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Abstract: The e-learning environment should support the handwriting of mathematical expressions
and accurately recognize inputted handwritten mathematical expressions. To this end, expression-
related information should be fully utilized in e-learning environments. However, pre-existing
handwritten mathematical expression recognition models mainly utilize the shape of handwritten
mathematical symbols, thus limiting the models from improving the recognition accuracy of a vaguely
represented symbol. Therefore, in this paper, a context-aided correction (CAC) model is proposed
that adjusts an output of handwritten mathematical symbol (HMS) recognition by additionally
utilizing information related to the HMS in an e-learning system. The CAC model collects learning
contextual data associated with the HMS and converts them into learning contextual information.
Next, contextual information is recognized through artificial intelligence to adjust the recognition
output of the HMS. Finally, the CAC model is trained and tested using a dataset similar to that of a
real learning situation. The experiment results show that the recognition accuracy of handwritten
mathematical symbols is improved when using the CAC model.

Keywords: handwritten mathematical symbol recognition; learning context; contextual data;
contextual information

MSC: 68T10; 97U50; 97U70

1. Introduction

Numerous symbols with an explicit meaning are used in various mathematical ex-
pressions. However, symbols in handwritten mathematical expressions are often vaguely
expressed for various reasons, including the handwriting style of the individual writer and
the characteristics of the input tool. Therefore, even in datasets widely applied in handwrit-
ten mathematical expression recognition research, many vaguely expressed symbols exist.

Therefore, to recognize a handwritten mathematical symbol (HMS) more accurately, it
is necessary to consider not only the shape of the HMS but also the data surrounding the
HMS, that is, the contextual data. The contextual data of an HMS can be broadly divided
into contextual data inside the expression and contextual data outside the expression.
Figure 1 shows two examples of HMS recognition errors. Among them, Figure 1a shows a
case in which the contextual data inside the expressions must be considered. If referring to
the other symbols in the expression, the incorrectly recognized “v” can be corrected as “a”.
By contrast, Figure 1b shows a case in which the contextual data outside the expression
must be considered. Here, when referring to the symbols used in the first two entered
expressions, the incorrectly recognized “u” can be modified as “a”.

Human-related data are ambiguous and diverse; therefore, it is necessary to utilize
contextual data to process them accurately. Accordingly, studies using contextual data
have been conducted to accurately recognize complex data, such as human behavior and
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living environments [1,2]. However, no studies have been conducted on the recognition
of an HMS that sufficiently consider contextual data in e-learning environments. This
paper proposes a use of contextual data outside the expression, which are obtained from an
e-learning system.
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Throughout this paper, learning context (LC) refers to the environment that influences
the learning, such as the learning contents and learning situations. Accordingly, the data
in the e-learning system, which are related to the data generated by the learner during
learning, are defined as learning contextual data (LC data). In addition, information
converted to allow LC data to be used directly for functions including automatic computer
recognition is defined as learning contextual information (LC information).

This paper describes a method for adjusting an output of HMS recognition (HMS
output) by effectively using LC data. To this end, symbols in mathematical expressions
extracted from the learning contents and system data regarding the input positions of these
are used as LC data. In addition, LC information is generated using LC data so that it
can be directly used to adjust the HMS output. By recognizing LC information through
artificial intelligence and correcting the HMS output, the effect of using learning context is
proven. The symbols and range of the learning contents used in the implementation and
experiment were limited to specific units of middle school mathematics, and the LC data
was randomly generated but configured similarly to an actual workbook.

2. Related Work
2.1. Handwritten Mathematical Expression Recognition

Handwritten mathematical expressions refer to expressions written by a user by hand
with a pen or similar tool. In an e-learning environment, handwritten mathematical expres-
sions are generally stored as digital data in the form of images and can be broadly divided
into offline handwritten mathematical expressions and online handwritten mathematical
expressions. Offline handwritten mathematical expressions contain only pixel data, such
as general photographic images, whereas online handwritten mathematical expressions
include stroke data obtained through a stylus or finger touch, that is, both coordinates of
the points and temporal sequence data [3]. This paper aims to identify online handwritten
mathematical symbols that can utilize LC data. Therefore, the handwritten mathematical
expressions and symbols mentioned in this paper refer to online ones.

As shown in Figure 2, the recognition process for handwritten mathematical expres-
sions is divided into symbol segmentation, symbol recognition, and structural analysis.
Whereas symbol segmentation is the process of grouping one or more strokes in a handwrit-
ten mathematical expression and dividing them into individual symbol images, symbol
recognition is the process of recognizing each symbol image and converting the images
into text-format data. A structural analysis is the process of identifying the spatial relations
between symbols in consideration of their size and position [3–6].
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Figure 2. Recognition process of handwritten mathematical expressions.

In the initial studies on handwritten mathematical expression recognition, the recogni-
tion process shown in Figure 2 was sequentially carried out according to an order; however,
there is a limitation in that the incorrect output of the previous process affects the following
process, and the contextual data inside the expression are not considered [5]. Owing to
these difficulties, although, many studies have attempted to apply all recognition processes
simultaneously as follows, a perfect level has yet to be reached.

• Geometric convex hull constraint, A-star completion estimate, book-keeping [7]
• Simultaneous segmentation and recognition through hidden Markov model (HMM)

approach [8]
• Simultaneous segmentation and recognition through probabilistic context-free

grammar [9]
• Gaussian mixture model, bidirectional long short-term memory (BLSTM) and recur-

rent neural network (RNN), two-dimensional probabilistic context-free grammars [10]
• BLSTM, Cocke–Younger–Kasami algorithm (CYK) [11]

In particular, studies using two-dimensional probabilistic context-free grammar, HMM,
and contextual information inside the expression have been conducted to solve the am-
biguous symbol recognition problem. However, it has been difficult to obtain efficient
recognition results because of symbols that have similar shape but different semantics, such
as {1, |, ′, comma}, {P, p}, {S, s}, {C, c}, {X, x,×}, {V, v} and {o, 0} [12,13].

2.2. Pre-Existing Handwritten Mathematical Expression Recognition Models

The Competition on Recognition of Handwritten Mathematical Expressions (CROHME)
is held to encourage handwritten mathematical expression recognition research. It provides
available data and evaluates the system performance using the same platform and testing
data. Numerous research teams have participated in six competitions from 2011 to 2019.
Three tasks were applied at 2019 CROHME: online handwritten mathematical expression
recognition (Task 1), offline handwritten mathematical expression recognition (Task 2), and
the detection of expressions in document pages (Task 3). Among them, the subtasks of
recognizing isolated symbols, Tasks 1a and 2a, and parsing expressions from the provided
symbols, Tasks 1b and 2b, were added for Tasks 1 and 2, respectively. For these tasks,
CROHME provided 12,178 expression data, 214,358 symbol data, 12,126 structure data,
and 38,280 expression detection data [14]. The experiment conducted in this paper used
the symbol dataset provided for the online single-symbol recognition task (Task 1a) at
2019 CROHME.

The online handwritten mathematical expression recognition task (Task 1) at 2019
CROHME involved eight research teams, as shown in Table 1 [14]. The team that obtained
the highest recognition rate was USTC-iFLYTEK (USTC-NELSLIP and iFLYTEK Research),
who achieved an accuracy of 80.73% in the simultaneous recognition of expression struc-
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tures and symbols, whereas the recognition accuracy when considering only the expression
structure and ignoring the symbol recognition result was 91.49%. The fact that the accuracy
of the symbol recognition barely exceeded 80% means that the symbol was incorrectly
recognized once every time five expressions were input in a real learning environment,
which is a level at which learners can still feel uncomfortable.

Table 1. Online handwritten mathematical expressions recognition results.

No Team Model (Based Method) Recognition Data

Accuracy

Structure +
Symbol Labels Structure

1 USTC-iFLYTEK TAP (RNN 1) [15] Online data 80.73% 91.49%

2 Samsung R&D 1 PCFG (RNN 1, PCFG 2) [11] Online data 79.82% 89.32%

3 MyScript MyScript Math recognizer
(BLSTM 3, LSTM 4) [14] Online data 79.15% 90.66%

4 Sun Yat-Sen U. MyScript Interactive Ink [4] Online data extracted
from images 77.40% 88.82%

5 Samsung R&D 2 Text/shape classifier (SVM 5) [16] Online data 65.97% 82.82%

6 PAL-v2 PAL-v2 (LSTM 4) [17]
Images converted from

online data 62.55% 79.15%

7 MathType MathType (LSTM 4) [14]
Images converted from

online data 60.13% 79.15%

8 TUAT body box (LSTM 4, PCFG 3,
SVM 5) [18]

Online data and offline
data (converted from

online data)
39.95% 58.22%

1 Recurrent Neural Network, 2 Probabilistic Context-free Grammar, 3 Bidirectional Long Short-Term Memory,
4 Long Short-Term Memory, 5 Support Vector Machine.

Further analysis of the misrecognized results of all teams suggests that errors in the
structure recognition commonly lead to errors in symbol recognition [14]. In addition, it
can be interpreted that there are many handwritten mathematical expressions in which
the information on the structure did not help in recognizing the symbols, even when the
structure was properly recognized. Taking the results of the USTC-iFLYTEK team as an
example, in 8.51% of all data, the structure was incorrectly recognized, and many structural
errors caused errors in symbol recognition. In addition, in 10.76% of all data, although a
correct structure recognition was achieved, an error occurred in the symbol recognition.
In most cases, information on the structure recognition outputs was not utilized or was
insufficient for recognition of an ambiguous symbol.

An RNN is a representative artificial neural network used to recognize handwritten
mathematical expressions. Because RNNs are suitable for recognizing sequential data of
variable lengths, they have been used in various studies, including a document summary
and email traffic modeling [19,20]. Because the length of online handwritten mathematical
expression data is not fixed, RNNs are typically used for the data recognition [15]. In
particular, long short-term memory (LSTM), an improved RNN model, adds an input
gate, a forget gate, and an output gate to the memory cells of the hidden layer. They
remove unnecessary memories from the cell state or add specific information required
to it concerning the inputs and the hidden states. All information can be linked to other
information with relatively large time intervals through the cell state [21,22]. As shown in
Table 1, many of the teams participating in the online handwritten mathematical expression
recognition task at 2019 CROHME used RNNs or LSTM.
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3. LC Data
3.1. Composition of Learning Contents

As shown in Figure 3, the learning contents stored in the e-learning system described
in this paper are composed of four types of learning parts: the learning topics, questions,
solving processes, and correct answers. The kth learning topic Sk contains expressions σk

1 ,
σk

2 , etc. The questions related to the learning topic Sk are Qk
1, . . . , Qk

Nk
. The lth question

Qk
l (1 ≤ l ≤ Nk) contains expressions ρk

(l)1, ρk
(l)2, etc. In addition, Wk

l , which is the solving

process related to the question Qk
l , contains expressions ωk

(l)1, ωk
(l)2, etc. Here, Ak

l , which is

the correct answer related to the question Qk
l , contains expressions αk

(l)1, αk
(l)2, etc.
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The universal set U of learning parts in the e-learning system and subsets of U
according to types of learning parts are defined as follows.

U ={P| P is a learning part in the e-learning system} (1)

U1 ={P ∈ U
∣∣∣ P is a learning topic} =

{
S1, S2, · · ·

}
(2)

U2 ={P ∈ U
∣∣∣ P is a question} =

{
Q1

1, Q1
2, · · · , Q2

1, Q2
2, · · ·

}
(3)

U3 ={P ∈ U
∣∣∣ P is a solving process} =

{
W1

1 , W1
2 , · · · , W2

1 , W2
2 , · · ·

}
(4)

U4 ={P ∈ U
∣∣∣ P is a correct answer} =

{
A1

1, A1
2, · · · , A2

1, A2
2, · · ·

}
(5)

For a learning part P ∈ U, L1(P), L2(P), L3(P), and L4(P) are defined as learning
part sets of learning topics, questions, solving processes, and correct answers related
to P, respectively.

L1(P) =
{

P′ ∈ U1
∣∣ P′ is a learning topic related to P

}
(6)

L2(P) =
{

P′ ∈ U2
∣∣ P′ is a question related to P

}
(7)

L3(P) =
{

P′ ∈ U3
∣∣ P′ is a solving process related to P

}
(8)

L4(P) =
{

P′ ∈ U4
∣∣ P′ is a correct answer related to P

}
(9)
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For example, L1
(
Q1

1
)
=
{

S1}, L2
(
S1) = {

Q1
1, Q1

2, · · · , Q1
N1

}
, L3
(
Q1

1
)
=
{

W1
1
}

, and

L4
(
S1) = {A1

1, A1
2, · · · , A1

N1

}
.

For a learning part P, F(P) is defined as a set of all expressions included in P.

F(P) ={ϕ| ϕ is an expression in P} (10)

For example, F
(
W1

1
)
=
{

ω1
(1)1, ω1

(1)2, · · ·
}

.

3.2. Extracted Symbol and Input Position

The expressions in the learning contents of each learning part contain symbols. An
extracted symbol is defined as a symbol extracted from the expressions in the learning
contents. Table 2 lists an example of extracted symbols. Because the learner inputs mathe-
matical expressions based on these symbols, it is necessary to use the extracted symbols
as LC data for correcting the outputs of the ambiguously expressed symbols in the HMS
recognition algorithm.

Table 2. Sample symbols extracted from learning contents.

Learning Part Learning Contents Expressions Extracted Symbols

Learning topic

<Linear Inequality>
When the terms on the right side of the

inequality are transposed to the left side, the
inequality that appears in either

(Linear Expression) < 0,
(Linear Expression) > 0,
(Linear Expression) ≤ 0,

and (Linear Expression) ≥ 0
is called the linear inequality.

(Linear Expression) < 0 <, 0

(Linear Expression) > 0 >, 0

(Linear Expression) ≤ 0 ≤, 0

(Linear Expression) ≥ 0 ≥, 0

Question
Find the range of values of the constant a when
the root of equation x− 2 = x+a

3 is not greater
than 1.

a a

x− 2 = x+a
3 x, a, −, =, +, , 2, 3

1 1

Solving process

3x− 6 = x + a
2x = a + 6

x = a+6
2

Since x ≤ 1,
a+6

2 ≤ 1
a + 6 ≤ 2

3x− 6 = x + a x, a, −, =, +, 3, 6

2x = a + 6 x, a,=,+, 2, 6

x = a+6
2 x, a, =, +, , 6, 2

x ≤ 1 x, ≤, 1
a+6

2 ≤ 1 a, +, , ≤, 6, 2, 1

a + 6 ≤ 2 a, +, ≤, 6, 2

Correct answer a ≤ −4 a ≤ −4 a, ≤, −, 4

For an expression ϕ, S(ϕ) is defined as a set of all extracted symbols in ϕ.

S(ϕ) ={s| s is an extracted symbol in ϕ} (11)

For example, S(a ≤ −4) = {a , ≤, −, 4}.
For a symbol s and a learning part set X, P(s, X) is defined as a set of all learning

parts containing s within X.

P(s, X) =
{

P ∈ X | s ∈ Uϕk∈F(P)S(ϕk)
}

(12)
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Therefore, P(s, U1), P(s, U2), P(s, U3), and P(s, U4) are sets of learning topics,
questions, solving processes, and correct answers that include an expression containing
symbol s, respectively.

The input position of the expression is also used as LC data in this paper. As shown in
the example in Figure 4, there are two types of places where a learner enters an expression
during learning: solving processes and answers. The symbols that learners primarily use at
each position are different. In addition, even if the same symbol is used for each position,
the meaning may be interpreted differently.
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3.3. LC Data from e-Learning System

In this paper, it is assumed that learners try to write similar solving processes and
answers to model-solving processes and correct answers, respectively, as much as possible
with reference to contents in learning topics and questions, and that the following data can
be obtained as LC data along with HMS x from an e-learning system.

• P1(x) is the learning topic that the learner is studying when x is input.
• P2(x) is the question that the learner is solving when x is input.
• P3(x) is the solving process of the question that the learner is solving when x is input.
• P4(x) is the correct answer of the question that the learner is solving when x is input.
• The input position i(x) is the value indicating which type of learning part x is input in.

i(x) =
{

0, x is input in a solving process.
1, x is input in an answer.

(13)

We defined symbol list D, which is an ordered list of all symbols used as an output of
the HMS recognition. The symbol list size nD is the total number of symbols in symbol list
D, and di ∈ D (1 ≤ i ≤ nD) represents the ith symbol of symbol list D, where i is the index
of symbol di.

The HMS information used in this paper is a row vector expressed as [p1 p2 · · · pnD ].
Each element pi (1 ≤ i ≤ nD) of the HMS information is the probability that the inter-
pretation of symbol di ∈ D is the correct one. Given HMS x, two vectors for the HMS
information are used: the HMS output yo(x) = [po

1 po
2 · · · po

nD
], which is the recognition

output of HMS x, and the context-applied output yr(x) = [pr
1 pr

2 · · · pr
nD

], which is the
adjusted output of the HMS output yo(x) that is reflects the LC information.

The definitions of all symbols and functions in Section 3 are summarized in Appendix A.

4. CAC Model
4.1. Composition of CAC Model

In this paper, a context-aided correction (CAC) model is designed as a method for
correcting the HMS output using the learning context. It consists of three parts: an LC data
collection module, LC information generation module, and HMS output correction module.
The composition and function of each module are shown in Figure 5.
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First, the LC data collection module collects LC data related to the HMS, such as
symbols included in the learning contents and the input position of the expression, from
the e-learning system. Next, the LC information generation module converts the collected
LC data into LC information so that it can be used in the artificial neural network. Finally,
the HMS output correction module recognizes the LC information through an artificial
neural network based on the LSTM and corrects the incorrect HMS output to improve the
recognition accuracy.
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4.2. LC Data Collection Module

The LC data collection module collects four learning parts, which are P1(x), P2(x), P3(x),
and P4(x), and input position, which is i(x), for the HMS x from the e-learning system.

4.2.1. Extracted Symbol Matrix Generation

En(x) (1 ≤ n ≤ 4) is a set of extracted symbols for each learning part Pn(x).

En(x) = Uϕk∈F(Pn(x))S(ϕk) (14)

Therefore, E1(x), E2(x), E3(x), and E4(x) are sets of extracted symbols within the
learning topic, the question, the solving processes, and the correct answers related to the
question that the learner is solving when symbol x is input, respectively.

The extracted symbol matrix E is a matrix containing information about the symbols
included in the expressions of each learning part. A 4× nD matrix E is obtained as follows:

E =


e11 e12 · · · e1nD
e21 e22 · · · e2nD
e31 e32 · · · e3nD
e41 e42 · · · e4nD

 (15)

where eni =

{
0, di /∈ En
1, di ∈ En

, and symbol di means the ith symbol of the symbol list D.

4.2.2. Symbol Frequency Matrix Generation

Assuming that learners input expressions related to the learning contents during
mathematic learning, symbols of learning contents tend to be frequently used in expressions
input by learners. However, not all symbols have the same frequency. It is therefore
necessary to obtain symbol frequency rates, which indicate how often symbols in one
learning part are used in another learning part, and to reflect these in adjusting the HMS
output. Symbol frequency rates can be obtained from learning contents stored in an e-
learning system using the statistical probability of how much the symbols of each learning
part match those of the other learning parts.

For a symbol s and a learning part set X, LPrc(s, X) and LAns(s, X) are defined as sets
of solving processes and answers, respectively, related to all learning parts containing s
within X.

LPrc(s, X) = UPk∈P(s, X)L3(Pk) (16)

LAns(s, X) = UPk∈P(s, X)L4(Pk) (17)

For example, LPrc(s, U2) is the set of solving processes related to all questions con-
taining symbol s, and LAns(s, U3) is the set of answers related to all solving processes
containing symbol s.

For a symbol s and a learning part set X, the symbol frequency rate fPrc(s, X) is defined
as the frequency at which expressions containing s are used in the solving processes related
to learning parts including s in X and calculated as follows.

fPrc(s, X) =
∑Pl∈P(s, LPrc(s, X)) n(F(Pl))

∑Pk∈ LPrc(s, X) n(F(Pk))
(18)

where n(A) means the number of all elements in set A. For example, fPrc(s, U2) is, in all
solving processes related to questions containing s, the number of expressions containing s,
divided by the number of all expressions.
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Similar to fPrc(s, X), for symbol s and learning part set X, the symbol frequency rate
fAns(s, X) is defined as the frequency at which expressions containing s are used in the
correct answers related to learning parts including s in X and is calculated as follows.

fAns(s, X) =
∑Pl∈P(s, LAns(s, X)) n(F(Pl))

∑Pk∈ LAns(s, X) n(F(Pk))
(19)

Using the symbol frequency rates of symbols in each learning part, the symbol fre-
quency matrices RPrc and RAns with a size of 4× nD can be obtained. RPrc represents
the symbol frequency rates of symbols in the solving process when they are used in each
learning part, and RAns represents the symbol frequency rates of symbols in the correct
answer when they are used in each learning part, as shown in Equations (20) and (21):

RPrc =


fPrc(d1, U1) fPrc(d2, U1) · · · fPrc(dnD, U1)
fPrc(d1, U2) fPrc(d2, U2) · · · fPrc(dnD, U2)
fPrc(d1, U3) fPrc(d2, U3) · · · fPrc(dnD, U3)
fPrc(d1, U4) fPrc(d2, U4) · · · fPrc(dnD, U4)

 (20)

RAns =


fAns(d1, U1) fAns(d2, U1) · · · fAns(dnD, U1)
fAns(d1, U2) fAns(d2, U2) · · · fAns(dnD, U2)
fAns(d1, U3) fAns(d2, U3) · · · fAns(dnD, U3)
fAns(d1, U4) fAns(d2, U4) · · · fAns(dnD, U4)

 (21)

In the LC data collection module, the symbol frequency matrix Ro is selected as follows
by reflecting the input position i(x) of the expression to adjust the recognition output of
the input HMS x efficiently.

Ro =

{
RPrc, i(x) = 0 (when x is in an expression of a solving process)
RAns, i(x) = 1 (when x is in an expression of an answer)

(22)

4.3. LC Information Generation Module

The LC information generation module receives the extracted symbol matrix E and
symbol frequency matrix Ro from the LC data collection module and generates the expected
symbol matrix R, which is the LC information.

The LC information used in the CAC model is the expected symbol list for the input
HMS and the expected value of each expected symbol. For an HMS, the expected symbol
is defined as a symbol with the probability to be the correct one, and the expected value
means the probability.

The learner tends to use symbols related to the learning contents of each learning part
when inputting the expression. Therefore, in the CAC model, the extracted symbols of each
learning part are considered the expected symbols, and the expected value of each symbol
is set to the symbol frequency rate of this. Therefore, from the extracted symbol matrix
E (Equation (15)) generated through the extracted symbols of each learning part and the
symbol frequency rate matrix Ro (Equation (22)) generated through the symbol frequency
rate and the input position of the equation, the expected symbol matrix R with a size of
4× nD, which is the LC information, is calculated as follows:

R = Ro ⊗ E =


r11 r12 · · · r1nD
r21 r22 · · · r2nD
r31 r32 · · · r3nD
r41 r42 · · · r4nD

 (23)

where ⊗ stands for element-wise multiplication of the matrices. In addition, each element
rti of the expected symbol matrix R is the expected value of the symbol di ∈ D obtained
from each learning part (t).
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4.4. HMS Output Correction Module and Output

The HMS output correction module receives the HMS output yo(x) and the expected
symbol matrix R obtained from the LC information generation module, which are merged
as follows and transformed into LC information matrix C with a size of 5× nD.

C =

[
yo(x)

R

]
=


po

1 po
2 · · · po

nD
r11 r12 · · · r1nD
r21 r22 · · · r2nD
r31 r32 · · · r3nD
r41 r42 · · · r4nD

 (24)

The 2nd, 3rd, 4th, and 5th row of matrix C, which are the rows of the expected symbol
matrix R, are referred to as sub-contextual information 1, 2, 3, and 4 respectively. To apply
these to the HMS output adjustment, one aspect must first be solved, i.e., the problem
regarding how much weight each sub-contextual piece of information must have in the
coordination of the LC information to achieve the best results. It is difficult to obtain an
optimal weight, and even if it is obtained, the list of symbols used for each learning part
and the symbol frequency rate are different depending on the learning range and learning
contents; therefore, the values also change when the learning conditions change. In the
CAC model, a complex algorithm for obtaining these variable weights is implemented
using an artificial neural network.

Therefore, the role of the artificial neural network used to recognize the LC information
is to improve the accuracy of the HMS output by assigning optimal weights to each sub-
contextual information. To this end, in the artificial neural network, the HMS output
should be related to all sub-contextual information, and each weight should be applied
appropriately. However, in matrix C, sub-contextual information is sequentially listed
following the HMS output; therefore, an appropriate method for linking the HMS output
with all sub-contextual information is required. To efficiently solve this problem, in this
paper, LSTM was applied as shown in Figure 6. The parameters of LSTM play the role of
weight to be applied to each element of sub-contextual information (x2, x3, x4, and x5) to
be calculated with HMS output (x1). In detail, appropriate weights between HMS output
and all sub-contextual information are calculated through the cell state (ct) responsible
for long-term memory in LSTM. In addition, the relationship between sub-contextual
information through the hidden state (ht) responsible for short-term memory along with
cell state is also reflected in the weight. Matrix C is transformed into the context-applied
output yr(x) =

[
pr

1 pr
2 · · · pr

nD

]
, which is a row vector with a size of 1× nD, through

the artificial neural network constructed using LSTM.
Finally, considering the context-applied output yr(x), θr, which is the index of the

element with the maximum value, is obtained. That is, θr = argmax
1≤i≤nD

(
pr

i
)
. As a result, the

symbol dθr ∈ D with index θr becomes the final output of the CAC model.
The definitions of all symbols and functions in Section 4 are summarized in Appendix B.
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Figure 6. Application of LSTM to LC information recognition. t is the timestep; xt, ct, ht are the input
vector, cell state, and hidden state, respectively, at timestep t.

5. Experiment
5.1. Experiment Environment

In this paper, the results of HMS recognition were compared according to whether
the LC information was applied using a dataset configured similarly to the actual learning
conditions. To this end, units of rational numbers, the calculation of the monomials, and the
calculation of the polynomials in a mathematics workbook [23] for middle school students
were set up as experimental targets. Like the composition of learning contents in this paper,
each question in the workbook is related to a topic, a solving process, and a correct answer.
The learning contents within the units consisted of 11 topics and 557 questions related to
those topics, and a total of 50 symbols were used. The list of all symbols used in these units
is provided in Table 3.

As discussed above, in the analyzed data, it can be confirmed that there is a difference
in the symbol frequency rate between the solving processes and the correct answers.
Assuming that the learners studying these units write expressions that are similar to
the model-solving processes, as shown in Appendices C–F, the extracted symbols from
the learning topics, questions, and solving processes are used more repeatedly in the
expressions of the solving processes than in the expressions of the answer.

Accordingly, as shown in Table 4, 89,477 data points for 50 symbols among the datasets
of the 2019 CROHME online symbol recognition task (Task 1a) were used for the experiment.
Among them, 81,265 were training data, and 8212 were test data.
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Table 3. Symbols used in the experiment.

Index Symbol Latex Index Symbol Latex Index Symbol Latex

1 7 7 18 b b 35 c c

2 1 1 19 a a 36 A A

3 × \times 20 F F 37 B B

4 t t 21 C C 38 [ [

5 − - 22 5 5 39 ] ]

6 2 2 23 9 9 40 < \lt
7 x x 24 8 8 41 L L

8 = = 25 π \pi 42 h h

9 n n 26 d d 43 E E

10 y y 27 ÷ \div 44 V V

11 z z 28 0 0 45 s s

12 ) ) 29 g g 46 q q

13 ( ( 30 p p 47 l l

14 + + 31 r r 48 v v

15 6 6 32 m m 49 M M

16 3 3 33 ≤ \leq 50 I I

17 4 4 34 . .

Table 4. Composition of dataset used in the experiment.

Purpose
Training Set

(HMS Recognition and LC
Information Recognition)

Testing Set Total

Number of data points 81,265 8212 89,477

However, the CROHME dataset did not contain the LC data required for this ex-
periment. Two methods can be considered to arbitrarily match the learning contents of
the workbook and the CROHME dataset: (1) a method of allocating the symbols of the
CROHME dataset to the LC data constructed from the learning contents, and (2) a method
of allocating LC data to the symbols of the CROHME dataset similarly to the learning con-
tents. In the method of (1), the same LC data as the actual learning contents are composed,
but many of the symbols of the CROHME dataset are omitted or duplicated. On the other
hand, the method of (2) uses all symbols of the CROHME dataset without omission or
duplication, but the LC data do not completely match the learning content. In this paper,
method (2) was used as follows.

• Input position: 16,821 data points of the training set and 1714 data points of the test
set, randomly selected according to the ratio of pre-investigated statistics, were set to
the symbols of the expression in the answer parts; that is, their input positions were
set to answer parts. The others’ input positions were set to solving processes.

• Extracted symbols: As shown in Table 5, for a given symbol, there are 16 cases
(00 to 15) of a method of designating extracted symbols of the four learning parts,
depending on which learning part contains the symbol for data where the symbol
is the correct one. Similarly, there are 16 cases for data where the symbol is not the
correct one as well. Therefore, all data can be divided into 32 cases for each symbol.
For each symbol, we randomly portioned the entire CROHME dataset according to
the 32 ratios calculated from the number of symbols in the learning contents to make
the setting similar to the actual learning environment. As can be seen in Table 6,
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which compares the ratio of extracted symbols for symbol ‘2’, in all cases in Table 5,
we matched the ratios of extracted symbols assigned to the CROHME dataset to the
ratios of the symbols in the learning contents. As a result, the symbol frequency
rates of the CROHME dataset became the same as the symbol frequency rates of the
learning contents.

Table 5. Classification of LC data according to whether the symbol is included in each learning part.

Learning Part
Whether to Include the Symbol (Case 00 to 15) 1

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Learning topic × × × × × × × × # # # # # # # #
Question × × × × # # # # × × × × # # # #

Solving process × × # # × × # # × × # # × × # #
Answer × # × # × # × # × # × # × # × #

1 #: the symbol is included in the learning part, ×: the symbol is not included in the learning part.

Table 6. Classification of LC data for symbol ‘2’ and the number of data.

Case
Number of Data (Correct Symbol Is ‘2’) Number of Data (Correct Symbol Is Not ‘2’)

Workbook Train Dataset Test Dataset Workbook Train Dataset Test Dataset

00 58 (1.8%) 95 (1.8%) 10 (1.9%) 183 (10.4%) 6150 (10.4%) 620 (10.4%)
01 41 (1.2%) 66 (1.2%) 7 (1.3%) 62 (3.5%) 2084 (3.5%) 210 (3.5%)
02 136 (4.1%) 219 (4.1%) 22 (4.1%) 58 (3.3%) 1949 (3.3%) 196 (3.3%)
03 111 (3.4%) 179 (3.4%) 18 (3.4%) 41 (2.3%) 1378 (2.3%) 139 (2.3%)
04 244 (7.4%) 394 (7.4%) 40 (7.4%) 324 (18.4%) 10,888 (18.4%) 1097 (18.4%)
05 157 (4.8%) 253 (4.8%) 26 (4.8%) 179 (10.2%) 6015 (10.2%) 606 (10.2%)
06 980 (29.8%) 1581 (29.8%) 160 (29.8%) 244 (13.9%) 8200 (13.9%) 826 (13.9%)
07 1042 (31.7%) 1681 (31.7%) 170 (31.7%) 157 (8.9%) 5276 (8.9%) 532 (8.9%)
08 13 (0.4%) 21 (0.4%) 2 (0.4%) 227 (12.9%) 7628 (12.9%) 769 (12.9%)
09 4 (0.1%) 6 (0.1%) 1 (0.2%) 47 (2.7%) 1579 (2.7%) 159 (2.7%)
10 11 (0.3%) 18 (0.3%) 2 (0.4%) 13 (0.7%) 437 (0.7%) 44 (0.7%)
11 9 (0.3%) 15 (0.3%) 1 (0.2%) 4 (0.2%) 134 (0.2%) 14 (0.2%)
12 58 (1.8%) 94 (1.8%) 9 (1.7%) 56 (3.2%) 1882 (3.2%) 190 (3.2%)
13 48 (1.5%) 77 (1.5%) 8 (1.5%) 59 (3.4%) 1983 (3.4%) 200 (3.4%)
14 194 (5.9%) 313 (5.9%) 32 (6.0%) 58 (3.3%) 1949 (3.3%) 196 (3.3%)
15 178 (5.4%) 287 (5.4%) 29 (5.4%) 48 (2.7%) 1613 (2.7%) 163 (2.7%)

Total 3284 5299 537 1760 59,145 5961

Table 7 shows samples in which input position and extracted symbols are arbitrarily
assigned to data points.

In addition, the TAP model was used to recognize the HMS of all datasets. TAP is
the model used by the USTC-iFLYTEK team and achieved the best results for the online
handwritten mathematical expression recognition task (Task 1) at 2019 CROHME, and its
source code is open for use in other studies [15].

As discussed in Section 4.4, the artificial neural network used in the HMS output cor-
rection module of the CAC model should be able to grasp the relationship between the HMS
output and all sub-contextual information sequentially arranged in the LC information.
Therefore, the LSTM was used for the artificial neural network. For efficient training and
an adjustment of the outputs, dropout [24], fully connected [24], and softmax [25] layers
were added to the artificial neural network, as shown in Table 8. The output dimension
of each layer was set to 50, which is the total number of symbols used in this paper. To
prevent an overfitting, the dropout ratio was set to 0.5.
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Table 7. Sample data points assigned LC data.

CROME Dataset LC Data

HMS
Correct
Symbol

Extracted Symbols
Input

PositionLearning
Topic Question Solving

Process
Correct
Answer
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Table 8. Configuration of LC information recognition based artificial neural network.

No. Layer Setting

1 LSTM Output dimension = 50

2 Dropout Rate = 0.5

3 Fully connected (dense) Output dimension = 50

4 Softmax Output dimension = 50

5.2. Training and Testing

Two groups were used in the experiment. As shown in Table 9, in experiment group I,
the TAP model was trained using 81,265 HMS data points. The TAP was tested at every
epoch on the testing set. Subsequently, the entire training set was recognized again through
the trained TAP model to obtain the HMS output dataset for experiment group II. In
experiment group II, the CAC model was trained using LC data constructed by the method
discussed in Section 5.1, along with the obtained HMS output dataset. At this time,
24,379 data points, which is 30% of the total training set, were used as the validation set.
The CAC model of experiment group II was tested at every epoch on the validation set.
The training of each experiment group ended before the decrease in recognition accuracy.

Table 9. Training set used for each experimental group.

Experimental
Group

Dataset (81,265 Data Points) Artificial Neural
Network to TrainTraining Set Validation Set

I HMS (81,265 data points) - TAP

II

HMS output data obtained using
the model of experimental group I
after training (56,886 data points)

24,379 data
points (30%) CAC

LC data (56,886 data points)

The model evaluation test measured the accuracy of the same testing set in both
experiment groups I and II. The HMS recognition results of the testing set obtained using
the trained TAP model of experiment group I were used as the HMS output data for
experiment group II.
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5.3. Results and Discussion

As shown in Table 10, the results for experiment group I showed that the accuracy of
the TAP model, which recognized only the shape of the HMS, was 93.22%. On the other
hand, the results of experiment group II showed that the recognition accuracy of the CAC
model, which adjusts the HMS outputs of the TAP model by applying the LC information,
was 97.15%, which was 3.93% higher than that of experiment group I. These results indicate
that the LC information recognition improves the accuracy of the HMS recognition results.

Table 10. Experiment results.

Experimental
Group Model Test Subject

Accuracy
(Number of Symbols)

Solving
Processes

(6498)

Answers
(1714)

Solving Process +
Answers

(8212)

I TAP Recognition
of HMS

93.20%
(6056)

93.29%
(1599)

93.22%
(7655)

II TAP + CAC

Recognition
of HMS

outputs and
LC data

96.48%
(6269)

99.71%
(1709)

97.15%
(7978)

The recognition accuracies of the TAP model for HMS in solution processes and
answers are similar, at 93.20% and 93.29%, respectively, while the recognition accuracies
of the CAC model differ by 96.48% and 99.71%, respectively. This means that the effect of
using LC information in the solution processes is different from that in the correct answers.

More specifically, the recognition results of experiment groups I and II were compared,
as shown in Table 11. In total, 404 data points, which were the symbols with an ambiguous
representation misrecognized by the TAP model, were accurately adjusted through the
CAC model. Conversely, 81 data points that were properly recognized in the TAP model
were incorrectly recognized as they went through the CAC model; however, they accounted
for 0.99% of the total data, which is a relatively small number.

Since HMS recognition and LC information recognition processes are independent of
each other, not only the TAP model used in the experiment but also any recognition model
that outputs the probability of each symbol as a result of HMS recognition can be linked
with the CAC model. In addition, no matter which model it is interlocked with, the CAC
model will be able to perform.

In the experiment, the actual LC data of e-learning systems could not be tested. In
addition, there is a limitation in that data of various learning content ranges could not be
tested. These are because sufficient LC data paired with HMS could not be obtained. Future
work will further refine LC data and experiment with a wide range of data. In addition,
some expressions entered by learners in solving processes and answers might not match
model-solving processes and correct answers, respectively. If learners use symbols different
from the ones proposed in the learning contents, LC data could worsen the recognition
performance of the CAC model. The recognition method of HMS entered by learners
inconsistent with LC data is a task to be studied in the future.

In this paper, a simple LSTM model is used as a method for recognizing learning
context information in the CAC model. However, methods using more elaborately set LSTM
or other artificial intelligence models (such as BLSTM) need to be studied in the future.
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Table 11. Corrected and missed symbols using the CAC model.

Recognition Result
Number of Data

Symbols with Recognition Results

TAP TAP + CAC Output of TAP→ Output
of CAC (Number of Data) HMS

Error Correct
404

(4.92%)

× → x (47)
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ture work will further refine LC data and experiment with a wide range of data. In addi-

tion, some expressions entered by learners in solving processes and answers might not 

match model-solving processes and correct answers, respectively. If learners use symbols 

different from the ones proposed in the learning contents, LC data could worsen the recog-

nition performance of the CAC model. The recognition method of HMS entered by learn-

ers inconsistent with LC data is a task to be studied in the future. 

...
...

6. Conclusions

An e-learning system should support learners who learn mathematics to write mathe-
matical expressions freely. However, handwritten mathematical expressions contain many
ambiguous symbols. Most existing studies have mainly used the shape of the symbol to rec-
ognize the HMS. This method has limitations in terms of accurately predicting ambiguous
symbols, even for humans.

In this paper, the CAC model was designed to use LC data and improve the results of
existing studies on e-learning environments. In the CAC model, sufficient LC information
was generated using data outside the expressions, i.e., LC data that are relatively indirectly
related to the HMS. In the process of using LC information to adjust the output of the HMS
recognition, the optimal weight is applied to each sub-contextual piece of LC information
through an artificial neural network.

In the experiment, the existing and CAC models were trained and tested on a dataset
similar to the actual learning environment. The results showed that the CAC model
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corrected the misrecognized results of the existing model, and the recognition accuracy
improved. Therefore, it was found that the use of LC information proposed in this paper
has a positive effect on improving the accuracy of HMS recognition.
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Appendix A

Table A1. Definitions of Symbols and Functions in Section 3.

Section Symbol/
Function Definition Equation

Section 3.1

U the universal set of learning parts in the e-learning system (1)
U1 the set of all learning topics (2)
U2 the set of all questions (3)
U3 the set of all solving process (4)
U4 the set of all correct answers (5)

L1(P) the learning part set of learning topics related to a learning part P (6)
L2(P) the learning part set of questions related to a learning part P (7)
L3(P) the learning part set of solving processes related to a learning part P (8)
L4(P) the learning part set of correct answers related to a learning part P (9)
F(P) the set of all expressions included in a learning part P (10)

Section 3.2
S(ϕ) the set of all extracted symbols in an expression ϕ (11)

P(s, X) the set of all learning parts containing a symbol s within a learning part set X (12)

Section 3.3

P1(x) the learning topic that the learner is studying when HMS x is input
P2(x) the question that the learner is solving when HMS x is input

P3(x) the solving process of the question that the learner is solving when HMS x
is input

P4(x) the correct answer of the question that the learner is solving when HMS x
is input

i(x) the value indicating which type of learning part when HMS x is input (13)
D the ordered list of all symbols used as an output of the HMS recognition
nD the total number of symbols in symbol list D

di ∈ D the ith symbol of symbol list D
yo(x) the HMS output, which is the recognition output of HMS x

yr(x) the context−
applied output, which is the adjusted output of the HMS output yo(x)
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Appendix B

Table A2. Definitions of Symbols and Functions in Section 4.

Section Symbol/
Function Definition Equation

Section 4.2

En(x) the set of extracted symbols for each learning part Pn(x) (14)

E the matrix containing information about the symbols included in the expressions
of each learning part (15)

the set of solving processes related to all learning parts containing a symbol s
within a learning part set X (16)

LAns(s, X)
the set of answers related to all learning parts containing a symbol s within a

learning part set X (17)

fPrc(s, X)
the frequency at which expressions containing a symbol s are used in the solving
processes related to learning parts including a symbol s in a learning part set X (18)

fAns(s, X)
the frequency at which expressions containing a symbol s are used in the correct

answers related to learning parts including a symbol s in a learning part set X (19)

RPrc

the matrix that represents symbol frequency rates of symbols in the solving
process when they are used in the learning topics, the questions, the solving

processes, and the correct answers
(20)

RAns

the matrix that represents symbol frequency rates of symbols in the correct answer
when they are used in the learning topics, the questions, the solving processes,

and the correct answers
(21)

Ro
the matrix selected from RPrc and RAns by reflecting the input position i(x)

of the expression (22)

Section 4.3 R the expected symbol matrix, which is calculated as Ro ⊗ E (23)

Section 4.4
C the LC information matrix, which is a merge of the HMS output yo and the

expected symbol matrix R (24)

θr the index of the element with the maximum value in the context-
applied output yr(x)

Appendix C

Table A3. Sample Symbol Frequency Rates in Solving Processes and Correct Answers for Symbols
Extracted from Learning Topics.

Extracted Symbols of
Learning Topics

Symbol Frequency Rate
Extracted Symbols of

Learning Topics

Symbol Frequency Rate

Solving
Process

Correct
Answer

Solving
Process

Correct
Answer

Numbers

0 133/243
(55%)

51/100
(51%)

Signs

− 682/1326
(51%)

223/554
(40%)

1 145/243
(60%)

41/100
(41%) —(fraction) 423/1326

(32%)
123/554

(22%)

2 126/243
(52%)

39/100
(39%) (

388/1083
(36%)

10/454
(2%)

5 84/243
(35%)

35/100
(35%) )

388/1083
(36%)

10/454
(2%)

...
...

...
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Appendix D

Table A4. Sample Symbol Frequency Rates in Solving Processes and Correct Answers for Symbols
Extracted from Questions.

Extracted Symbols of
Questions

Symbol Frequency Rate
Extracted Symbols of

Questions

Symbol Frequency Rate

Solving
Process

Correct
Answer

Solving
Process

Correct
Answer

Numbers

2 816/1048
(78%)

244/423
(58%)

Uppercases

A 41/115
(36%)

2/25
(8%)

3 535/821
(65%)

115/323
(36%) B 28/92

(30%)
0/18
(0%)

1 406/606
(67%)

98/216
(45%) C 21/48

(44%)
2/9

(22%)

4 279/517
(54%)

53/195
(27%) S 29/40

(73%)
13/16
(81%)

...
...

...
...

...
...

Lowercases

x 474/667
(71%)

169/253
(67%)

Signs

− 553/718
(77%)

200/290
(69%)

a 331/436
(76%)

132/177
(75%) ( 265/664

(40%)
7/295
(2%)

y 257/394
(65%)

94/156
(60%) )

265/661
(40%)

7/294
(2%)

b 214/314
(68%)

89/120
(74%) +

424/644
(66%)

98/231
(42%)

...
...

...
...

...
...

Appendix E

Table A5. Sample Frequency Rates in Different Solving Processes and Correct Answers for Symbols
Extracted from Such Processes.

Extracted Symbols of
Solving Processes

Symbol Frequency Rate
Extracted Symbols of

Solving Processes

Symbol Frequency Rate

Solving
Process 1

Correct
Answer

Solving
Process 1

Correct
Answer

Numbers

2 1744/2367
(74%)

514/914
(56%)

Uppercases

A 270/488
(55%)

2/105
(2%)

1 980/1638
(60%)

267/555
(48%) B 96/259

(37%)
0/49
(0%)

3 928/1542
(60%)

224/602
(37%) C 46/137

(34%)
4/25
(16%)

4 492/1011
(49%)

120/396
(30%) S 68/82

(83%)
26/30
(87%)

...
...

...
...

...
...
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Table A5. Cont.

Extracted Symbols of
Solving Processes

Symbol Frequency Rate
Extracted Symbols of

Solving Processes

Symbol Frequency Rate

Solving
Process 1

Correct
Answer

Solving
Process 1

Correct
Answer

Lowercases

x 886/1297
(68%)

313/524
(60%)

Signs

=
2972/3269

(91%)
73/1189

(6%)

a 560/786
(71%)

232/337
(69%) − 1350/1750

(77%)
413/679

(61%)

b 390/620
(63%)

146/224
(65%) +

878/1391
(63%)

223/529
(42%)

y 318/558
(57%)

155/260
(60%) —(fraction) 710/1097

(65%)
175/422

(41%)

...
...

...
...

...
...

1 Only cases with two or more expressions in the solving process of one question were counted.

Appendix F

Table A6. Sample Symbol Frequency Rates in Solving Processes and Correct Answers for Symbols
Extracted from Correct Answers.

Extracted Symbols of
Correct Answers

Symbol Frequency Rate
Extracted Symbols of

Correct Answers

Symbol Frequency Rate

Solving
Process

Correct
Answer

Solving
Process

Correct
Answer

Numbers

2 514/659
(78%)

303/303
(100%)

Uppercases

S 26/33
(79%)

13/13
(100%)

1 267/494
(54%)

196/196
(100%) A 2/6

(33%)
2/2

(100%)

3 224/391
(57%)

160/160
(100%) V 4/6

(67%)
3/3

(100%)

4 120/287
(42%)

128/128
(100%) C 4/4

(100%)
2/2

(100%)

...
...

...
...

...
...

Lowercases

x 313/350
(89%)

173/173
(100%)

Signs

− 413/498
(83%)

223/223
(100%)

a 232/257
(90%)

134/134
(100%) —(fraction) 175/279

(63%)
123/123
(100%)

y 155/178
(87%)

96/96
(100%) +

223/261
(85%)

133/133
(100%)

b 146/172
(85%)

91/91
(100%) =

73/79
(92%)

33/33
(100%)

...
...

...
...

...
...
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