003, 20, 1520.
10. Merlin, R.; Bajema, K.; Clarke, R.; Juang, F.Y.; Bhattacharya, P.K. Quasiperiodic GaAs-AlAs heterostructures. Phys. Rev. Lett. 1985,

55, 1768. [CrossRef]
11. Kohmoto, M.; Sutherland, B. Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys.

Rev. B 1987, 35, 1020. [CrossRef] [PubMed]
12. Sibilia, C.; Bertolotti, M. Trends in Optics and Photonics. In ICO Book IV Trends in Optics and Photonics; Asakura, T., Ed.; Springer:

New York, NY, USA, 1999.
13. Chakrabarti, A. Field induced delocalization in a Koch fractal. Phys. Rev. B 1999, 60, 10576–10579. [CrossRef]
14. Gellermann, W.; Kohmoto, M.; Sutherland, B.; Taylor, P.C. Localization of light waves in Fibonacci dielectric multilayers. Phys.

Rev. Lett. 1994, 72, 633–636. [CrossRef] [PubMed]
15. Barry, G.G.; Howard, H.; Ramzi, H.N. Optical processors for smart structures. In Proceedings of the Advances in Optical

Information Processing IV, Orlando, FL, USA, 1 September 1990; Volume 1296. [CrossRef]
16. Luo, D.; Hao, Q. Optical transmission link between microprocessors and memories. In Proceedings of the Asia Communications

and Photonics Conference, Shanghai, China, 11–14 November 2014; ISBN 978-1-55752-852-0. [CrossRef]
17. Alexoudi, T.; Kanellos, G.T.; Pleros, N. Optical RAM and integrated optical memories: A survey. Light Sci. Appl. 2020, 9, 91.

[CrossRef]
18. Leonardo, D.B.; Niall, M.; Pascal, D. Optical memories and switching dynamics of counterpropagating light states in microres-

onators. Opt. Express 2021, 29, 2193–2203. [CrossRef]
19. Heim, B.; Soeken, M.; Marshall, S.; Granade, C.; Roetteler, M.; Geller, A.; Troyer, M.; Svore, K. Quantum programming languages.

Nat. Rev. Phys. 2020, 2, 709–722. [CrossRef]
20. LeeAnn, M.S.; Scott, E.S.; David, A.M. Preparation of an exciton condensate of photons on a 53-qubit quantum computer. Phys.

Rev. Res. 2020, 2, 043205. [CrossRef]
21. Jin, C.J.; Cheng, B.Y.; Man, B.Y.; Li, Z.L.; Zhang, D.Z. Two-dimensional dodecagonal and decagonal quasiperiodic photonic

crystals in the microwave region. Phys. Rev. B 2000, 61, 10762–10767. [CrossRef]

http://doi.org/10.3390/photonics8120558
http://doi.org/10.1103/PhysRevLett.58.2436
http://www.ncbi.nlm.nih.gov/pubmed/10034748
http://doi.org/10.1088/2040-8978/12/4/045402
http://doi.org/10.1016/j.rinp.2020.103600
http://doi.org/10.1016/j.physb.2019.411918
http://doi.org/10.1016/j.ijleo.2020.164803
http://doi.org/10.1103/PhysRevLett.55.1768
http://doi.org/10.1103/PhysRevB.35.1020
http://www.ncbi.nlm.nih.gov/pubmed/9941510
http://doi.org/10.1103/PhysRevB.60.10576
http://doi.org/10.1103/PhysRevLett.72.633
http://www.ncbi.nlm.nih.gov/pubmed/10056484
http://doi.org/10.1117/12.21284
http://doi.org/10.1364/ACPC.2014.ATh3A.136
http://doi.org/10.1038/s41377-020-0325-9
http://doi.org/10.1364/OE.417951
http://doi.org/10.1038/s42254-020-00245-7
http://doi.org/10.1103/PhysRevResearch.2.043205
http://doi.org/10.1103/PhysRevB.61.10762


Mathematics 2022, 10, 1240 10 of 10

22. Trabelsi, Y.; Ali, N.B.; Segovia-Chaves, F.; Posada, H.V. Tunable 1D nano-photonic filter using Nematic liquid crystal and high-Tc
superconductors. Opt. Quant. Electron. 2021, 53, 712. [CrossRef]

23. Huang, X.Q.; Jiang, S.S.; Peng, R.W.; Hu, A. Perfect transmission and self-similar optical transmission spectra in symmetric
Fibonacci-class multilayers. J. Phys. Rev. E 2001, 59, 245104. [CrossRef]

24. Belhadj, W.; Ali, N.B.; Dakhlaoui, H.; Alsalmi, O.H.; Alsaif, H.; Torchani, A. Characterization of spectral features of cavity modes
in one-dimensional graphene-based photonic crystal structures, Eur. Phys. J. B 2021, 94, 198. [CrossRef]

25. Trabelsi, Y.; Ben Ali, N.; Belhadj, W.; Kanzari, M. Photonic Band Gap Properties of One-dimensional Generalized Fibonacci
Photonic Quasicrystal Containing Superconductor Material. J. Supercond. Nov. Magn. 2019, 32, 3541–3547. [CrossRef]

26. Gahef, T.; Bouazzi, Y.; Kanzari, M. Omnidirectional mirror at 1.3 and 1.55 µm for optical fiber communication by specific
deformation of Bragg reflector. Opt. Quant. Electron. 2017, 49, 95. [CrossRef]

27. Chittaranjan, N.; Alireza, A.; Ardhendu, S.; Narottam, D. Near- and mid-infrared bandgaps in a 1D photonic crystal containing
superconductor and semiconductor-metamaterial. Int. J. Mod. Phys. B 2019, 33, 1950219. [CrossRef]

28. Augusto, D.A.F.; Luis, M.G.S.; Vivechana, A. Study of the omnidirectional photonic bandgap for dielectric mirrors based on
porous silicon: Effect of optical and physical thickness. Nanoscale Res. Lett. 2012, 7, 391. [CrossRef]

29. Ali, N.B.; Kanzari, M. Designing of omni-directional high reflectors by using one-dimensional modified hybrid Fibonacci/Cantor
band-gap structures at optical telecommunication wavelength band. J. Mod. Opt. 2010, 57, 287–294. [CrossRef]

30. Sanjeev, S.; Rajender, K.; Singh, K.S.; Kumar, V.; Deepti, J. Design of a Narrow-Band Photonic Crystal Based Omni-Directional
Mirror for Optical Fiber Communication. IJECSE 2012, 1, 1825–1832.

31. Ali, N.B.; Trabelsi, Y.; Alsaif, H.; Badawi, I.; Gal, S. Omnidirectional High Reflectors Using Silica/Superconductor Fibonacci
Photonic Crystal for Optical Communication Applications. Phys. C: Supercond. Its Appl. 2022, 594, 1354021. [CrossRef]

32. Ahmad, I.; Ullah, S.; Ullah, S.; Habib, U.; Ahmad, S.; Ghaffar, A.; Alibakhshikenari, M.; Khan, S.; Limiti, E. Design and Analysis of
a Photonic Crystal Based Planar Antenna for THz Applications. Electronics 2021, 10, 1941. [CrossRef]

33. Mao, H.; Lu, G. Enhancement of THz Photoconductive Antenna Gain based on a Photonic Crystal Fiber Substrate. In Proceedings
of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI),
Singapore, 16 February 2022. [CrossRef]

34. Geler-Kremer, J.; Eltes, F.; Stark, P.; Sharma, A.; Caimi, D.; Offrein, B.J.; Fompeyrine, J.; Abel, S. A Non-Volatile Optical Memory in
Silicon Photonics. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) IEEE, San Francisco,
CA, USA, 6–10 June 2021.

35. Mohammadi, M.; Farahmand, M.; Olyaee, S.; Seifouri, M. An Overview of All-Optical Memories Based on Periodic Structures
Used in Integrated Optical Circuits. Silicon 2022, 14, 54. [CrossRef]

36. Bartlett, B.; Dutt, A.; Fan, S. Deterministic photonic quantum computation in a synthetic time dimension. Optica 2021, 8, 1515–1523.
[CrossRef]

37. Ochoa, M.; Algorri, J.F.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Recent Advances in Biomedical Photonic
Sensors: A Focus on Optical-Fibre-Based Sensing. Sensors 2021, 21, 6469. [CrossRef] [PubMed]

38. Ali, N.B.; Alsaif, H.; Trabelsi, Y.; Chughtai, M.T.; Dhasarathan, V.; Kanzari, M. High Sensitivity to Salinity-Temperature Using
One-Dimensional Deformed Photonic Crystal. Coatings 2021, 11, 713. [CrossRef]

39. Yu, B.; Luo, Y.; Chen, L.; Chu, Z.; Li, K.H. An optical humidity sensor: A compact photonic chip integrated with artificial opal.
Sens. Actuators B Chem. 2021, 349, 130763. [CrossRef]

40. Lio, G.E.; Ferraro, A. LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding
Medium. Photonics 2021, 8, 65. [CrossRef]

41. Shaltout, A.M.; Kim, J.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Ultrathin and multicolour optical cavities with embedded
metasurfaces. Nat. Commun. 2018, 9, 2673. [CrossRef]

42. Lio, G.E.; Ferraro, A.; Giocondo, M.; Caputo, R.; De Luca, A. Color Gamut Behavior in Epsilon Near-Zero Nanocavities during
Propagation of Gap Surface Plasmons. Adv. Opt. Mater. 2020, 8, 2000487. [CrossRef]

43. Tibuleac, S.; Magnusson, R.; Maldonado, T.A.; Young, P.P.; Holzheimer, T.R. Dielectric frequency-selective structures incorporating
waveguide gratings. IEEE Trans. Microw. Theory Tech. 2000, 48, 553–561. [CrossRef]

44. Tsitsas, N.L.; Uzunoglu, N.K.; Kaklamani, D.I. Diffraction of plane waves incident on a grated dielectric slab: An entire domain
integral equation analysis. Radio Sci. 2007, 42, RS6S22. [CrossRef]

45. Norton, S.M.; Turan, E.; Michael, G.M. Coupled-mode theory of resonant-grating filters. J. Opt. Soc. Am. A 1997, 14, 629–639.
[CrossRef]

46. Tsitsas, N.L. Efficient integral equation modeling of scattering by a gradient dielectric metasurface. EPJ Appl. Metamater. 2017,
43, 3. [CrossRef]

http://doi.org/10.1007/s11082-021-03275-2
http://doi.org/10.1103/PhysRevB.63.245104
http://doi.org/10.1140/epjb/s10051-021-00194-9
http://doi.org/10.1007/s10948-019-5099-z
http://doi.org/10.1007/s11082-017-0921-y
http://doi.org/10.1142/S0217979219502199
http://doi.org/10.1186/1556-276X-7-391
http://doi.org/10.1080/09500340903545289
http://doi.org/10.1016/j.physc.2022.1354021
http://doi.org/10.3390/electronics10161941
http://doi.org/10.1109/APS/URSI47566.2021.9703860
http://doi.org/10.1007/s12633-021-01621-3
http://doi.org/10.1364/OPTICA.424258
http://doi.org/10.3390/s21196469
http://www.ncbi.nlm.nih.gov/pubmed/34640788
http://doi.org/10.3390/coatings11060713
http://doi.org/10.1016/j.snb.2021.130763
http://doi.org/10.3390/photonics8030065
http://doi.org/10.1038/s41467-018-05034-6
http://doi.org/10.1002/adom.202000487
http://doi.org/10.1109/22.842027
http://doi.org/10.1029/2007RS003625
http://doi.org/10.1364/JOSAA.14.000629
http://doi.org/10.1051/epjam/2016014

	Introduction 
	Method and Problem Formulation 
	Transfer Matrix Method 
	Fibonacci and Generalized Fibonacci Quasi-Crystals Models 

	Results and Discussion 
	Conclusions 
	References

