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Abstract: Information processing in the brain takes place in a dense network of neurons connected
through synapses. The collaborative work between these two components (Synapses and Neurons)
allows for basic brain functions such as learning and memorization. The so-called von Neumann
bottleneck, which limits the information processing capability of conventional systems, can be
overcome by the efficient emulation of these computational concepts. To this end, mimicking the
neuronal architectures with silicon-based circuits, on which neuromorphic engineering is based, is
accompanied by the development of new devices with neuromorphic functionalities. We shall study
different memristor cellular nonlinear networks models. The rigorous mathematical analysis will
be presented based on local activity theory, and the edge of chaos domain will be determined in the
models under consideration. Simulations of these models working on the edge of chaos will show
the generation of static and dynamic patterns.

Keywords: memristor cellular nonlinear networks; local activity; edge of chaos; static and dynamic
patterns

MSC: 92B20; 65P20; 92C15

1. Introduction

The complexity phenomenon, the definition of which had been argued for a long
time by many scientists, briefly refers to the emergence of complex patterns in homoge-
neous media and is thus strongly related to the neural computation concept. With the
establishment of robust theoretical foundations for the local activity principle, it is now
clear that various descriptions of complexity such as symmetry breaking, self-organization,
and exchange of energy can be gathered under a unique framework. It was shown that
the cells of a resistively coupled homogenous network have to be locally active for the
emergence of complexity, which refers to static or dynamic pattern formation. In addition,
if the equilibrium point of a locally active cell is asymptotically stable, then the cell is said
to be at the edge of chaos. In other words, the edge of chaos refers to the scenario where
the uncoupled cells are ‘silent’ but can be ‘potentially’ destabilized and generate complex
behavior under dissipative coupling.

The ability to compute with memory is an essential property of nonlinear cellular
networks. By incorporating memristor memory arrays [1,2] locally into the computing
elements, one can achieve high flexibility in network learning algorithms due to the fact
that they can provide high-density analog storage. This means that the memristive circuit
has the behavior of conventional memory, i.e., the weight values can be calculated outside
of the circuit and then be programmed to the corresponding addresses. In this way, one
can retrieve the information when the algorithms need it.

Cellular Nonlinear Networks (CNN) [3–5] are defined as spatial arrangements of
locally coupled dynamical systems, referred to as cells (see Figure 1). The CNN dynamics
are determined by a dynamic law of an isolated cell, by the coupling laws between the cells,
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and by boundary and initial conditions. The state equations of CNN cells are described by
nonlinear ordinary differential equations, which give the dynamic and coupling interactions
of the cells. The mathematical presentation of CNN by a system of coupled ordinary
differential equations is very compact, but nevertheless, these networks can have very
complex behavior [4], such as chaotic behavior, self-organization, and pattern formation or
nonlinear oscillation and wave propagation.

Figure 1. Illustration of the CNN coupling structure.

Neural processing physically occurs both in space and time through a phenomenon
called spatiotemporal pattern formation. The network dynamics behind the formation
of these neural patterns are believed to underlie our high-level cognitive capabilities
and therefore are of special interest in neuroscience. Similarly, the pattern formation
phenomenon has been observed in other disciplines such as physical chemistry, biology,
optics, thermodynamics, fluid mechanics as well as engineering systems, which shows
that there has been a constant interest in pattern formation dynamics in various fields.
However, there had not been a universal consensus on the definition of the mechanisms
behind spatiotemporal pattern formation. In this work, we provide new results based on
rigorous mathematical analysis of the edge of chaos phenomena and the pattern formation
in such networks. In comparison to other works on memristor-based neural networks [6–8],
here we determine the edge of chaos region by strong mathematical inequalities. In this
region, complex phenomena and pattern generation can be observed.

Moreover, the memristor device model is integrated into the standard state equation
of a CNN cell. Default parameter values of memristor models resulting from the analysis
of different charge transportation phenomena are assumed. In a deep mathematical study,
a niobium oxide memristor model replaces the cell resistor of a standard CNN cell. The
aim of this work is to derive cell state equations and study their dynamics by applying
local activity theory [9]. We prove that in the edge of chaos domain, the cell equilibrium
points are both locally active and asymptotically stable. Based on this, we obtain different
patterns, such as Turing static patterns, dynamic patterns, and chaotic patterns. Computer
simulations show that such patterns can be obtained if the parameter sets are chosen on the
edge of chaos domain. It is important to point out that memristor CNN models presented
in the paper can have very promising applications, which is the aim of our future research.
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2. Memristor CNN Modeling

Cellular Nonlinear Networks (CNN) [4] can describe different systems—physical,
chemical, and biological. The operations inside CNN are continuous-time, and the inter-
actions between the processing elements are local. Due to this, the networks can provide
real-time signal processing with very high precision. CNN has many powerful appli-
cations [4,10,11], such as pattern recognition and signal processing, line detection, edge
detection, noise removal, character recognition, etc. There are digital and analog imple-
mentations of CNN known in the literature in the form of VLSI chips. Usually, memristors
can realize interactions between neighbor cells in the CNN circuit [11,12]. The proposed
memristor model, which will replace the original linear resistor in the CNN cell circuit,
has nonlinear current-voltage characteristics with locally negative differential resistance.
We shall call such architecture memristor CNN (MCNN), which has nonvolatile and pro-
grammable synapse circuits [13–17]. In this way, the proposed model is more versatile and
compact and with simple output function realization. In Figure 2, the implementation of
the MCNN cell is given.

Figure 2. Implementation of MCNN cell.

Hereby, we are planning to implement networks arranged in M × N rectangular
arrays of cells C(i,j). Each cell has (2r + 1)2 neighboring cells; r denotes the radius of the
neighborhood. The proposed MCNN state equation is given by [14].

C
dxij(t)

dt
= −iM

(
xij(t)

)
+ ∑

C(k,l)
(aij,kl xkl (t) + bij,kl ukl) + I,

where C represents the cell capacitance, aij,kl , bij,kl are cloning templates, xij is the state
variable, ukl is the input variable, and iM(t) is the current flowing through the current-
controlled memristor according to the following law:

iM
(

xij(t)
)
= W

(
⇀
z ij, xij

)
·xij (t)

d
⇀
z ij

dt
= g

(
⇀
z ij, xij

)
W
(
⇀
z ij, xij

)
denotes memductance and g

(
⇀
z ij, xij

)
is the state function of the consid-

ered memristor. We assume translation-invariant feedforward and feedback connections
that mimic 2-D spatial diffusion of chemical substances, implemented by variable–gain
current- controlled sources, the cell bias is given by I.

In the circuit analysis, a continuous-time autonomous network is stable if its solution
is bounded and its energy function is damped. Since the state of a specific MCNN depends
on the circuit parameters, it is straightforward to guarantee its boundedness. In order to
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prove the stability of MCNN [2], we shall introduce energy function E below, chosen by
means of the Lyapunov stability theorem [18]:

E(t) = ∑(i,j)

∫ xij

0
iM(s)ds− 1

2 ∑(i,j) ∑(k,l) aij,kl xkl(t)xij(t)−∑(i,j) ∑(k,l) bij,klukl(t)xij(t)− ∑(i,j) I xij(t).

It can be proved that the energy function is bounded (see [4]).
Again, methods from the theory of nonlinear systems [18] are applied, and a bifurca-

tion analysis is provided for different feedforward and feedback coupling parameters.
We shall consider some MCNN models in the following. First, we shall consider the

Gierer–Meinhardt system [19,20], which describes pattern formation in living cells:
duij
dt = a +

u2
ij

vij
− b uij + D1

(
wl,r

ij

)
A2 ∗ uij

dvij
dt = u2

ij − vij + D2

(
wl,r

ij

)
A2 ∗ vij

(1)

where a, b are positive constants, Dk(.), k = 1, 2 denote the monotonically increasing.
Functions defined by:

Dk
(
wl,r

j ) = Dmin+(Dmax−Dmin)
1

1 + e−βwl,r
j

,

where β denotes the gain, Dmin and Dmax denote the minimum and maximum coupling
strengths, respectively, wl,r

j denotes the variables for determining the coupling strength

(l-leftward, r-rightward), A2 =

 0 1 0
1 −4 1
0 1 0

 is discretized Laplacian template, *-is the

convolution operator [4].

τ
dwl,r

ij
dt = D(wl,r

ij ).η1·(uij−1 − uij)—is the memristive dynamics, η1 denotes the polarity

coefficient-η1 = + 1: wl
ij, η1 = −1: wr

ij, τ –is the time variable.
Next, we shall consider the following MCNN model with Brusselator [4,21,22] cell:

duij

dt
= D1

(
wl,r

ij
)[

ui+1 j + ui−2 j + ui j+1 + ui j−1 − 4 uij
]
+ f1

(
uij, vij

)
,

dvij

dt
= D2

(
wl,r

ij
)
[ui+1 j + ui−2 j + ui j+1 + ui j−1 − 4 uij] + f2(uij, vij), (2)

where f1
(
uij, vij

)
= a− (b + 1)uij + viju2

ij, f2(uij, vij) = buij− viju2
ij, a, b are positive constants.

In this paper, we shall present a two-dimensional grid in the form of a spatial lattice
of identical cells positioned at the grid points. Their states are changed by local reaction-
diffusion. This dynamical system implements kinetic equations in MCNN models. In the
case when the diffusion coefficients Dl > 0, l = 1, 2 complex phenomena can arise from the
cell kinetic equations because the diffusion term in the above models has stabilizing effect.
We shall prove that if the cell kinetic equations are not locally active in the parameters
set, the complexity can not be exhibited regardless of the diffusion coefficients. More-
over, we shall derive rigorous mathematical inequalities for the local activity of the cell
kinetic equation.

3. Edge of Chaos in Memristor CNN Models

Complex dynamics can arise in a locally-active cell kinetic equation in the case when all
diffusion coefficients are zero, even if the single cells are uncoupled. Then limit cycles and
chaos appear in the systems, and moreover, complex spatio-temporal phenomena arise.

We shall apply in our study the following definition of locally-active reaction-diffusion
equations [9]: Let us consider a system of discrete reaction-diffusion equations. It is locally
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active if and only if its cells are locally active at the cell equilibrium point. If we denote
by A the locally active domain of the parameter space, then the compliment P = Rp\A is
called the passive parameter domain in which we can obtain a homogeneous solution of
the reaction-diffusion equations. The complexity can occur in active parameter region A,
which is not an empty set in this case.

It is very important to have a physical implementation of the concept of local activ-
ity. The variables will be associated with the voltage and current of an electronic circuit
(Figure 2) of a cell described by the same equations. The importance of the circuit model
lies not only in the fact that it offers a convenient physical implementation but also in the
fact that well-known results from classic circuit theory can be applied to test the cell for
local activity. We shall suppose that each cell is operating near the equilibrium point. Then
according to the theory of local activity [9], the circuit model of a cell is locally active if, in
at least one equilibrium point, it behaves as a source of small-signal power.

We shall define the necessary and sufficient conditions for the local activity of a cell
mathematically. For this purpose, we shall apply the following [9].

Test for local activity.
A cell with m ≥ 2 port state variables is locally-active at equilibrium point E if, and

only if, any one of the following conditions is true:

(1) The complexity matrix YE(s) has a pole in the open right-half plane Re[s] > 0;
(2) The complexity matrix YE(s) has multiple poles on the imaginary axis;
(3) The complexity matrix YE(s) has a simple pole s = i ωP on the imaginary axis and

KE(iωP) , lim
s→iωP

(s− iωP)YE(s) is supposed to be a non-positive-definite matrix or a

complex non- Hermitian matrix;
(4) YH

E (iω) , YT
E (iω) + YE(iω) is a non-positive-definite matrix for some ω ∈ (−∞, ∞),

T denotes the transpose and complex-conjugate operations.

In order to prove local activity in MCNN, we shall assume that the energy is zero
when t = 0. Otherwise, some energy will be discharged outside the circuit, which leads to
local passivity. The initial small input signal may cause a larger energy signal which comes
from some external energy supply if the cell is a neuron.

We will be able to approximate the linear terms of the cell model by its Taylor series
expansion if the signal is very small. By means of mathematics, we can derive an explicit
analytical expression for the local activity of the cell based on the Taylor series computing.
The system usually is highly nonlinear, and that is why under small perturbation, we can
obtain complexity. If the discrete reaction-diffusion system has at least one spatio-temporal
solution under homogeneous initial and boundary conditions, then it can exhibit complexity.
It is very important to have initial conditions for the system of discrete reaction-diffusion
equations with zero diffusion coefficients. Such a system can give rise to non-homogeneous
static patterns when the initial condition corresponds to any pattern of cell equilibrium
points (we can have one, two, or more equilibrium states).

Definition 1 (of the Edge of Chaos [9]). In order for an uncoupled cell in MCNN to operate on
the edge of chaos it is necessary that its equilibrium points are both locally active and asymptotically
stable. Then the set of locally active parameters with this property is called the edge of chaos
parameter set.

We shall develop a constructive algorithm for the determination of the edge of chaos
in MCNN models [17,20,23]. These are the steps of the algorithm: (1). We approximate
MCNN into discrete in space system; (2). We find the equilibrium points of the discrete
system numerically or analytically. There might be one, two, or several real equilibrium
points which are functions of the cell parameters and the diffusion coefficients; (3). We find
the cell coefficients of the Jacobian matrix at each equilibrium point; (4). We calculate the
trace and determinant of the Jacobian matrix at each equilibrium point; (5). We define the
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conditions for locally active and asymptotically stable equilibrium points by T < 0 and
∆ > 0 ; (6). We define the edge of chaos region based on definition 1.

The following theorems from [9] are true:

Theorem 1 (of [9]). Sharp Edge of Chaos≡ edge of chaos for the one-port variable case. For the case
where there is only one port variable, the sharp edge-of-chaos parameter domain is identical to the
edge-of-chaos parameter domain of the complexity function YE(s) of any reaction–diffusion equation.

Theorem 2 (of [9]). Sharp Edge of Chaos for the case of the two-port variables. For the case
of two-port variables, the sharp edge of chaos parameter domain must satisfy at least one of the
following three conditions involving the jk-th coefficients Yjk (iω), j, k = 1, 2, of the 2× 2 complexity
matrix YE(iω), for at least one frequency ω = ω0:

1. Re[Y11] < 0
2. Re[Y22} < 0
3. 4 (Re[Y11]Re[Y22] + Im[Y12]Im[Y21] × (Re[Y11]Re[Y22]− Re[Y12]Re[Y21]) < (Re[Y12]

Im[Y21]− Re[Y21]im[Y12])
2

We shall apply the following theorem from [5] for more general cases:

Theorem 3 (of [9]). (Fast eigenvalue calculation algorithm). The eigenvalues of the Jacobian
matrix ∆ are identical to the zeros of the admittance, i.e., the solution of the scalar polynomial
equation of order n > 2.

The general conditions for the case n > 2 are to be outlined during the simulation
procedure of MCNN and will be based on the following conjecture: Only in this case,
where the cell is locally active, can we have the homogeneous non-conservative system of
equations apply complexity.

3.1. Edge of Chaos in Gierer–Meinhardt MCNN Model (1)

We shall determine the edge of chaos region of the MCNN model (1) by means of local
activity theory [9]. We apply the following constructive algorithm [20,23]:

(A). We find the equilibrium points of (1). They are the solution of the following
system [18]:  0 = a +

u2
ij

vij
− b uij + I1

0 = u2
ij − vij + I2

(3)

We calculate the equilibrium point of (3)-E1 =

(
a+1

b ,
(

a+1
b

)2
)

according to the local

activity theory [9] when I1 = I2 = 0.
(B). We calculate the cell coefficients a11(E1), a12(E1), a21(E1), a22(E1) of the Jacobian

matrix at the equilibrium point. In the equilibrium point E1 we obtain the following results:

a11 = b 1−a
1+a , a12 = −

(
b

a+1

)2
, a21 = 2 a+1

b , a22 = −1.

(C). We define a locally active and stable region of cell parameters SLAR
(
Eq
)
, such that:

a22 > 0 or 4a11a22 < (a12 + a21)
2 and Tr(Ek) < 0 and ∆(Ek) > 0.

(D). We define the edge of chaos region in which there is at least one equilibrium point
at which the isolated cell is both locally active and stable.

We obtain the simulation of the edge of chaos region for the Gierer–Meinhardt MCNN
model given in Figure 3.

We present simulations of these regions for the parameter set a ∈ [−5, 5] and b ∈ [−5, 5].

Remark 1. In [19] Gierer and Meinhardt do rigorously prove the selected specific cell parameter
points. Therefore we have proved here that these equilibrium points lie on the edge of chaos region
based on the local activity theory.
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Figure 3. Bifurcation diagram of the Gierer–Meinhardt MCNN model. Local activity region—dark
pink, blue is a locally passive region, edge of chaos domain is red, green is a locally active and
unstable region, yellow is the region in which no equilibrium point is both locally active and stable.

3.2. Edge of Chaos in Brusselator MCNN (5)

We shall study the dynamics of the Brusselator MCNN (2) model by means of local
activity theory [9], and we shall determine the edge of chaos region. Following the above-
developed algorithm, we find the unique equilibrium point: E1 =

(
b
a , a
)

. Then the cell

coefficients are a11(E1) = b−1, a12(E1) = a2, a21(E1)−b, a22(E1) = −a2. The trace in our
case is T(E1) = −a2 + b−1, and the determinant is ∆(E1) = a2.

In Figure 4 below, we present the simulation of the local activity region and the edge
of chaos, as well as the locally passive region of the Brusselator MCNN model (2). The local
activity test needs the estimation of T, ∆, a22,which defines the profile of a cell parameter
space. For this reason, we project the cell parameter space in Figure 4 below.

Figure 4. Bifurcation diagram of the Brusselator MCNN model (2). The color indicates locally active
and stable region (edge of chaos)—red, locally active and unstable region—green, locally passive
region—blue, no equilibrium point is both locally active and stable—yellow.
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Remark 2. The Brusselator system [21] was defined in order to explain self-organization in chemical
reactions. The theory of dissipative structures was developed based on this system, and it is operating
far from thermodynamic equilibrium. However, this theory was not able to determine a more precise
domain in which complex phenomena occur. Only the stability boundaries were found and it was
ignored in the small subset of the edge of chaos in which emergence and complexity can emerge,
which was performed in our analysis above.

4. Pattern Formation on the Edge of Chaos

We shall study the pattern formation dynamics in our MCNN models by approximat-
ing the dynamics in the spatial uniform equilibrium points [17,20,23]. It is very important
for these models to be stable from the point of view of the simulations. This can be obtained
by introducing a half-wave output nonlinearity which leads to spatial patterns.

We shall look for spatial pattern formation. That is why we derive conditions on the
model parameters which exhibit spatial patterns. The simulations are conducted by using
MATLAB based on the 4th order Runge–Kutta integration. We consider 256 cells’ MCNN
architecture in order to obtain more accurate computations.

By applying a spatially random Gaussian distributed initial state which has zero
mean and variance, we shall start the calculations. The positive and negative activity with
characteristics bounds is obtained by means of the local activity theory [9].

In Figure 5 below, the simulations of the MCNN model (1) show that when D2 6= 0
Turing-like static patterns can occur if all equilibrium points are located in the locally active
region (Figure 3). Let us consider the case D1 = 0 and D2 = 1, then robust nonhomogeneous
patterns may arise [20] (see Figure 5). The initial states used in all simulations of Figure 5
are chosen near the cell equilibrium point. The cell parameters are a = 0.5, b = 2.5.

Figure 5. Spatial patterns in Gierer- Meinhardt MCNN (1): (a) after 0 iterations; (b) after
1000 iterations; (c) after 5000 iterations.

In Figure 5, we can see the generation of static patterns, starting with (a), then after
1000 iterations (b) the Turing-like patterns are developed, and after 5000 iterations (c) when
the equilibrium points are located on the edge of chaos region robust nonhomogeneous
patterns arise.

Dynamic nonhomogeneous patterns (see Figure 6) occur when we choose the following
diffusion coefficients D2 � D1 and we are in the red region (Figure 3). We use the initial
states near the equilibrium point, and the cell parameters are a = 0.9, b = 2.9. The
boundary, T = 0, ∆ ≥ 0, plays an important role in the sense that for the cell parameter
points located within the edge of chaos domain chaotic dynamic patterns usually emerge.

Remark 3. Dynamic patterns arise when the cell parameters are in the locally active regions, which
are very close to the edge of chaos. When the cell parameters are in the locally passive region, complex
behavior is not observed in the case initial conditions are near the equilibrium points.

Following the analytical analysis of the MCNN model (2) in Section 3, we shall show
the pattern generation in this model. The Brusselator equation is well known in chemical
kinetics as an ideal system for studying dissipative structures. In some sense, this system
behaves similarly to a harmonic oscillator. In [22], it is shown that the dynamics of the
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Brusselator equation have global periodicity, which depends on the initial and boundary
conditions. In Figure 7, we present the complex behavior of MCNN (2) when the stable
cells are on the edge of chaos region. It can be seen that in the locally active and stable
regions, dynamic patterns occur. The initial states are near the equilibrium point, and the
cell parameter values are a = 0.2, b = 2.5.

Figure 6. Dynamic patterns of the Gierer–Meinhardt system. (a) snapshot of the dynamic pattern;
(b) time evolution of the state variables; (c) projection of the high-dimensional attractor.

We can see in the figure above [22] that chaotic dynamic patterns arise in our model
when it is working in the locally active region (Figure 5), which is very close to the edge
of chaos. When the cell parameters are in the locally-passive region, no complex behavior
occurs. Usually, it is not possible through the stability analysis to find the region in which
the cells are locally passive.
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Figure 7. Dynamic patterns in Brussellator MCNN model (2). (a) 42-time evolution snapshots of
the state variable, (b) a snapshot of the dynamic patterns at t = 100, (c) time evolution of the state
variables in red and in blue.

5. Discussions

In this paper we consider two memristor CNN models, Gierer–Meinhardt and Brus-
sellator. We develop a constructive algorithm for the determination of the edge of chaos
region in which complex behavior arises. Pattern formation in the edge of chaos domain is
presented for both models under investigation.

Possible applications of the proposed results can be found in neurobiology. Biological
systems have additional features in common with engineered systems. These similarities
hint at a deeper theory that can unify our understanding of natural and artificial systems.
Engineered artificial systems of life open new avenues to future innovations in pharmacy,
medicine, and technology, but they also provoke societal awareness, public perception, and
ethical questions about artificial life.
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