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Abstract: In this paper the Cramer-Rao information bound for ARMAX (Auto-Regression-Moving-
Average-Models-with-Exogenuos-inputs) under non-Gaussian noise is derived. It is shown that the
direct application of the Least Squares Method (LSM) leads to incorrect (shifted) parameter estimates.
This inconsistency can be corrected by the implementation of the parallel usage of the MLMW
(Maximum Likelihood Method with Whitening) procedure, applied to all measurable variables of the
model, and a nonlinear residual transformation using the information on the distribution density of a
non-Gaussian noise, participating in Moving Average structure. The design of the corresponding
parameter-estimator, realizing the suggested MLMW-procedure is discussed in details. It is shown
that this method is asymptotically optimal, that is, reaches this information bound. If the noise
distribution belongs to some given class, then the Huber approach (min-max version of MLM) may
be effectively applied. A numerical example illustrates the suggested approach.

Keywords: parameter estimation; least squares method; whitening filter; Fisher information; maximum
likelihood method; nonlinear residual transformation

MSC: 93E03; 93E10; 93E11; 93E24

1. Introduction
1.1. Road Map of This Survey

The topic of parameter identification in a large class of linear models with external
noise acting on-line and perturbing the dynamics of an investigated system is addressed in
this overview. The considered models are classified as ARMAX (auto-regression-moving
average with exogenous inputs) and are commonly expressed in discrete-time format
by recurrent linear stochastic difference equations. The class of distribution functions is
supposed to be known a priori but not its exact analytical expression: such models contain
“uncertainties” in their descriptions, which are associated with unknown parameters and
probabilistic characteristics of external noise (perturbations): only a class of distribution
functions is supposed to be known a priori but not its exact analytical expression. As a
result, any identification technique that may be used in such a circumstance should be
robust (resilient) with respect to existing uncertainty. The focus of this work is on a
critical examination of robust parametric identification techniques, highlighting a gap
in the current literature in which the vast majority of publications adopt the traditional
assumption that external stochastic perturbations are independent and Gaussian (have a
“normal distribution”). Only a few papers deal with a different non-standard assumption
about the available stochastic characteristics of external noisy disturbances. Here, we expose
readers to the underlying difficulties (mathematical and computational) and discuss a few
distinct ways that have shown to be successful in the absence of available probabilistic data.

The structure of the paper is as follows:
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− Review of publications:

● It contains the descriptions of the important survey published in the 1970’s–1990’s
(Åström, Becky, Ljung and Gunnarson, Billings among others).

● Nongaussian noises have been studied by Huber, Tsypkin and Polyak.

− Problem formulation and model description:

● The ARMAX model with correlated non-Gaussian noise, generated by a stable
and non-minimal phase filter, is introduced.

− Some classes P3be of noise p.d.f.:

● In a rigorous mathematical manner several classes of random stationary se-
quences with different p.d.f. as an input of a forming filter are considered (all
symmetric distributions non-singular in origin, all symmetric distributions with
a bounded variance, all symmetric “approximately normal” distributions and
“approximately uniform” distributions).

− Main assumptions:

● These concern the martingale difference property with conditional bounder sec-
ond moment for stochastic sequences in the input of the forming filter, stability
and minimal-phase property for this filter, independent of this sequence with
other measurable inputs).

− Regression representation format:

● The extended regression form of the considered model is introduced.

− Main contribution of the paper:

● The exact presentation of the main contribution of the paper.

− Why LSM does not work for the identification of ARMAX models with correlated noise:

● A simple example exhibiting the lack of workability of this technique in the case
of dynamic (autoregression) models is described in detail for a reader who is not
actively involved in the least-squares method.

− Some other identification techniques:

● Identification of non-stationary parameters and the Bayesian method, matrix
forgetting factor and its adaptive version are reviewed.

− Regular observations and information inequality for observations with coloured noise:

● the Cramér–Rao bound (CRB) and the Fisher information, characterising the
maximal possible rate of estimation under the given information resource, are
presented.

− Robust version of the maximum likelihood method with whitening (MLMW procedure):

● This approach is demonstrated to reach the CRB bound, indicating that it is
asymptotically the best among all identification procedures.

− Recurrent identification procedures with nonlinear residual transformations: static
(regression) and dynamic (autoregression) models:

● Within a specified noise p.d.f. class, it is proven that such a strategy with particu-
lar selection of nonlinear residual transformation is resilient (robust) optimum in
achieving min–max error variance in CRB inequality.

− Instrumental variables ethod (IVM):

● IV or total least-squares estimators is the method which also recommends to
estimate parameters in the presence of coloured noises with a finite correlation.

− Joint parametric identification of ARMAX model and the forming filter:

● The “generalised residual sequence” is introduced, which is shown to be asymp-
totically closed to the independent sequence acting in the input of the forming filter,
which helps to resolve the identification problem in an extended parametric space.
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● Numerical example.
● Discussion and conclusions.

− Appendix A and abbreviations:

● This part offers proofs of some of the article’s claims that appear to be significant from
the authors’ perspective, as well as a list of acronyms used throughout the work.

1.2. Review of the System Identification Literature

A mathematical model is a simplified mathematical structure connected to a com-
ponent of reality and produced for a specific purpose of system analysis [1]. Differential
equations, state space models and transfer functions are all examples of mathematical mod-
els of dynamic systems that are useful in a variety of fields [2]. System identification, which
can be applied to nearly any system and give models that explain the system behaviour, is
an alternative to modelling.

1.3. Classical Surveys on Identification

The least-squares method (LSM), as well as some of its variants, have been exten-
sively researched in the past, according to the survey given by Åström [3]. The least
squares, maximum likelihood, instrumental variables and tally principle are examples of
these variety. Several approaches for the identification of dynamic systems using com-
puter techniques, such as spectral analysis, certain gradient methods, quasi-linearization
and stochastic approximations, were provided by Becky [4]. In the case of a time-varying
situation, Ljung and Gunnarson investigated several methods for developing identification
algorithms that could take into account the time-varying dynamics of systems as well as
signals [5]. Some mean square expressions were examined in this study. In [6] by Billings,
several methods for the nonlinear case were described; these algorithms were based on
the functional expansion of Wiener and Volterra, block-oriented and bi-linear systems,
structure detection and some catastrophe theory. System identification is a vast field of
study, with a variety of methods based on the models to be estimated: linear, nonlinear,
continuous, discrete, time-varying and so on. Ljung’s survey [7] demonstrates that, despite
the wide range of techniques, the field can be defined by a few key principles, such as data
information, validation and model complexity and offers some basic principles and results,
as well as a method for solving real-world problems. As it is mentioned by Ljung in [8],
system identification is a well established research area, whose paradigms are most of the
time based on classical statistical methods. Some recent techniques are based on kernel
regularisation methods. The paper presented by Ljung presents some of the main ideas
and results of kernel-based regularisation methods for system identification.

1.4. Identification under Correlated Noise Perturbations

In the measurements and modelling of dynamic systems [9], the unpredictability
inherent in physical processes always creates inaccuracy. Stochastic processes make it
possible to model these random events and create more realistic models [10]. It is commonly
assumed that only white noise is presented in stochastic systems, however, there are also
cases where the noise is correlated or “coloured”. Coloured noise is prevalent in linear and
pseudo-linear regression identification models, where one of the challenges is the presence
of unknown inner variables and immeasurable noise components [11]. The stochastic
gradient algorithm proved to be a useful technique for those cases. In situations where
there are a lot of noisy sources, noise suppression is crucial. In many practical circumstances,
coloured noise may be converted to white noise [12] by passing it through an invertible
time-invariant linear (“whitening”) filter. The existence of coloured noise typically leads to
robust identification theory, which was first proposed by P. Huber [13] and Ya. Z. Tsypkin-B.
Polyak [14] over fifty years ago. In [15], the basic principles of robust identification were
presented, as well as the identification methods for auto regression with exogenous input
(ARX) models. The suggested approach used a whitening procedure and a variant of
the maximum likelihood method in parallel to conduct asymptotically the estimation of
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unknown parameters. The need of system identification has grown in some areas, such
as robotics, due to the increasing interest in showing movement accuracy in the industry.
The application of system identification in DC servomotors is widely used in robotics;
in [16], a study on identifying two model structures, ARX and ARMAX, of the system to
test and compare their performance on validation criterion is presented.

1.5. Identification of ARMAX and NARMAX Models

For many years, the parameter estimation for autoregressive moving average exoge-
nous input (ARMAX) models has been investigated [17,18]. The importance of parameter-
bounding methods in the identification process is highlighted in [19] and stands for such
models. These methods offer a radical alternative to compute parameter point estimates
and covariances. They require constraints in an effectively deterministic model formulation
instead of p.d.f. or mean and covariance for the noise and previous parameter estimations.

In the context of parameter-bounding identification, this study offers a preliminary
assessment of certain typical tasks, such as experiment design, testing for outliers, tolerance
prediction and worst-case control design. In [20], the parametrisation of ARMAX models
was also discussed. The results reported in this work were aimed at developing a technique
for modelling and fitting multivariable time-series data based on spatial approach and
parametrisation, with tolerance for missing or incomplete data.

ARMAX models are widely used in industrial modelling nowadays [21–23]. For exam-
ple, functional time series are the realisation of a stochastic process where each observation
is a continuous function defined on a finite interval. These processes are commonly used in
electricity markets and are gaining more importance as more market data become available
and markets head toward continuous time-marginal pricing approaches. In [24], the au-
thors propose a new functional forecasting method that attempts to generalise the standard
seasonal ARMAX time-series model to the L2 Hilbert space; the proposed approach is
tested by forecasting the daily price profile of the Spanish and German electricity markets,
and it is compared with other functional reference models. A physic-based ARMAX model
of room temperature in office buildings was presented in [25], where thermodynamic equa-
tions are used to determine the structure and order of the model. In this study, extensive
measurements over 109 days are used to develop and validate the model. This model
can be used to predict the variations of the room temperature accurately in short-term,
and long-term periods and has shown to be suitable for real-time fault detection and
control applications.

Traditional stochastic information gradient methods for ARMAX identification have a
lower computational cost, but its convergence speed is still low, in [26], a two-step algorithm
based on gradient acceleration strategies is proposed to deal with this problem. When in
the ARMAX process, the noises presented are additive; it is possible to introduce additional
information to the estimation problem using nuisances variables to model the output noises
(see [27]). Then, a regularised estimator suppresses the adverse effects of the noises and
provides minimum variance estimates.

In [18], a technique for concurrently picking the order and identifying the parameters
of an ARMAX model was explored, and it was also assessed by computational experiments.
The technique presented in that work was based on reformulating the issue for a standard
state space, then implementing a bank of Kalman filters, identifying the true model and uti-
lizing multi-model partitioning theory to solve it. In the study presented by Correa and
Poznyak in 2001 (see [28]), the problem of simultaneous robust state and parameter estima-
tion for some class of MIMO non-linear systems under mixed uncertainties (unmodeled
dynamics as well as observation noises) is presented. A switching gain robust “observer-
identifier” is introduced to obtain the estimation. This is achieved by applying an observer
to the so-called nominal extended system, obtained from the original system without any
uncertainties and considering the parameters as additional constant states. As it was shown
in general the extended systems, these can lose the global observability property, supposed
to be valid for the original non-extended system, and a special procedure is needed to
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provide a good estimation process in this situation [29]. The suggested adaptive observer
has the Luenberger-type observer structure with switching matrix gain that guarantees a
good enough upper bound for the identification error performance index [30]. The Van der
Monde generalised transformation is introduced to derive this bound which turns out to
be “tight” (it is equal to zero in the absence of both noises and unmodeled dynamics). One
approach for dealing with coloured noises is to utilise parameter estimate algorithms based
on Kalman filters. The Kalman filter is frequently used for control and estimate (see [31]),
and this technique may be thought of as Hammerstein–Wiener ARMAX models. An ex-
tended Kalman filter, or the unscented Kalman filter, can be implemented to extend this
approach to the nonlinear situation. For the nonlinear autoregressive moving average with
exogenous inputs (NARMAX) models, Kalman filters are a commonly used identification
method. The off-line observer/Kalman filter presented in [32] was implemented as an
identification method, since it has shown a good initial guess of the NARMAX model to
reduce the on-line system identification process time, this method showed to be effective in
the case of system faults and input failures. In the case of Hammerstein nonlinear systems
with coloured noises, a maximum likelihood-based stochastic gradient algorithm was
implemented in [33], where the unknown noises were replaced in the information vector
by their estimates and through these, one can obtain the parameters. For multivariable
Hammerstein controlled autoregressive moving average systems, an interactive maximum
likelihood estimation method was implemented in [34]. In that paper, the logarithmic
likelihood function over multiple parameter vectors is maximised; the proposed method
overcomes the limit on an autoregressive model form with one parameter vector.

In this survey, we present a compendium of some of the existing literature regarding
identification in ARMAX models and some of the techniques used in these type of models.
We also obtain the Cramer–Rao information bound for ARMAX models with non-Gaussian
noises and show that the maximum likelihood method with whitening procedure (MLMW)
reaches this low bound, or in other words, is asymptotically optimal.

2. Problem Formulation
2.1. Robust Parametric Identification Model Description

Consider the following ARMAX (autoregression moving average exogenous input)
model given by

yn =
L
∑
l=1

alyn−l +
K
∑
k=0

bkwn−k + ηn, n ≥ 0, (1)

where

• {yn} ∈ R1 is scalar sequence of available on-line state variables.
• {wn} is a measurable input sequence (deterministic or, in general, stochastic).
• {ηn} ∈ R1 is a noise sequence (not available during the process) generated by the

exogenous system

ηn +
K2

∑
s=1

d2,sηn−s = ξn +
K1

∑
s=1

d1,sξn−s, (2)

which can be symbolically represented as the forming filter

ηn = H(q−1)ξn (3)

with the transition function

H(q−1) = H1(q−1)/H2(q−1),

H1(q−1) = 1+
K1
∑
s=1

d2,sq−s, H2(q−1) = 1+
K2
∑
s=1

d2,sq−s

q−1is the one-step delay operator acting as yk−1 = q−1yk,

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

(4)
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• {ξn} as an independent zero mean stationary sequence with the probability density
function (p.d.f.) pξ(x) which may be unknown but belonging to some given class Pξ

of p.d.f., that is,
pξ(x) ∈ Pξ .

2.2. Some Classes Pξ of p.d.f.

All possible classes Pξ of p.d.f., considered in practical applications, are related with a
priori information on stationary generating sequence {ξn}. Here we present some of them
which look natural from practical point of views.

• Class P1
ξ (of all symmetric distributions non singular in the point x = 0):

P
1
ξ = {pξ ∶ pξ(0) ≥

1
2a

> 0}. (5)

We deal with this class if there is not any a priori information on a noise distribution pξ .
• Class P2

ξ (of all symmetric distributions with a bounded variance):

P
2
ξ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pξ ∶ ∫

R

x2 pξ(x)ds ≤ σ2
< ∞

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (6)

• Class P3
ξ (of all symmetric “approximately normal” distributions):

P
3
ξ = {pξ ∶ pξ(x) = (1− α)p

N(0,σ2)(x) + αq(x)}, (7)

where pN(0,σ)(x) is the centred Gaussian distribution density with the variance de-
fined by σ2 and q(x) is another distribution density. The parameter α ∈ [0, 1] char-
acterises the level of the effect of a “dirty” distribution q(x) to the basic Gaussian
distribution p

N(0,σ2)(x).

• Class P4
ξ (of all symmetric “approximately uniform” distributions):

P
4
ξ = {pξ ∶ pξ(x) = (1− α)pU(0,a)(x) + αq(x)} (8)

where
pU(0,a)(x) ∶=

1
2a

χ(∣x∣ ≤ a)

χ(∣x∣ ≤ a) = {
1 if ∣x∣ ≤ a
0 if ∣x∣ > a

is the centred uniform distribution and q(x) is one process with a different distribution
density. The parameter α ∈ [0, 1] characterises the level of the effect of a “dirty”
distribution q(x) to the basic one pU(0,a)(x).

2.3. Main Assumptions

1. All random variables {wn, ξn} are defined on the probability space (Ω,F , P) with the
σ-algebras flow Fn ⊆ Fn+1

Fn−1 = σ(y−l , . . . , y−1, . . . , yn−1; w0, . . . , wn; η−K2,...,ηn−1; ξ−K1,...,ξn−1). (9)

2. For all n
E{ξn ∣ Fn−1}

a.s.
= 0, E{ξ2

n ∣ Fn−1}
a.s.
= σ2

ξ < ∞. (10)

3. The measurable input sequence {wn}n≥0 is of bounded power:

E{w2
n ∣ Fn−1}

a.s.
= σ2

w,n < ∞, (11)
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and is independent of {ξn}, i.e.,

E{wnξn ∣ Fn−1}
a.s.
= wnE{ξn ∣ Fn−1}

a.s.
= 0. (12)

4. It is assumed that the forming filter is stable and “minimal-phase”, that is, both
polynomials H1(q−1) and H2(q−1) are Hurwitz, i.e., have all roots inside of the unite
circle in the complex plain.

5. The ARMAX plant (1) is stable: the polynomial

A(q−1) = 1−
L
∑
l=1

alq
−l (13)

is Hurwitz.

Remark 1. As it follows from the assumptions above, the noise sequence admits to be non-Gaussian
and correlated (coloured).

2.4. Regression Format Representation

The system (1) can be represented in the, regression format as

yn = z⊺nc + ηn, (14)

where the extended vector

c = (a1, . . . , aL; b0, . . . , bK)
⊺
∈ RL+K+1, (15)

represents the collection of unknown parameters to be estimated, and the vector

zn = (yn−1, . . . , yn−L; wn, . . . , wn−K)
⊺
∈ RL+K+1, (16)

is referred to as the generalised regression measurable (available on-line) input.

2.5. Robust Parametric Identification Problem Formulation

Problem 1. We need to estimate the vector c of unknown parameters based on available data {zn}

and a priory knowledge of the p.d.f. class Pξ of the stationary noise sequence {ξn} in the input of
the forming filter. Two possible cases may be considered:

− the parameters (d1,s, d2,s) of the forming filter H(q−1) are known.
− The parameters (d1,s, d2,s) of the forming filter H(q−1) are also unknown.

2.6. Main Contribution of the Paper

• The Cramer–Rao information bound for ARMAX (autoregression moving average
models with exogenous inputs) under non-Gaussian noises is derived.

• It is shown that the direct implementation of the least-squares method (LSM) leads to
an incorrect (shifted) parameter estimation.

• This inconsistency can be corrected by the implementation of the parallel use of the
MLMW (maximum likelihood method with whitening) procedure, applied to all
measurable variables of the model, and a nonlinear residual transformation using
the information on the distribution density of a non-Gaussian noise, participating in
moving average structure.

• The design of the corresponding parameter estimator, realising the suggested MLMW
procedure, containing a parallel on-line “whitening” process as well as a nonlinear
residual transformation, is presented in detail.

• It is shown that the MLMW procedure attains the obtained information bound,
and hence, is asymptotically optimal.
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3. Why LSM Does Not Work for the Identification of ARMAX Models with
Correlated Noise

The problem of LSM estimation and identification in ARMAX models has been widely
studied in the past. The estimation of the noise-induced bias was presented, for example,
in [35], where a unique structure of the ARMAX model was proposed, utilising extra
outputs delay. Let us show in this section that for dynamic models (in particular for ARMA-
models) the least-squares method (LSM) does not work properly, this means, it leads to
biased estimates!

Consider the simplest stable ARMA model with the 1-step correlated noise given by

yn+1 = ayn + ξn + dξn−1, y0 ∈ R is given,
∣a∣ < 1, d ∈ R, E{ξn} = 0, E{ξ2

n} = σ2 > 0
} (17)

where {ξn} is a sequence of independent random variables. Then, the LSM estimate, realising

an = arg min
a∈R

n
∑
t=1

(yt+1 − ayt)
2,

is

an = [
n
∑
t=1

ytyt+1][
n
∑
t=1

y2
t ]

−1

(18)

and under by the strong version of large number law (LNL) [36] it becomes

an
a.s.
=

1
n

n
∑
t=1

E{ytyt+1}

1
n

n
∑
t=1

E{y2
t }

+ oω(1),

oω(1) →
n→∞

0 (with Prob.1)

or, equivalently,

an
a.s.
=

1
n

n
∑
t=1

E{yt(ayt + ξt + dξt−1)}

1
n

n
∑
t=1

E{y2
t }

+ oω(1) =

a

1
n

n
∑
t=1

E{yt(ξt + dξt−1)}

1
n

n
∑
t=1

E{y2
t }

+ oω(1) = a + d

1
n

n
∑
t=1

E{ytξt−1}

1
n

n
∑
t=1

E{y2
t }

+ oω(1).

So, the corresponding identification error comes to be as

an − a a.s.
= d

1
n

n
∑
t=1

E{ytξt−1}

1
n

n
∑
t=1

E{y2
t }

+ oω(1)

For stable models with ∣a∣ < 1 there exist limits

lim
n→∞

E{ynξn−1} and lim
n→∞

E{y2
n}

and hence, by the Kronecker lemma

an − a a.s.
= d

lim
n→∞

E{ynξn−1}

lim
n→∞

E{y2
n}

+ oω(1) (19)
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Let us calculate these limits. From (17), it follows

E{yn+1ξn} = aE{ynξn} +E{ξ2
n} + dE{ξn−1ξn} = σ2 (20)

E{y2
n+1} = a2E{y2

n} +E{ξ2
n} + d2E{ξ2

n−1}+

2aE{ynξn} + 2adE{ynξn−1} + 2dE{ξn−1ξn} =

a2E{y2
n} + (1+ d2)σ2 + 2adE{ynξn−1} =

a2E{y2
n} + (1+ d2)σ2 + 2adσ2

(21)

Since, for the stable linear recursion

zn+1 = āzn + c, ∣ā∣ < 1

we have
zn+1 = āzn + c = ā(āzn−1 + c) + c =

ā2zn−1 + c + āc = ⋅ ⋅ ⋅ = ānz1 + c + āc + ā2c + ⋅ ⋅ ⋅ + ānc =

ānz1 + c(
1− ān+1

1− ā
) →

n→∞

c
1− ā

.

Then, for (21), we get

E{y2
n} →

(1+ d2) + 2ad
1− a2 σ2 =

(1− a2) + (a2 + 2ad + d2)

1− a2 σ2 =
⎡
⎢
⎢
⎢
⎣
1+

(a + d)2

1− a2

⎤
⎥
⎥
⎥
⎦

σ2
(22)

Substitute the obtained limits (20) and (22) into (19) leads to

an − a a.s.
= d

σ2

⎡
⎢
⎢
⎢
⎣
1+

(a + d)2

1− a2

⎤
⎥
⎥
⎥
⎦

σ2

+ oω(1) =

d
1

1+
(a + d)2

1− a2

+ oω(1)
a.s.
→

n→∞
d

1

1+
(a + d)2

1− a2

.

The derivative calculation of the limit value with respect to d then gives

⎛
⎜
⎜
⎜
⎜
⎝

d
1

1+
(a + d)2

1− a2

⎞
⎟
⎟
⎟
⎟
⎠

′

= (a2
− 1)

d2 − 1

(d2 + 2ad + 1)2

So, the extremal points are d = ±1, and hence,

⎛
⎜
⎝

d
1

1+ (a+d)2

1−a2

⎞
⎟
⎠

d=1

=
1
2
−

1
2

a,
⎛
⎜
⎝

d
1

1+ (a+d)2

1−a2

⎞
⎟
⎠

d=−1

= −
1
2

a −
1
2

These relations imply the following conclusion: the maximum bias of the LSM estimate is

max
d

lim
n→∞

∣an − a∣ =
1
2

max{∣1− a∣; ∣1+ a∣}

The illustrative graphic (x ∶= d, y ∶= ∣an − a∣ for a = 0.5) is shown in Figure 1.
Conclusion: Be careful! The LS method does not work for identification of parameters

of dynamic models with correlated noises!
As a result, certain unique approaches, distinct from LSM, must be developed.
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Figure 1. The bias dependence on the correlation coefficient d.

4. Some Other Identification Techniques
Identification of Non-Stationary Parameters and Bayesian Method

Some other parameter estimation/identification methods have been proposed for
more complex situations. In [37], a combination of recursive version of the IV method with
the matrix forgetting factor was presented for identification of time-varying parameters for
ARMAX models, showing that the identification error in average has a bound dependent
on the rate of the parameter variation, as well as on the variance of the noise. The version
of IV method with adaptive matrix forgetting factor was studied in [38]. In some cases
equation-error and output-error approaches have been used to deal with the problem where
all the observed variables are corrupted by noise. The parameter bounding by the bounded
equation error and the bounded errors in variables based on these approaches was studied
in [39]. Bayesian parameter estimation and prediction of lineal-in-parameters models
under the presence of coloured noise is addressed in [40], and it is based on a model called
ARMAX. This model is a finite mixture of ARMAX elements with a common ARX part. This
ARX part described a fixed deterministic input–output relationship: this model is estimated
using a recursive quasi-Bayes algorithm that relies on a classical Bayesian solution without
restriction on the MA component. The proposed model provides flexibility with respect
to varying characteristics of the model noise. The measurement errors that affect data
entries make the estimation problem more complicated. A solution to this problem was
proposed in [41] by enhancing the ARMAX models by including some additive error
terms on the output, and then developing a moving horizon estimator for the extended
ARMAX model. The proposed method then models the measurement errors as nuisance
variables and these are estimated simultaneously with the states, and the identifiability
was achieved by regularising the LS cost with the `2 norm of the nuisance variables,
leading to an optimisation problem with an analytical solution. The nuisance variables
have been recently used to model the output noise, as well as the potentially existing
outliers (see [27]). These outliers are regularised with the `2 norm for the estimation,
and the regularised estimator suppresses the influence of the output noise and provides a
minimum-variance estimate.

For the continuous-time case, the LSM with forgetting factor has been implemented
for estimating constant and time-varying parameters ([42–44]). The proposed algorithms
in [45] showed a good performance, but the bias, as in the discrete-time case, affects the
estimation. The estimation algorithm was implemented for additive and multiplicative
noises (see [46]), and in both scenarios, LSM is affected by the noise level, showing that is
not the best method for stochastic systems, either in discrete or continuous time. To deal
with the bias problem, a method combining the equivalent control with LSM was proposed,
these two algorithms working in parallel reduce the bias in the estimation even in the
presence of coloured noises (see [47]).
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5. Regular Observations and Information Inequality for Observations with
Coloured Noise

In estimation theory and statistics [48,49], the Cramér–Rao bound (CRB) expresses a
lower bound on the variance of unbiased estimators cn of a deterministic (fixed, though un-
known) parameter c, stating that the variance of any such estimator is at least as high as
the inverse of the Fisher information (FIM) I−1

F (c, n). Namely, for every unbiased estimator
cn (n is the number of available regular observations), an inequality of the type

Varc(cn) ≥ I−1
F (c, n) (23)

for every c in the parameter space C, it is called an information inequality, which plays
a very important role in parameter estimation. The early works of Cramér (1946) [50]
and Rao (1945) [51] introduced the Cramer–Rao inequality for regular density functions.
Later, Vincze (1979) [52] and Khatri (1980) (see [53]) introduced information inequalities
by imposing the regularity assumptions on a priori distribution rather than on the model.
An unbiased estimator which achieves this lower bound is usually said to be (fully) efficient.
This is a solution that achieves the lowest possible mean squared error among all unbiased
methods, and therefore is the minimum variance unbiased (MVU) estimator. However,
in some cases, there are no unbiased techniques that achieve this bound. This may occur
either if for any unbiased estimator there exists another estimator with a strictly smaller
variance, or if an MVU estimator exists but its variance is strictly greater than the inverse of
the Fisher information. The Cramér–Rao bound (37) can also be used to bound the variance
of biased estimators of given bias. In some cases, a biased approach can result in both a
variance and a mean squared error that are below the unbiased Cramér–Rao lower bound.

Recall some important definitions.

5.1. Main Definitions and the Cramer–Rao Information Inequality

In a general case, the observable output sequence yn ∶= {y1, y2, . . . , yn} may be of a
vector type (yt ∈ RL) containing the information on the parameter c ∈ RN . The function
p(yn ∣ c), c ∈ C ⊆ RN is called the joint density of the distribution of the vector yn. Any
Borel function cn = cn(yn) ∈ RN can be considered as an estimate of the parameter c.

Definition 1. The vector-function

mn(c) = E{cn} = ∫
Yn

cn(yn)p(yn ∣ c)dyn ∈ RN ,

Yn = {yn ∣ p(yn ∣ c) > 0, c ∈ C},

is referred to as the averaged value of the estimate cn, based on available observations yn;
− If mn(c) = c, then the estimate cn is called unbiased and asymptotically unbiased if

limn→∞ mn(c) = c.
− The observations yn are referred to be as regular on the class C of parameters if

sup
c∈C

E{∥ln p(yn ∣ c)∥2
} = sup

c∈C
∫

Yn

∥ln p(yn ∣ c)∥2 p(yn ∣ c)dyn < ∞, (24)

and for any c ∈ C

IF(c, n) = E{∇c ln p(yn ∣ c)∇⊺c ln p(yn ∣ c)} =
∫

Yn

[∇c ln p(yn ∣ c)∇⊺c ln p(yn ∣ c)]p(yn ∣ c)dyn > 0. (25)

− The matrix IF(c, n) is called the Fisher information matrix for the set of available observations yn.

As it was mentioned in [54], when the Fisher information takes into account the
stochastic complexity and the associated universal processes are derived for a class of para-
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metric processes. The main condition required is that the maximum likelihood estimates
satisfy the central limit theorems.

In some cases, the Fisher information matrix (FIM) is required to be non-singular (25)
to guarantee the observability of the system (see [55]). The algebraic properties of FIM
for stationary processes have been widely studied, for example there is a survey paper
written by André Klein where this study is presented [56]. The FIM is necessary for the
Cramer–Rao inequality; it is a basic tool for estimation theory in mathematical statistics,
and in stationary processes is related to the solution of Stein equations. A procedure to
compute the theoretical periodic autocovariance function in terms of the parameters of the
periodic model for periodic autoregressive moving average models was presented in [57],
where the necessary and sufficient condition for non-singular FIM of a periodic ARMA
model was calculated. So, the Fisher information matrix for the Gaussian case in ARMAX
processes has been previously studied. In [58], an algorithm composed by Chandrasekhar
recursion equations at a vector-matrix level was proposed, where the recursions consist
of derivatives based on appropriate differential rules that are applied to a state space
model for a vector process. The recursions obtained were given in terms of expectations of
derivatives of innovations.

Theorem 1. Cramer–Rao information inequality. For any set Yn of regular observations, and for
any estimate cn with differentiable averaged value function mn(c) the following inequality holds

E{(cn − c)(cn − c)⊺} ≥
[mn(c) − c][mn(c) − c]⊺ +∇mn(c)I−1

F (c, n)∇⊺mn(c).
(26)

Corollary 1. For unbiased estimates satisfying mn(c) = c, ∇mn(c) = In×n, the Cramer–Rao
inequality becomes

E{(cn − c)(cn − c)⊺} ≥ I−1
F (c, n). (27)

This inequality is widely used in discrete-time systems for various purposes. The pos-
terior Cramer–Rao bound on the mean square error in tracking the bearing, bearing rate
and power level of a narrowband source is developed in [59]. Their formulation used a
lineal process model with additive noise and a general nonlinear measurement model,
where the measurements are the sensor array data. This bound can be applied to multi-
dimensional nonlinear and possibly non-Gaussian systems. In [60], the case of a singular
conditional distribution of the one-step-ahead state vector given the present state was
considered. The bound was evaluated for recursive estimation of slowly varying param-
eters of AR processes, tracking a slowly varying single cisoid in noise and tracking the
parameters of a sinusoidal frequency with a sinusoidal phase modulation. A variation of
the Cramer–Rao inequality is the Cramer–Rao–Frechet inequality, which has been applied
for discrete-time nonlinear filtering. In [61], this inequality was reviewed and extended
to track fitting, where it is shown that the inequality does not cause the limitations of the
resolution of the track fits with a certain number of observations, and that the inequality
remains valid even in irregular models supporting the similar improvement of resolution
for realistic models.

5.2. Fisher Information Matrix Calculation

Using the Bayes formula

p(yn ∣ c) = p(yn ∣ yn−1; c)p(yn−1 ∣ c) =

⋅ ⋅ ⋅ =
⎡
⎢
⎢
⎢
⎣

n
∏
k=1

p(yk ∣ yk−1; c)
⎤
⎥
⎥
⎥
⎦

p(y0 ∣ c),
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for the likelihood function Ln(yn ∣ c) = − ln p(yn ∣ c) we have the following representation:

Ln(yn ∣ c) = − ln p(yn ∣ c) = −
n
∑
k=1

ln p(yk ∣ yk−1; c) − ln p(y0 ∣ c). (28)

Define also
ut(c) = ∇cLt(yt ∣ c)−∇cLt−1(yt−1 ∣ c) =

−
∇c p(yt ∣ yt−1; c)

p(yt ∣ yt−1; c)
= −∇c ln p(yt ∣ yt−1; c),

which is a martingale difference, since E{ut(c) ∣ Ft−1}
a.s.
= 0, and satisfies the property

∇cut(c) = −
∇2

c p(yt ∣ yt−1; c)
p(yt ∣ yt−1; c)

+
∇c p(yt ∣ yt−1; c)∇⊺c p(yt ∣ yt−1; c)

p2(yt ∣ yt−1; c)
. (29)

For regular unbiased observations, the Fisher information matrix IF(c, n) can be
calculated as

IF(c, n) =
n
∑
k=1

E{uku⊺k } =
n
∑
k=1

E{∇cuk(c)} =

E
⎧⎪⎪
⎨
⎪⎪⎩

n
∑
k=1

∇c p(yk ∣ yk−1; c)∇⊺c p(yk ∣ yk−1; c)
p2(yk ∣ yk−1; c)

⎫⎪⎪
⎬
⎪⎪⎭

=

E
⎧⎪⎪
⎨
⎪⎪⎩

n
∑
k=1

∇c ln p(yk ∣ yk−1; c)∇⊺c ln p(yk ∣ yk−1; c)
⎫⎪⎪
⎬
⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

5.3. Asymptotic Cramer–Rao Inequality

Multiplying both sides of (27) by n we get

nE{(cn − c)(cn − c)⊺} ≥ (
1
n
IF(c, n))

−1
.

Taking n →∞ we get

lim inf
n→∞

nE{(cn − c)(cn − c)⊺} ≥ I−1
F (c), (31)

where

IF(c) ∶= lim sup
n→∞

1
n
IF(c, n) = lim sup

n→∞
E
⎧⎪⎪
⎨
⎪⎪⎩

1
n

n
∑
k=1

uk(c)u⊺k (c)
⎫⎪⎪
⎬
⎪⎪⎭

> 0.

Remark 2. In view of (29) it follows

IF(c) = lim sup
n→∞

1
n

E{∇
2
c Ln(yt ∣ c)}. (32)

5.4. Whitening Process for Stable and Minimal-Phase Forming Filters

Although additive Gaussian white noise is widely used, in many research areas the
present noises are non-Gaussian. In some cases, detectors are used to whiten the data and
then the estimation/identification is performed (see for example [62]). In the presence
of non-white noises, one of the most common methods to deal with this perturbation
is a whitening filter. A transfer function of an estimated noise can be used to filter the
input–output data of the system and presents a filtering-based recursive analogue of the
LSM algorithm for the ARMAX model. In [63], it is shown that through data filtering one
can obtain two identification models, the first one including the parameter of the system
model and the second including the parameter of the noise model; this can lead to a more
accurate parameter estimation. A whitening filter can be applied in coloured Gaussian
noises when there is a residual white noise component present. The existence of a realisable
whitening filter is demonstrated in [64].
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The model (14) can be symbolically represented as

yn = z⊺nc + ηn = z⊺nc +
H1(q)
H2(q)

ξn. (33)

In view of the Assumption 4, the polynomials H1(q) and H2(q) are stable and, hence,

we are able to apply the inverse operator
H2(q)
H1(q)

to both sides of the model (33), obtaining

ỹn =
H2(q)
H1(q)

yn, ỹ−s ∶= 0, s = 0, 1, . . . , K1,

z̃n =
H2(q)
H1(q)

zn, z̃−s ∶= 0, s = 0, 1, . . . , K1,

ξ̃n ∶=
H2(q)
H1(q)

H1(q)
H2(q)

ξn
a.s.
= ξn +Oω(λn), ∣λ∣ < 1,

(34)

where λ is one of the eigenvalues of the polynomials H1(q) and H2(q) which is most close
to the unitary circle. The function Oω(λn) is a random process, defined on (Ω,F , P) and
such that

0
a.s.
< lim inf

n
Oω(λn

)/λn
≤ lim sup

n
Oω(λn

)/λn
≤ const(ω)

a.s.
< ∞.

So, finally, after the “whitening process” (inverse operator) application we get

ỹn = z̃⊺nc + ξ̃n. (35)

Remark 3. This means that on-line application of the “whitening process” to the initial model (33)
permits considering the corresponding transformed model (34) which deals with “quasi” white noise
ξ̃n exponentially quickly, tending to the exact white noise ξn, fulfilling

∥ξ̃n − ξn∥ = Oω(λn
)

a.s.
→ 0

when n →∞. This permits to represent (35) as

ỹn = z̃⊺nc + ξn +Oω(λn
). (36)

5.5. Cramer–Rao Inequality for ARMAX Models with a Generating Noise from the Class Pξ

of p.d.f.

Theorem 2. The Cramer–Rao inequality (see [15]) in the form (31) is

lim inf
n→∞

nE{(cn − c)(cn − c)⊺} ≥ sup
pξ∈Pξ

I−1
F (c) =

sup
pξ∈Pξ

(IF,ξ(pξ)R(pξ))
−1

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(37)

where

R(pξ) ∶= lim sup
n→∞

1
n

n
∑
k=1

E{z̃k z̃⊺k },

IF,ξ(pξ) = E
⎧⎪⎪
⎨
⎪⎪⎩

(
∂

∂ξ
ln pξ(ξ(ω)))

2⎫⎪⎪
⎬
⎪⎪⎭

= ∫
x∈R1

( ∂
∂x pξ(x))

2

pξ(x)
dx.

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(38)

Remark 4. In the regression case (al = 0, l = 1, . . . , L) the matrixR (38) does not depend on pξ .

Conclusion. According to the information inequality (37), the “best” (asymptotically
optimum or efficient) estimate c∗n of the parameter c ∈ C is the one that achieves equality
in the (37). The inequality given by (37) implies that after n regular observations yn the
covariance matrix of the estimation error (cn − c), which defines the quality of the estimation
process, can not be less than the corresponding Fisher information matrix (25). In other
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words, the Fisher information matrix (25) will define the maximal possible quality of the
identification process, which can not be improved by any other identification algorithm.

6. Robust Version of Maximum Likelihood Method with Whitening:
MLMW Procedure

For parameter estimation and system modelling, the maximum likelihood technique
is critical. The maximum of the likelihood function in Gaussian case is equivalent to min-
imising the least-squares cost function [65]. In this paper, a recursive maximum likelihood
least-squares identification algorithm for systems with autoregressive moving average
noises was derived. The maximum likelihood has been widely implemented under Gaus-
sian perturbations, for example in [66], the Gaussian likelihood function was studied when
data are generated by a high-order continuous-time ARMAX mode, and these data are
observed as stocks and flows at different frequencies. The maximum likelihood method can
be modified using the stochastic gradient; this modification was presented in [67], where
this modification was proposed for ARMAX models. In this case, the modified algorithm
can estimate unknown parameters and the unknown noise simultaneously, with less com-
putational cost and better accuracy. Non-asymptotic deviations bounds for least-squared
estimation in Gaussian AR processes have been recently studied (see [68]). The study
relies on martingale concentration inequalities and tail bound for χ2-distributed variables;
in the end, they provided a concentration bound for the sample covariance matrix of the
process output.

6.1. Whitening Method and Its Application

The whitening method is commonly used to prevent the bias problem [69]. A modified
version of direct whitening method, which is called MDWM, was proposed as an ARMA
model parameter estimation technique in [70]. The proposed direct whitening method
(DWM) provides the parameter estimates which make the prediction errors uncorrelated,
in some cases this algorithms might fall at local minima and give parameter estimates.
To deal with this problem, an MDWM which chooses the consistent estimates among a
large number of DWM estimates can be implemented. Pre-whitening can be performed
with first order differentiation of signals and/or the implementation of an inverse filter
based on linear prediction, as it is shown in [71], where the whitening was the previous
step in a cross-correlation method for identifying aircraft noise, showing that whitening
can be successfully developed for real-time operation in the detection of correlation peaks.
An iterative procedure for minimising and whitening the residual of the ARMAX model
was presented in [72], since usually when the system is identified from input–output data
in the time domain, it is assumed that the data is enough and the ARX model order is large
enough. The results show that in the residual whitening method we can use an ARMAX
model that includes the noise dynamics, instead of an ARX model, and the properties of the
residual sequence, such as the orthogonal conditions, can convert to the optimal properties
of the Kalman filter. The influence function is an analysis tool in robust statistics we used
to formulate a recursive solution for ARMAX processes filtering in [73], in particular for a
t-distribution noise. The filter was formulated as a maximum likelihood problem, where
an influence function approximation was used to obtain a recursive solution to reduce
computational load and facilitate the implementation.

Whitening techniques have also been implemented for noise cancellation, in [74] is
the base for an approach to adaptive white noise cancellation based on adaptive control
principles. In this case, the goal was to create a physical noise-reduced environment at the
vicinity of noisy machinery for a stochastic machine noise. Another method implemented
for filtering is signal smoothing when the data are generated (or represented) by an autore-
gressive moving average with exogenous inputs (ARMAX) model. In the case presented
in [75], the original ARMAX recurrence relation is used and combined with a constrained
LS optimisation to filter the system as well as the measurement noise components and
estimate the desired signal in the form of a block-wise matrix formulation.
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Whitening processes are a very useful pre-processing technique to deal with the
presence of non-white noises, and the improve the estimation results regardless of the
estimation algorithm used [76]. In [77], a residual whitening method enforces the proper-
ties of the Kalman filter for a finite set of data. This technique has been implemented in
ARMAX models for the identification of inductor motor systems. The importance of the
study and development of estimation/identification algorithms for ARMAX models with
coloured noises relies on the importance of this model in various areas of study and its
many applications. The identification of the ARMAX models allows the implementation of
control techniques, such as the predictive control presented in [78], which is applied for the
control of a pneumatic actuator based on an ARX model built by a neural network. There,
the control showed a quick response and an accurate tracking. The estimation has been
implemented for electromechanical modes and mode shapes for multiple synchrophasors
(see [79]). Their approach was based on identifying the transfer function of the state space
model of a linearised power system through the estimation of a multichannel ARMAX
mode, and it was simulated using data from a reduced-order model of the Western Electric-
ity Coordinating Council (WECC) system. The ARMAX model has been used to model
an outlet temperature of the first-stage cyclone pre-heater in the cement firing system
(see [80]). In that case, a Butterworth low-pas filter and normalized processing are used to
process a cement firing system data, and the input variables modelled are selected by the
Pearson correlation analysis. The parameters of the model were identified using a recursive
maximum likelihood algorithm, and the results validated with a residual analysis method.

Econometrics is an area where the estimation/identification of ARMAX models (the
integral version of the ARMAX model) has great importance (see [66,81,82]). The integration
of macroeconomic indicators in the accuracy of throughput time-series forecasting model
can be addressed using ARMAX models, as it is shown in [83]. There, the dynamic factors
are extracted from external macroeconomic indicators influencing the observed throughput,
and then a family of ARMAX models is generated based on derived factors. This model
can be used to produce future forecasts. Some variations of the ARMAX model, such as the
autoregressive moving average explanatory input model of the Koyck kind (KARMAX) are
also used in econometrics. Another interesting application in econometrics is presented
in [84], where it is shown how the recent deregulation of the electricity industry and
reliance on competitive wholesale markets has generated significant volatility in wholesale
electricity prices. Due to the importance of short-term price forecasts, an estimation and
evaluation of the forecasting performance of four ARMAX–GARCH models for five MISO
pricing hubs (Cinergy, First Energy, Illinois, Michigan and Minnesota) using hourly data
from 1 June 2006 to 6 October 2007 is given. In this study, the importance of the patterns
of the electricity price volatility is shown, as well as the volatility dynamics regulated by
the states.

In [85], an identification algorithm is presented, where the debt management in
indebted poor countries is studied, using data from the World Bank database from 1970
to 2018 based on the maximum likelihood method, and then comparing the results with
prediction error and the instrumental variable methods.

6.2. Recurrent Robust Identification Procedures with Whitening and a Nonlinear
Residual Transformation

Consider the following class of recurrent identification procedures [15] which may be
applied to the transformed model (36):

cn = cn−1 + Γn z̃n ϕ(ỹn − z̃⊺ncn−1)

c0—any given value

Γn = (
n
∑
t=0

z̃t z̃⊺t )
−1

, n ≥ n0 ∶= {min
k

k
∑
t=0

z̃t z̃⊺t } > 0.

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

(39)
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Remark 5. Notice that Γn in (39) can be calculated recursively (as in the least-square method)

Γn = Γn−1 −
Γn−1z̃n z̃⊺nΓn−1

1+ z̃⊺nΓn−1z̃n
, n ≥ n0, (40)

and possesses (in the accepted assumptions) the following property

Γn
a.s.
≃

1
n
R−1

R = lim
n→∞

1
n

n
∑
k=1

E{z̃⊺k z̃k} > 0.
(41)

Theorem 3 ([15]). If

1. ξn is i.i.d. sequence with

E{ξn} = 0, E{ξ2
n} = σ2

> 0, E{ξ4
n} = E{ξ4

1} < ∞.

2. The nonlinear transformation ϕ ∶ R→ R satisfies the conditions

xψ(x) ≥ δx2, δ > 0, ψ(0) = 0, S(x) ≤ k0 + k1x2,

with
ψ(x) = E{ϕ(x + ξn)}, S(x) ∶= E{ϕ2

(x + ξn)},

then
∆n = cn − c

a.s.
→

n→∞
0. (42)

Following to Lemma 13.7 in [36] and defining a new process {∆̃n}n≥0 as

∆̃n = [1−
ψ′(0)

n
]∆̃n−1 +

1
n
R
−1z̃n(oω(1) + ζn), ∆̃0 = ∆0, (43)

we may formulate the following auxiliary result.

Theorem 4 (on
√

n-equivalency). Under the assumptions of Theorem 3, the process (42) is
√

n-equivalent to the process (43), that is,

√
n(∆n − ∆̃n)

a.s.
→

n→∞
0. (44)

The property of the asymptotic normality of the process {
√

n∆n}n≥0 helps us to esti-
mate the exact rate of convergence (not only the order of convergence, but also its constant)
of the identification procedure (39).

Theorem 5 (on asymptotic normality). Suppose that the conditions of Theorem 3 are fulfilled
and, additionally,

ψ(0) = 0, S(0) > 0, ψ′(0) > 1/2 . (45)

Then, the process {
√

n∆n}n≥0 is asymptotically normal

√
n∆n

d
→

n→∞
N(0, V), (46)

with the covariation matrix V, equal to

V =
S(0)

2ψ′(0) − 1
R
−1. (47)
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It results directly from Theorem 13.6 in [36].

Remark 6. The matrix V defines the rate of the convergence of the procedure (39), that is

∆n
d
→

n→∞
N(0, n−1V).

As it follows from (47), V depends on a real noise density distribution pξ (since S(0),
ψ′(0) and Rmay be dependent on pξ) and on a nonlinear function ϕ (through S(0) and
ψ′(0)). That’s why, to emphasise this dependence, we use the notation

V = V(pξ , ϕ).

Following [13,14], let us introduce the main definition of this section.

Definition 2. The pair of functions given by (p∗ξ , ϕ∗∗) define the estimating procedure (54) with
the nonlinear residual transformation ϕ∗, which is robust with respect to a distribution pξ , belonging
to a class Pξ , if for any admissible ϕ, satisfying the assumptions of Theorem 5, and any generating
noise distribution pξ ∈ Pξ the following “saddle-point” inequalities hold:

V(pξ , ϕ∗∗) ≤ V(p∗ξ , ϕ∗∗) ≤ V(ϕ, p∗ξ ). (48)

Here, both inequalities should be treated in a “matrix sense”, that is,

A = A⊺
≤ B = B⊺ if B − A ≥ 0.

In other words:

− The distribution p∗ξ is the “worst” within the class Pξ .
− The nonlinear transformation ϕ∗∗ is “the best one” oriented on the “worst” noise with

the distribution p∗ξ .

This can be expressed mathematically as follows:

ϕ∗∗ = arg inf
ϕ

sup
pξ∈Pξ

V(pξ , ϕ),

p∗ξ = arg sup
pξ∈Pξ

inf
ϕ

V(pξ , ϕ),

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(49)

so that
inf

ϕ
sup

pξ∈Pξ

V(pξ , ϕ) = sup
pξ∈Pξ

inf
ϕ

V(pξ , ϕ) ∶= V∗. (50)

According to (37), for any fixed pξ ∈ Pξ

inf
ϕ

V(pξ , ϕ) = inf
ϕ
(

S(0)
2ψ′(0) − 1

R
−1

) ≥ sup
pξ∈Pξ

[IF,ξ(pξ)R(pξ)]
−1

(51)

Lemma 1 ([15]). The low bound in (51) coincides with the Cramer–Rao bound (37) and is achieved
when the nonlinear function in (39) is

ϕ∗∗(v) = −I−1
F,ξ(p∗ξ )

d
dv

ln p∗ξ (v) (52)

with
p∗ξ = arg sup

pξ∈Pξ

[IF,ξ(pξ)R(pξ)]
−1

(53)
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In other words, this lemma states that the nonlinear residual transformation ϕ∗∗ (52)
is robust with respect to distributions pξ ∈ Pξ .

So, the asymptotically optimal recurrent robust identification procedure (39) for
coloured noise perturbations in (33) is

cn = cn−1 − Γn z̃n I−1
F,ξ(p∗ξ )

d
dv

ln p∗ξ (v) ∣v=ỹn−z̃⊺n cn−1

Γn = Γn−1 −
Γn−1z̃n z̃⊺nΓn−1

1+ z̃⊺nΓn−1z̃n
, n ≥ n0,

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(54)

which in fact is the maximum likelihood recurrent procedure with the worst p.d.f. p∗ξ (v)
on the given class Pξ .

Remark 7. Notice that for the class of ARMAX models with coloured noises and regular obser-
vations, there does not exist any other algorithm providing, asymptotically, a rate of convergence
better than the suggested procedure (54).

As we can see, whitening is a pre-processing step in the estimation process which can
be applied simultaneously with the identification procedure (54). In [86], this step was im-
plemented in the blind source separation process, where a robust whitening is based on the
eigenvalue decomposition of a positive definite linear combination of correlation matrices.

This problem can be addressed analysing the noise power spectra density. This
has been implemented by identifying the noise power spectral density of interferometric
detectors using parametric techniques (see [87]). This is an adaptive technique used to
identify and to whiten data provided my the interferometric detectors. The least-squares
lattice filter proved to be the best among the analysed filters. One of the applications for
this technique was presented in [88] where it was implemented for gravitational data wave
analysis. There, it is shown how it is possible to estimate the noise power spectral density
of gravitational wave detectors using parametric techniques, and it also shows how is it
possible to whiten the noise data before they pass the detection algorithms.

6.3. Particular Cases for Static (Regression) Models

Recall that for regression models (al = 0, l = 1, . . . , L) the matrixR does not depend on
p.d.f. pξ , and the relation (53) becomes

p∗ξ (v) = arg sup
pξ∈Pξ

[IF,ξ(pξ)]
−1

= arg inf
pξ∈Pξ

IF,ξ(pξ).

Lemma 2. In the class P1
ξ ∶= {pξ ∶ pξ(0) ≥

1
2a

> 0} (5) the worth distribution density p∗ξ (x) is

the Laplace p.d.f. given by

p∗ξ (x) = arg inf
pξ∈P

1
ξ

IF,ξ(pξ) =
1
2a

exp{−
∣x∣
a
}. (55)

See Figure 2.

Corollary 2. The robust on P1
ξ version of the procedure (54) contains

ϕ∗∗(x) = −I−1
F,ξ(p∗ξ )

d
dv

ln p∗ξ (v) = a sign(x) (56)

Lemma 3. In the class P2
ξ ∶= {pξ ∶ ∫

R
x2 pξ(x)ds ≤ σ2 < ∞} (6), the worth distribution density

p∗ξ (x) is the Laplace p.d.f. given by
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p∗ξ (x) = arg inf
pξ∈P2

IF(pξ) =
1

√
2πσ

exp{−
x2

2σ2 }, (57)

that is, the worth on P2
ξ distribution density is the Gaussian p.d.f. (57).

Corollary 3. The robust on P2
ξ version of the procedure (54) contains

ϕ∗(x) = −I−1
F (p∗ξ )

d
dv

ln p∗ξ (v) = x (58)

which means that the standard LSM algorithm with linear residual transformation is robust within
the class P2.

Figure 2. The nonlinear transformation ϕ∗∗ for the class P1
ξ .

Lemma 4. In the class P3
ξ ∶= {pξ ∶ pξ(x) = (1− α)p

N(0,σ2)(x) + αq(x)} (7) (of all symmetric
“approximately normal” p.d.f.), the worth distribution density p∗ξ (x) is Gaussian p.d.f. within some
zone ∆ and the Laplace p.d.f. out of this zone:

p∗ξ (x) = arg inf
pξ∈P

3
ξ

IF,ξ(pξ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1−α√
2πσ

exp{− x2

2σ2 } for ∣x∣ ≤ ∆
1−α√
2πσ

exp{−
∆∣x∣
σ2 + ∆2

2σ2 } for ∣x∣ > ∆
.

(59)

The parameter α ∈ [0, 1] characterises the level of the effect of a “dirty” distribution q(x) to
the basic one pN(0,σ)(x), and ∆ is a solution of the transcendent equation

1
1− α

=

∆

∫

−∆

pN(0,σ)(x)dx + 2pN(0,σ)(∆)
σ2

∆
(60)

that is, the worth on P3
ξ distribution density is the Gaussian one for ∣x∣ ≤ ∆ and the Laplace type for

∣x∣ > ∆, (see Figure 3).
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Corollary 4. The robust on P3
ξ version of the procedure (54) contains

ϕ∗∗(x) = −I−1
F (p∗ξ )

d
dv

ln p∗ξ (v) = {
x for ∣x∣ ≤ ∆

∆ sign(x) for ∣x∣ > ∆
(61)

Figure 3. The nonlinear transformation ϕ∗∗ for the class P3
ξ .

Lemma 5. In the class

P4
ξ = {pξ ∶ pξ(x) = (1− α)pU(0,a)(x) + αq(x)},

pU(0,a)(x) ∶= 1
2a χ(∣x∣ ≤ a)

(7) (of all symmetric “approximately uniform” distributions) the worth distribution density p∗ξ (x) is

p∗ξ (x) = arg inf
pξ∈P

4
ξ

IF,ξ(pξ) =

⎧⎪⎪
⎨
⎪⎪⎩

1−α
2a for ∣x∣ ≤ a

1−α
2a exp{−(1− α)

∣x∣−a
αa } for ∣x∣ > a > 0

,
(62)

that is, the worth on P4
ξ distribution density is the uniform p.d.f. for ∣x∣ ≤ a and the Laplace type for

∣x∣ > a.

Corollary 5. The robust on P4
ξ version of the procedure (54) contains

ϕ∗∗(x)= − I−1
F (p∗ξ )

d
dv

ln p∗ξ (v)=
⎧⎪⎪
⎨
⎪⎪⎩

0 for ∣x∣ ≤ a
1− α

αa
sign(x) for ∣x∣ > a

(63)

See Figure 4.
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Figure 4. The nonlinear dead-zone transformation ϕ∗∗ for the class P4
ξ .

6.4. Robust Identification of Dynamic ARX Models

In the case of dynamic autoregression models (ARX model) where the generalised
inputs are dependent on the state of the system, the matrixR depends on pξ , too, and there-
fore, we deal with the complete problem, namely, we need to calculate

sup
pξ∈P

[IF,(pξ)R(pξ)]
−1

(64)

For the ARX model (65) (for simplicity we put here bk = 0, (k = 0, . . . , K), so cl = al
(l = 1, . . . , L)) the relation (36) becomes

ỹn = a⊺ṽn + ξn +Oω(λn)

a⊺ = (a1, . . . , aL), ṽ⊺n = (yn−1, . . . , yn−L)
} (65)

Here we have
1
n

n
∑
t=0

E{ṽtṽ⊺t } → R(pξ)

whereR(pξ) satisfies
R(pξ) = AR(pξ)A⊺

+ σ2Ξ0 (66)

with

A =

XXXXXXXXXXXXXXXXXXXXXXXX

a0 a1 ⋯ ⋯ aLa

1 0 ⋯ ⋯ 0
0 1 0 ⋯ 0
0 ⋯ ⋱ 0 0
0 ⋯ 0 1 0

XXXXXXXXXXXXXXXXXXXXXXXX

, Ξ0 ∶=

XXXXXXXXXXXXXXXXXXXXXXXX

1 0 ⋯ ⋯ 0
0 0 ⋯ ⋯ 0
0 0 0 ⋯ 0
0 ⋯ ⋱ 0 0
0 ⋯ 0 0 0

XXXXXXXXXXXXXXXXXXXXXXXX

Obviously,R(pξ) can be represented asR(pξ) = σ2R0(pξ), whereR0 is the solution
of

R0(pξ) = AR0(pξ)A⊺
+Ξ0. (67)

In this case, the problem (64) is reduced to

sup
pξ∈Pξ

[σ2(pξ)IF(pξ)]
−1
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or equivalently, to
inf

pξ∈Pξ

[σ2(pξ)IF(pξ)] (68)

Consider now some classes Pξ of a priory informative generating noise distributions
and solutions of the problem (68) within these classes.

(1) Class PARX−1
ξ (containing among others the Gaussian distribution p

N(0,σ2
0)

(x)).

Lemma 6. For the class PARX−1
ξ

p∗ξ (x) = arg inf
pξ∈P

AR
1

[σ2(pξ)IF(pξ)] = p
N(0,σ2

0)
(x) (69)

that is, the worth on PARX−1
ξ p.d.f. is exactly that the Gaussian distribution p

N(0,σ2
0)

(x).

Proof. Taking in (A1)

f (x) = x, ϕ(x) = p′ξ(x)/pξ(x)

we get

σ2 IF(pξ) ≥
⎛
⎜
⎝
∫

R

xp′ξ(x)dx
⎞
⎟
⎠

2

=
⎛
⎜
⎝
∫

R

pξ(x)dx
⎞
⎟
⎠

2

= 1

such that the equality is attained when p′ξ(x)/pξ(x) = λx, which leads to

pξ(x) =
1

√
2π/λ

exp{−
λx2

2
}

But since IF(p
N(0,σ2

0)
) = σ−2

0 from the inequality above we get

σ2(pξ)IF(pξ) ≥ 1 = σ2
0 IF(p

N(0,σ2
0)

)

which means that p∗ξ (x) = p
N(0,σ2

0)
(x).

Corollary 6. The robust on PARX−1
ξ version of the procedure (54) contains

ϕ∗∗(x) = −I−1
F (p∗ξ )

d
dv

ln p∗ξ (v) = x.

(2) Class PARX−2
ξ (containing all centred distributions with a variance not less than a

given value):

P
ARX−2
ξ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pξ ∶ ∫

R

x2 pξ(x)dx ≥ σ2
0

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(70)

Lemma 7. For the class PARX−2
ξ

p∗ξ (x) = arg inf
pξ∈P

ARX−2
ξ

IF(pξ) (71)
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that is, the worth on PARX−2
ξ distribution density p∗ξ (x) coincides with the worth p.d.f. on the

classes P i
ξ (i = 1, . . . , 4) characterising distribution uncertainties (if additional information is

available) for static regression models provided that

σ2
(p∗ξ (x)) = σ2

0 (72)

Proof. It follows directly from the inequality σ2(pξ)IF(pξ) ≥ σ2
0 IF(pξ).

Remark 8. Notice that all of the preceding analysis is based on the assumption that the transfer
function (4) of the forming filter (3) is known a priory, allowing the parallel whitening process (34) to
be applied and the information Cramer–Rao bound (37) to be reached, resulting in the asymptotically
effective (the “best” ones) procedure, which is robust on given p.d.f. classes Pξ of generating noises.

Below, we look at a considerably more challenging scenario where the forming filter (3)
is unknown a prior. In this situation, nobody can definitely achieve the information Cramer–
Rao bound (37) and build an asymptotically successful parametric estimate technique in
this circumstance. However, the problem can be handled utilising alternative techniques
of identification.

7. Instrumental Variables Method for ARMAX Model with Finite Noise Correlation
7.1. About IVM

Instrumental variables (IV) or total least-squares estimators is the method which also
recommends to estimate parameters in the presence of white or coloured noises [89–91].
Even if the accuracy of the estimator for errors-in-variables models cannot be handled
with a conventional analysis, the results produced by any of these estimators in practice
demonstrate that their response can be well theoretically anticipated. The instrumental
variables algorithms have been implemented for multivariable model forms, such as AR-
MAX models, dynamic adjustments with autoregressive errors and multivariable transfer
functions (see [92]), where the IV algorithm provides asymptotically efficient estimation
results and a low variance. The IV method can be adapted to work with the maximum
likelihood method [93]. An analysis of the refined instrumental variable-approximate
maximum likelihood (IVAML) method was presented. The proposed technique proved to
be asymptotically efficient and to approach minimum variance estimation of the model
parameters, even with a low sample size and low signal noise rations. An unified refined
instrumental variable (RIV) approach was proposed in [94] for the estimation of discrete
and continuous-time transfer functions. The estimator was based on the formulation of
a pseudo-linear regression involving an optimal prefiltering process derived from a Box–
Jenkins transfer function model. This method showed a reliable solution to the maximum
likelihood optimisation equations, and the estimates are optimal in the maximum likeli-
hood sense. The optimal refined instrumental variables for Box–Jenkins models has been
studied on various occasions, for example in [95]. There, in contrast to the most common
forms of the algorithm used in ARMAX models, a modification that facilitates the repre-
sentation of the more general noise component of the Box–Jenkins model was proposed,
and that could also be used as an adaptive filter and as a state variable feedback control.
For the nonlinear case, the instrumental variable method has been used in particular for
nonlinear Hammerstein models. The nonlinear recursive instrumental variables method
has been used to deal with these models due to its simplicity in practical applications
(see [96]). The recursive IV method also proves to be superior to the recursive LSM in terms
of accuracy and convergence under the presence of coloured noises, and this is valid either
for discrete or continuous-time [97].
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Consider now the system (1) in the regression format

yn = z⊺nc + ηn,
c = (a1, . . . , aL; b0, . . . , bK)

⊺
∈ RL+K+1,

zn = (yn−1, . . . , yn−L; wn, . . . , wn−K)
⊺
∈ RL+K+1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(73)

where the exogenous noise input ηn has a finite correlation, that is, the transfer matrix of
the forming filter has only the nominator:

H(q−1) = H1(q−1) = 1+
K1

∑
s=1

d2,sq−s, H2(q−1) = 1 (74)

It is acknowledged that the parameters d2,s (s = 1, . . . , K1) may be unknown a priory.

7.2. Instrumental Variables and the System of Normal Equations

Let vn ∈ RL+K+1 be an auxiliary vector variable (an instrumental variable) depending on
information available up to time n. Considering the moments t = 1, . . . , n and multiplying
both sides of (73) by vt we get the so-called system of “normal equations”:

v1y1 = v1z⊺1 c + v1η1,
v2y2 = v2z⊺2 c + v2η2,

⋮

vnyn = vnz⊺nc + vnηn

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(75)

Summing these relations, after multiplying by n−1, we obtain

n−1
n
∑
t=1

vtyt = (n−1
n
∑
t=1

vtz⊺t )c + n−1
n
∑
t=1

vtηt (76)

Define the instrumental variable estimate cIV
n of the vector c as a vector which in each

time n satisfies the relation
n
∑
t=1

vtyt = (
n
∑
t=1

vtz⊺t )cIV
n . (77)

If the matrix (
n
∑
t=1

vtz⊺t ) is invertible, that is, the matrix ΓIV
n ∶= (

n
∑
t=1

vtz⊺t )
−1

exists (for all

n ≥ n0), then cIV
n can be expressed as

cIV
n = ΓIV

n

n
∑
t=1

vtyt, (78)

or in the recurrent form

cIV
n = cIV

n−1 + ΓIV
n vt(yn − z⊺ncIV

n−1),

ΓIV
n = ΓIV

n−1 −
ΓIV

n−1vnz⊺nΓIV
n−1

1+ z⊺nΓIV
n−1vn

, z⊺nΓIV
n−1vn ≠ −1

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

(79)

Remark 9. Notice that if vn = zn the estimates cIV
n (77)–(79) coincide with LSM estimates.

As it follows from (76) and (77), the estimation error δn = cIV
n − c satisfies

− n−1
n
∑
t=1

vtηt = (n−1
n
∑
t=1

vtz⊺t )δn (80)
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Under the main assumptions accepted above, in view of the strong large number law
(see Theorem 8.10 in [36]), we have

n−1
n
∑
t=1

vtyt
a.s.
= n−1

n
∑
t=1

E{vtyt} + oω(1),

n−1
n
∑
t=1

vtzt
a.s.
= n−1

n
∑
t=1

E{vtzt} + oω(1),

n−1
n
∑
t=1

vtηt
a.s.
= n−1

n
∑
t=1

E{vtηt} + oω(1)

a.s. means almost sure or with probability 1.

and the relation (80) becomes

−n−1
n
∑
t=1

E{vtηt}
a.s.
= (n−1

n
∑
t=1

E{vtzt})δn + oω(1)

from which one may conclude that if

(1)

n−1
n
∑
t=1

E{vtzt} → RIV , detRIV ≠ 0; (81)

(2)

n−1
n
∑
t=1

E{vtηt} → 0, (82)

then the estimate cIV
n is asymptotically consistent with probability 1, namely, δn

a.s.
→ 0.

Corollary 7. Evidently, the condition (82) holds if the instrumental variable vt and the external
noise ηt are not correlated:

E{vtηt} = 0 for all t = 1, . . .

So, in the example (17), instead of the LSM estimate (18) we need to use (see [98]) the IV
estimate cIV

n (78) with vt = yt−k (k ≥ 1) ∶

an = [
n
∑
t=1

yt−kyt+1][
n
∑
t=1

ytyt−k]

−1
a.s.
→ a

In general cases for the model (73) and (74) with a finite correlation (E{ηtηt−k} = 0, k > K1)
we may use the following IV estimate cIV

n with vt = zt−k (k ≥ K1) ∶

cIV
n = cIV

n−1 + ΓIV
n zt−k(yn − z⊺ncIV

n−1),

ΓIV
n = ΓIV

n−1 −
ΓIV

n−1zn−kz⊺nΓIV
n−1

1+ z⊺nΓIV
n−1zn−k

, z⊺nΓIV
n−1zn−k ≠ −1.

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

(83)

8. Joint Parametric Identification of ARMAX Model and the Forming Filter

Unfortunately, IVM identification algorithms cannot be applied in the situation when
the correlation function of a coloured noise is not finite. Below, we treat exactly this case
considering that the transfer function of a finite-dimensional forming filter is completely un-
known, including both numerator and denominator parameters in (4). So, here our problem
under the consideration is as follows: based on the available data (16) we need to construct
an identification procedure, generating some parameter estimates ân,i (i = 1, . . . , L), b̂n,i
(i = 0, . . . , K) ,ĥn,1i (i = 0, . . . , K1) and ĥn,2i (i = 1, . . . , K2) which asymptotically convergence
with probability 1 (or almost sure) to the real values, namely,

ân,i
a.s.
→ ai, b̂n,i

a.s.
→ bi, ĥn,1i

a.s.
→ h1,i, ĥn,2i

a.s.
→ h2,i when n →∞. (84)
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8.1. An Equivalent ARMAX Representation

Multiplying (1) by H2(q) = 1+
K2
Σ

i=1
h2,iqi we obtain the corresponding ARMAX (autore-

gression with moving average noise term model)

(1+
K2
Σ

i=1
h2,iqi)(1+

L
∑
i=1

aiqi)yn =

(1+
K2
Σ

i=1
h2,iqi)(

K
∑
i=0

biqi)un +(h1,0 +
K1
Σ

i=1
h1,iqi)ξn

or, equivalently, in the “open format” (with mA ∶= max{K2, L} and mB ∶= max{K2, K})

(1+
mA
∑
i=1

qi[aiχ(i ≤ nA) + h2,iχ(i ≤ nD2)

+
⎛

⎝
h2,iχ(i ≤ nD2)

mA
∑
j=1

ajχ(j ≤ nA)qj⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
yn =

⎛

⎝
b0 +

MB
∑
i=1

qi
⎡
⎢
⎢
⎢
⎣

biχ(i ≤ MB) + h2,iχ(i ≤ nD2)
MB
∑
j=0

bjχ(j ≤ nB)qj
⎤
⎥
⎥
⎥
⎦

⎞

⎠
un

+(1+
nD1
∑
i=1

h1,iqi)ξn,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(85)

where

χ(A) = {
1 if the event A is valid
0 if not

.

Remark 10. Notice that since the polynomial H2(q) is stable, the reactions {yτ}τ=1,n of both
difference Equations (4) and (85) on the same inputs {uτ}τ=−2mB ,n and {ξτ}0=−K1,n are asymp-
totically closed, namely, the difference between these reactions tends to zero exponentially quickly
with probability one. That is why to obtain the desired property (84), designing the identification
procedure using the data of the model (4) can be realised based on data but generated by the ARMAX
model (85) (see [99]).

The ARMAX model (85) can be represented in the standard regression format (different
from (14)) as

yn = x⊺nc + h1,0ξn (86)

with
xn = (−yn−1,⋯,−yn−2mA ; un,⋯, un−2mB ; ξn−1,⋯, ξn−nK1

)
⊺

∈ RN

N ∶= 2mA + 2mB + 1+K1
(87)

and
c = (ã1,⋯, ã2mA , b̃0,⋯, b̃2mB , h1,1, . . . , h1,K1)

⊺
∈ RN , (88)

containing the components

ã1 = a1 + h2,1,
ãi = aiχ(i ≤ nL) + h2,iχ(i ≤ nK2)+

mA
∑
k=1

h2,kχ(k ≤ nK2)ai−kχ(i − k ≤ L), i = 2, . . . , 2mA,

b̃0 = b0, b̃i = biχ(i ≤ mB)+
mB
∑
k=1

h2,kχ(k ≤ nK2)bi−kχ(i − k ≤ K), i = 1, . . . , 2mB.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(89)

Remark 11. Notice that the extended input vector xn is not completely available since it contains
immeasurable components ξn−1, ⋯, ξn−nK1

. This property is the main difference with the standard
ARMAX model identification problem where the vector xn does not contain these immeasurable term.
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8.2. Auxiliary Residual Sequence

Now, let us define the “generalised residual sequence” given by the recursion relation

εn = yn − x̂⊺ncn−1 (90)

where the “extended vector” x̂n ∈ R2mA+2mB+1+K1 is defined as

x̂n = (−yn−1,⋯,−yn−2mA ; un,⋯, un−2mB ; εn−1,⋯, εn−nK1
)
⊺

(91)

with ε−1 = ⋯ = ε−nD1
= 0. Notice that the “extended vector” x̂n is measurable on-line.

Lemma 8 ([99]). For n →∞

∆n = εn − ξn = O(∣λH1 ∣
n
)

a.s.
→ 0, (92)

where λH1 is the eigenvalue of the polynomial H1 with minimal module ∣λH1 ∣ < 1.

From (A5) we get

yn = x̂⊺nc −
nD1

∑
i=1

h1,i∆n−i + h1,0ξn = x̂⊺nc + h1,0ξn +O(∣λH1 ∣
n
). (93)

8.3. Identification Procedure

To estimate the extended vector c from the relation (93) let us apply the least-squares
method (LSM), defining the current estimate ĉn as

ĉn = (
n
∑
t=0

x̂t x̂⊺t )
−1 n
∑
t=0

x̂tyt, n ≥ n0 = {inf n:
n
∑
t=t

x̂t x̂⊺t > 0} (94)

In the recurrent form, this estimate can be represented as in (39):

ĉn = ĉn−1 + Γn x̂n ϕ(yn − x̂⊺n ĉn−1),

Γn = Γn−1 −
Γn−1 x̂n x̂⊺nΓn−1

1+ x̂⊺nΓn−1 x̂n
, n ≥ n0 + 1,

Γ−1
n0
∶=

n0
∑
t=t

x̂t x̂⊺t

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(95)

Notice that taking Γ−1
n0

as

Γ−1
n0

= ρIN×N +

n0

∑
t=t

x̂t x̂⊺t , 0 < ρ ≪ 1, (96)

we can select n0 = 0, and the procedure (95) can be applied from the beginning of the process.

Theorem 6 ([100]). If

(1) the following “persistent excitation condition” (PEC) holds:

lim inf
n

(
1
n

n
∑
t=0

xtx⊺t )
a.s.
≥ νIM×M

a.s.
> 0,

M ∶= 2mA + 2mB + 1+D1.

(2) {ξn} is a martingale difference sequence satisfying (10),

then, the LSM procedure (95) and (96) generates the sequence of the estimates {ĉn}n≥0, which
is asymptotically consistent with probability 1, that is, ĉn

a.s
→

n→∞
c.
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8.4. Recuperation of the Model Parameters from the Obtained Current Estimates
8.4.1. Special Case When the Recuperation Process Can Be Realised Directly

When K = 0 and the gain parameter b0 ≠ 0 are a priori known, the system of algebraic
Equations (89) becomes linear with respect to the unknown parameters ai(i = 0, . . . , L) and
h2,i(i = 0, . . . , nK2), and may be resolved analytically without application of any numeri-
cal procedure.

8.4.2. General Case Requiring the Application of Gradient Descent Method (GDM)

In view of (89), we can recuperate the parameters ai(i = 0, L), bi (i = 0, K) and h2,i
(i = 0, . . . , nK2) for this purpose using the command Fsolve in Matlab or some numerical
method such as GDM.

For example, if we consider the case when K = L = nK2 = mA = mB = 2, the component
relations from (89) become

ã1 = a1 + h2,1, ã2 = a2 + h2,2 + h2,1a1,
ã3 = h2,1a2 + h2,2a1, ã4 = h2,2a2,

b̃0 = b0, b̃1 = b1 + h2,1b0,
b̃2 = b2 + h2,1b1 + h2,2b0,

b̃3 = h2,1b2 + h2,2b1, b̃4 = h2,2b2.

Since this system is formed by nonlinear equations, and in some particular cases
it is actually possible to solve the equations analytically, the gradient descent method
(GDM) is implemented to estimate the values from the original system, taking the best
average value from the estimated parameters. For this purpose, we define the following
objective function:

F(a1, a2, b1, h21) = (a1 + h21 − c1)
2+

(a1h21 + a2 − c2)
2 + (a2h21 − c3)

2+

(b1 + h21b0 − c5)
2 + (b1h21 − c6)

2 →min

The original parameter can be recovered using some of the existing optimisation com-
mands in Matlab, suc as Fsolve or optimvar, or some algorithms such as GDM mentioned
previously, although some other optimisation techniques could be implemented (see [99]).
The performance of Fsolve is good in second or third order systems; in these cases, the com-
mand can recover all the original parameters from the nonlinear system. In higher order
systems, this method presents problems at recovering the original values, while gradient
descent has a good performance with low- and high-order systems. In some cases, such as
the example presented before, it is possible to recover the original values by a mathematical
simplification. The main condition for a good estimation is that in the objective function
one should have at least as many terms as variables to estimate, otherwise it is not possible
to recover all the original values.

9. Numerical Example

The algorithms presented in the previous sections are illustrated with a numerical example.

Raised Cosine Distribution

Consider the following system

y(k) = 0.85y(k − 1) + 2u(k) + η(k),
η(k) = −0.3η(k − 1) + ξ(k) + 0.8ξ(k − 1),

with ξ having the raised cosine distribution

pξ(v) =
1
2s

[1+ cos(
v − µ

s
π)], µ > 0, s > 0,
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which is a continuously differentiable function supported on the interval [µ − s, µ + s]. The
system can be rewritten as follows

y(k) = z(k)⊺c + η(k),

with

z(k) = (
y(k − 1)

u(k)
), c ∶= (

0.85
2

).

The whitening process is then given by

ỹ(k) = H(q−1
)y(k), z̃(k) = H(q−1

)z(k),

or in the extended form,

ỹ(k) + 0.3 ỹ(k − 1) = y(k) + 0.8y(k − 1), ỹ(0) = y(0),
z̃(k) + 0.3 z̃(k − 1) = z(k) + 0.8z(k − 1), z̃(0) = z(0),

where the “inverse filter” has the transfer function

H(q−1
) =

1+ 0.8q−1

1+ 0.3q−1 .

The recursive WLSM algorithm with the residual nonlinear transformation is given by

cn = cn−1 − I−1
F,ξ Γn z̃n

p′ξ(v)

pξ(v)
∣v=ỹn−z̃⊺n cn−1

=

cn−1 + 2π I−1
F,ξΓn z̃n

sin(
v − µ

s
π)

1+ cos(
v − µ

s
π)

∣v=ỹn−z̃⊺n cn−1
=

cn−1 +
s
π

Γn z̃n

sin(
π

s
[ỹn − z̃⊺ncn−1 − µ])

1+ cos(
π

s
[ỹn − z̃⊺ncn−1 − µ])

.

(97)

Here, we have used that for the raised cosine distribution

IF,ξ = 2
π2

s
. (98)

The initial conditions are c(0) = 2, y(0) = 3, Γ(0) = 105. The Figures 5 and 6 show
the estimated parameters a and b using LSM and MLLM+ whitening with a nonlinear
residual transformation.

In the Figures 5 and 6, one can see that in the LSM case the noise has a strong
influence in the estimation results, while in the MLLM+ whitening, the noise influence
is minimised in the estimated parameter, reducing the bias, which is the most common
problem in parameter estimation using LSM under the presence of the correlated noises.
The performance index of the estimated algorithm is illustrated in Figure 7; here, one can
see that the MLLM+ whitening is a better option for parameter estimation in systems with
coloured noises.
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Figure 5. Parameter a and its estimated using LSM and LSM+ whitening (raised cosine distribution case).

Figure 6. Parameter b and its estimated using LSM and LSM+ whitening (raised cosine distribution case).

In this case, the filter structure is known; a numerical example where the filter structure
is unknown is presented in [99].
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Figure 7. Performance indexes of the estimation algorithms implemented in a system with a raised
cosine distribution.

10. Discussion

In this paper, we demonstrated that the traditional LSM algorithm failed to accurately
estimate the parameters of ARX (dynamic) models when subjected to a coloured perturba-
tion, and because of this, it is necessary to implement a different estimation strategy. For the
identification issue under non-Gaussian and coloured noises, the Cramer–Rao inequality
and the related Fisher information limits were explored, when the forming filter (the noise
spectral function) is known a priori.

It was shown that a recurrent process, which employs both the whitening technique
and the nonlinear residual transformation (operating in parallel), is the asymptotically
effective (the “best”) identification algorithm.

The main limitation of the proposed method is that in the case of having a partially
unknown filter, the method cannot be implemented. In this case, there are two different
identification methods that might be used:

− Instrumental variables method (IVM) for ARMAX models with a finite noise-correlation.
− The nonlinear residual transformation method for simultaneous parametric identifica-

tion of the ARMAX model and the forming filter.
Both techniques are not asymptotically effective, as they do not achieve the Cramer–
Rao information limits.

In a future work, we plan to analyse the case in which the filter is partially known,
or even unknown, and if it is possible to achieve the information limits that were previ-
ously mentioned.

11. Conclusions

In the present work, the limits for the Cramer–Rao inequality and the related Fisher
information were explored under coloured noise perturbations, and we demonstrated that
the whitening technique and the nonlinear residual transformation working in parallel
generate an estimation sequence with the asymptotic convergence rate that proves to
be the best identification algorithm for the case studied in this manuscript, reaching the
Fisher information bound, which cannot be improved by any other estimation algorithm.
The effectiveness of the suggested approach is illustrated by a numerical example with a
non-Gaussian noise, having a raised cosine distribution.
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ARX Autoregressive model with exogenous variables
ARMAX Autoregression moving average exogenous input
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IVM Instrumental variables method
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DWM Direct whitening method
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Appendix A

Appendix A.1. Proof of Lemma 2

• By the Cauchy–Schwarz inequality

⎛
⎜
⎝
∫

R1

f ϕpξ dx
⎞
⎟
⎠

2

≤
⎛
⎜
⎝
∫

R1

f 2 pξdx
⎞
⎟
⎠

⎛
⎜
⎝
∫

R1

ϕ2 pξ dx
⎞
⎟
⎠

(A1)

valid for any p.d.f. f , ϕ, and any noise density distribution pξ (for which the integrals
have a sense), for f ∶= p′ξ(x)/pξ(x), after integrating by parts it follows

IF,ξ(pξ) ≥
⎛
⎜
⎝
∫

R1

pξ(x)dϕ(x)
⎞
⎟
⎠

2

/∫

R1

ϕ2
(x)pξ(x)dx, (A2)

where the equality is attained when p′ξ(x)/pξ(x) = λϕ(x), λ is any constant. Taking
ϕ(x) ∶= sign(x) in (A2) and using the identity [sign(x)]′ = 2δ(x)pξ(0) leads to

IF,ξ(pξ) ≥ 4p2
ξ(0) ≥

1
a2 for any pξ ∈ P1, (A3)

where the equality is attained when p′ξ(x)/pξ(x) = λsign(x), or equivalently, for

pξ(x) = λ
2 exp{−∣x∣/λ}. With λ = a we have
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pξ(x) =
a
2

exp{−∣x∣/a} = p∗ξ (x). (A4)

So, IF,ξ(p∗ξ ) =
1
a2 and the worst noise distribution within P1

ξ is p∗ξ (x) (55).

Appendix A.2. Proof of Lemma 3

From (4), we have

yn = x⊺nc + h1,0ξn = x̂⊺nc + c⊺(xn − x̂n) + h1,0ξn

= x̂⊺nc +
nK1
∑
i=1

h1,i(ξn−i − εn−i) + h1,0ξn,

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(A5)

which implies the following recurrence

h2,0∆n +

nK1

∑
i=1

h1,i∆n−i = H1(q)∆n = 0. (A6)

Taking into account that the polynomial H1(q) is stable, we get (92).

Appendix A.3. Proof of Lemma 4

• Taking in (A2) ϕ(x) = x for all pξ ∈ P
2
ξ , we get

IF,ξ(pξ) ≥ 1/∫
R

x2 pξ(x)dx ≥ 1/σ2, (A7)

where the equality is attained when

p′ξ(x)/pξ(x) = λx, λ is any constant (A8)

or, equivalently, for

pξ(x) =
1

√
2π/λ

exp{−
λx2

2
} (A9)

For λ = σ−2 we have

pξ(x) =
1

√
2πσ

exp{−
x2

2σ2 } = p∗ξ (x) (A10)

implying

IF,ξ(pξ) ≥ 1/∫
R1

x2 pξ(x)dx ≥ 1/σ2
= IF(p∗ξ ) (A11)

So, the worst noise distribution within P2
ξ is p∗ξ (x).

Appendix A.4. Proof of Lemma 5

• (without details). From (7) it follows

pξ(x) ≥ (1− α)p
N(0,σ2)(x) (A12)

So, we need to solve the following variational problem:

inf
pξ ∶pξ≥(1−α)p

N(0,σ2)
IF,ξ(pξ) (A13)

As it is shown in [14], its solution is (59).
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17. AldemĠR, A.; Hapoğlu, H. Comparison of ARMAX Model Identification Results Based on Least Squares Method. Int. J. Mod.
Trends Eng. Res. 2015, 2, 27–35.

18. Likothanassis, S.; Demiris, E. Armax model identification with unknown process order and time-varying parameters. In Signal
Analysis and Prediction; Springer: Berlin/Heidelberg, Germany, 1998; pp. 175–184.

19. Norton, J. Identification of parameter bounds for ARMAX models from records with bounded noise. Int. J. Control 1987,
45, 375–390. [CrossRef]

20. Stoffer, D.S. Estimation and identification of space-time ARMAX models in the presence of missing data. J. Am. Stat. Assoc. 1986,
81, 762–772. [CrossRef]

21. Mei, L.; Li, H.; Zhou, Y.; Wang, W.; Xing, F. Substructural damage detection in shear structures via ARMAX model and optimal
subpattern assignment distance. Eng. Struct. 2019, 191, 625–639. [CrossRef]
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