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1 Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, Str. Dr. I. Ratiu, No. 5-7,
550012 Sibiu, Romania

2 Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street,
400114 Cluj-Napoca, Romania; Ioan.Rasa@math.utcluj.ro (I.R.); ancasteopoaie@yahoo.ro (A.E.Ş.)
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Abstract: The paper is devoted to the existence, uniqueness and nonuniqueness of positive solutions
to nonlinear algebraic systems of equations with positive coefficients. Such systems appear in large
numbers of applications, such as steady-state equations in continuous and discrete dynamical models,
Dirichlet problems, difference equations, boundary value problems, periodic solutions and numerical
solutions for differential equations. We apply Brouwer’s fixed point theorem, Krasnoselskii’s fixed
point theorem and monotone iterative methods in order to extend some known results and to obtain
new results. We relax some hypotheses used in the literature concerning the strict monotonicity of
the involved functions. We show that, in some cases, the unique positive solution can be obtained
by a monotone increasing iterative method or by a monotone decreasing iterative method. As a
consequence of one of our results, we recover the existence of a non-negative solution of the Leontief
system and describe a monotone iterative method to find it.

Keywords: Brouwer’s fixed point theorem; Krasnoselskii’s fixed point theorem; nonlinear algebraic
systems of equations

MSC: 39A10; 65H10; 47J05; 65H20

1. Introduction

Algebraic systems with positive coefficients and positive solutions have many applica-
tions: see, e.g., [1] and the references therein. Several techniques are used for studying the
existence, uniqueness and nonuniqueness of a positive solution to such a system. Fixed
point theorems (such as Brouwer’s and Krasnoselskii’s theorems) and monotone iterative
methods are often applied, depending on the nature of the system. In this paper, we
use these tools in order to extend some known results and to get new results concerning
systems related to (S0) below.

Brouwer’s fixed point theorem was used in [2] to prove the existence and uniqueness
of a positive solution to a system of the form (S0) under specific assumptions on the
strict monotonicity of the functions fi. In Section 2, we relax the assumptions and prove
the existence of a positive solution by using a monotone iterative method. The results
are related to those of [1]. In particular, we show that under suitable hypotheses, the
solution can be obtained by a monotone increasing iterative method and/or by a monotone
decreasing iterative method. See Theorems 1–6.

Example 2 is related to the Leontief model (see [3]). It is well-known (Theorem 10.5
of [3]) that a Leontief system has a unique non-negative solution. The existence of such
a solution and a monotone iterative method to find it can be proved by using Theorem 3.
Section 2 ends with some examples.
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In Section 3, we use Brouwer’s theorem in order to study the existence of a non-
negative solution to the system (S1), related to (S0) (see Theorem 8). For the functions
fi(t) = tci , (S0) was investigated in the cases ci > 1, ci < −1, 0 < ci ≤ 1, i = 1, . . . , n.
The case −1 ≤ ci < 0, i = 1, . . . , n, is settled in Corollary 1 as an application of Theorem 8.

In Section 4, we use Krasnoselskii’s fixed point theorem in order to provide examples
of systems of the above type with no positive solution or with two positive solutions.

Related results can be found in the papers in the bibliography. General methods for
solving systems are described in [4–16]. For applications to discrete inclusions, see [17].
Many applications to difference equations can be found in [18] and the references therein.
In [19], applications to extremum problems are presented, while [20] describes applications
to parameter estimation. Linear systems with positive coefficients and positive solutions are
studied in [21,22], while special classes of systems are investigated in [23–25]. Applications
to boundary value problems can be found in [26,27] and the references therein. Applied
boundary value problems and nonlinear quantum integro-difference boundary value
problems are addressed in [28,29] with Krasnoselskii’s fixed point theorem as the main
theoretical tool.

General methods and applications of positive matrices are presented, e.g., in [30–32].
We end this section by mentioning several areas of applications where systems such

as (S0) below play a significant role. Such applications are described, e.g., in [1], where the
reader can find several types of steady-state equations in continuous and discrete dynamical
models. For other applications, see [33]: Dirichlet problems, difference equations, boundary
value problems, periodic solutions and numerical solutions for differential equations. In all
these applications, the study of the system (S0) is an essential step. In our article, we
present new results about such systems, which could be useful for applications.

2. The Monotone Iterative Method

Consider the system

(S0)


f1(x1) = a11x1 + · · ·+ a1nxn + p1,
. . .
fn(xn) = an1x1 + · · ·+ annxn + pn,

(1)

where fi : [0, ∞) → [0, ∞) is continuous and strictly increasing, fi(0) = 0, aij ≥ 0,
pi ≥ 0, i, j = 1, . . . , n. A non-negative solution is a vector x = (x1, . . . , xn) ∈ Rn such that
x1 ≥ 0, . . . , xn ≥ 0 and x satisfies (S0). If x1 > 0, . . . , xn > 0, we say that the solution is
positive. A sequence xk = (xk

1, . . . , xk
n) ∈ Rn, k ≥ 1, is called increasing if each sequence

(xk
i )k≥1 is increasing.

Let si := ai1 + · · ·+ ain, i = 1, . . . , n. We denote by R( fi) the range of fi, which is an
interval of the form [0, ci), ci ≤ ∞.

Theorem 1. Assume that there exists t0 > 0 such that

fi(t0) ≥ sit0 + pi, i = 1, . . . , n. (2)

Then, the sequence (xk)k≥0 defined by

x0
i := t0, i = 1, 2, . . . , n, (3)

xk+1
i := f−1

i (ai1xk
1 + · · ·+ ainxk

n + pi), k ≥ 0, i = 1, . . . , n, (4)

is decreasing and convergent to a non-negative solution x∗ of (S0).

Proof. We prove by induction the statement

P(k) : ai1xk
1 + · · ·+ ainxk

n + pi ∈ R( fi) and xk+1
i ≤ xk

i , i = 1, . . . , n.



Mathematics 2022, 10, 1327 3 of 10

To prove P(0), let us remark that

ai1x0
1 + · · ·+ ainx0

n + pi = sit0 + pi,

which is in R( fi), using fi(0) = 0 and (2). Moreover,

x1
i = f−1

i (ai1x0
1 + · · ·+ ainx0

n + pi) ≤ f−1
i (sit0 + pi) ≤ t0 = x0

i , i = 1, . . . , n.

Now suppose that P(k) is true. Then,

0 ≤ ai1xk+1
1 + · · ·+ ainxk+1

n + pi ≤ ai1xk
1 + · · ·+ ainxk

n + pi ∈ R( fi),

and so ai1xk+1
1 + · · ·+ ainxk+1

n + pi ∈ R( fi), i = 1, . . . , n.
Therefore,

xk+2
i = f−1

i (ai1xk+1
1 + · · ·+ ainxk+1

n + pi) ≤ f−1
i (ai1xk

1 + · · ·+ ainxk
n + pi)

= xk+1
i , i = 1, . . . , n.

This shows that P(k) is true for all k ≥ 0. Consequently, each sequence (xk
i )k≥0 is

decreasing and bounded, hence convergent to a certain x∗i ≥ 0. From (4), we see that

fi(xk+1
i ) = ai1xk

1 + · · ·+ ainxk
n + pi, i = 1, . . . , n,

and so fi(x∗i ) = ai1x∗1 + · · ·+ ainx∗n + pi.
This concludes the proof.

Theorem 2. Assume that there exists t0 > 0 satisfying (2), and t1 ∈ [0, t0) such that

fi(t1) ≤ sit1 + pi, i = 1, . . . , n. (5)

Then, the sequence (xk)k≥0 defined by

x0
i := t1, i = 1, 2, . . . , n,

and by (4) is increasing and convergent to a non-negative solution x̃ of (S0).

Proof. Let us prove by induction the statement

Q(k) : ai1xk
1 + · · ·+ ainxk

n + pi ∈ R( fi) and xk
i ≤ xk+1

i ≤ t0, i = 1, . . . , n.

First, 0 ≤ ai1x0
1 + · · ·+ ainx0

n + pi = sit1 + pi ≤ sit0 + pi ∈ R( fi).
Thus, ai1x0

1 + · · ·+ ainx0
n + pi ∈ R( fi), and

x0
i = t1 ≤ f−1

i (sit1 + pi) = f−1
i (ai1x0

1 + · · ·+ ainx0
n + pi) = x1

i .

Moreover, x1
i = f−1

i (sit1 + pi) ≤ f−1
i (sit0 + pi) ≤ t0. This proves Q(0).

Now, suppose that Q(k) is true. Then,

sit0 + pi ≥ ai1xk+1
1 + · · ·+ ainxk+1

n + pi ≥ ai1xk
1 + · · ·+ ainxk

n + pi,

so that ai1xk+1
1 + · · ·+ ainxk+1

n + pi ∈ R( fi).
Moreover,

xk+1
i = f−1

i

(
ai1xk

1 + · · ·+ ainxk
n + pi

)
≤ f−1

i (ai1xk+1
1 + · · ·+ ainxk+1

n + pi) = xk+2
i ,

and
xk+2

i = f−1
i

(
ai1xk+1

1 + · · ·+ ainxk+1
n + pi

)
≤ f−1

i (sit0 + pi) ≤ t0,
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for all i = 1, . . . , n.
So Q(k) is true for all k ≥ 0, which shows that each sequence (xk

i )k≥0 is increasing and
bounded and hence convergent to a certain x̃i > 0.

It follows that x̃ is a positive solution of (S0).

Remark 1. It is easy to see that if aij > 0, i, j = 1, . . . , n, and
n

∑
i=1

pi > 0, then the solution x∗

from Theorem 1 is a positive solution. Moreover, if pi > 0, i = 1, . . . , n, then x̃ from Theorem 2 is
also positive.

Theorem 3. Suppose that there exist x0
1 > 0, . . . , x0

n > 0 such that

fi(x0
i ) > ai1x0

1 + · · ·+ ainx0
n + pi, i = 1, . . . , n. (6)

Then, the sequence (xk)k≥0 defined by (4) is decreasing and convergent to a non-negative
solution x∗ of (S0).

The proof is similar to that of Theorem 1 and will be omitted.

Example 1. Consider the system
√

x1 =
1

100
x1 +

1
100

x2 + 8.9,

x2 =
1

200
x1 +

1
10

x2 + 8.5.

It has the positive solution x1 = 100, x2 = 10, which can be obtained using

(1) Theorem 1 with x0
1 = x0

2 = t0 = 144,
(2) Theorem 2 with x0

1 = x0
2 = t1 = 0,

(3) Theorem 3 with x0
1 = 144, x0

2 = 100.

The system has also the positive solution

x1 = 8000.85 . . . , x2 = 53.89 . . .

Example 2. Let fi(t) = t, i = 1, . . . , n, t ≥ 0. Then, (S0) can be written as

(Σ) : X = AX + P,

where X = col(x1, . . . , xn), P = col(p1, . . . , pn), and A is the matrix with entries aij. Suppose
that aij ≥ 0, i, j = 1, . . . , n, and for each j, there exists some i such that aij > 0. Moreover, suppose
that A is productive (see [3], p. 172); i.e., there exists X̃ > 0 such that

X̃ > AX̃. (7)

This is the Leontief model (see [3], p. 172). Theorem 10.5 in [3] shows that under
these assumptions, the system (Σ) has a unique non-negative solution. Let us remark that
Theorem 2.3 implies the existence of a non-negative solution and provides a monotone
iterative method to find it. Indeed, if c > 0 is sufficiently large, then X0 := cX̃ will
satisfy X0 > AX0 + P, which is (6). Now, according to Theorem 3, the sequence (Xk)k≥0
defined by

Xk+1 = AXk + P, k ≥ 0,

is decreasing and convergent to the non-negative solution of (Σ). For a related result,
see [1] (Corollary 3.2).
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Theorem 4. Suppose that lim
t→∞

fi(t) = ∞, i = 1, . . . , n, and there exists t0 > 0 satisfying (2).

Then, the sequence (xk)k≥0 defined by x0
i = 0, i = 1, . . . , n, and by (4) is increasing and convergent

to a non-negative solution x of (S0).

Proof. For each i = 1, . . . , n we have R( fi) = [0, ∞). Let us prove by induction the statement

L(k) : xk
i ≤ xk+1

i ≤ t0, i = 1, . . . , n.

From (2) we see that fi(t0) ≥ pi, and so

xo
i = 0 ≤ x1

i = f−1
i (pi) ≤ t0, i = 1, . . . , n.

This proves L(0). Now suppose that L(k) is true. Then

xk+1
i = f−1

i (ai1xk
1 + · · ·+ ainxk

n + pi)

≤ f−1
i

(
ai1xk+1

1 + · · ·+ ainxk+1
n + pi

)
= xk+2

i , i = 1, . . . , n.

Moreover,

xk+2
i = f−1

i (ai1xk+1
1 + · · ·+ ainxk+1

n + pi)

≤ f−1
i (sit0 + pi) ≤ t0, i = 1, . . . , n.

Thus, L(k + 1) is also true, which means that (xk
i )k≥0 is increasing and bounded,

i = 1, . . . , n. Its limit x will be a solution to (S0).

Let us recall a result from [2].

Theorem 5 (Theorem 1 of [2]). Assume that aij > 0, pi ≥ 0, i, j = 1, . . . , n. Let fi(t) = tgi(t),
t > 0, where gi : (0, ∞) → (0, ∞) is continuous and strictly increasing, i = 1, . . . , n. Suppose
that for each i = 1, . . . , n there exists ti > 0 such that gi(ti) = si. Then, the system (S0) has a
unique positive solution z∗.

In what follows, we show that z∗ can be approached by an increasing iterative method
and also by a decreasing iterative method.

Take a number u such that 0 < u < min{ti : i = 1, . . . , n}. Then, gi(u) < gi(ti) = si,
hence fi(u) = ugi(u) < usi, and finally

fi(u) <
n

∑
j=1

aiju + pi, i = 1, . . . , n. (8)

Let us remark that if v > max{ti : i = 1, . . . , n} then gi(v) > gi(ti) = si, i = 1, . . . , n.
Consequently, we can choose v > 0 such that v(gi(v)− si) > pi, i = 1, . . . , n. It follows that

fi(v) = vgi(v) > vsi + pi, and so

fi(v) >
n

∑
j=1

aijv + pi, i = 1, . . . , n. (9)

Theorem 6. Under the hypotheses of Theorem 5, consider the sequence (xk)k≥0 defined by

x0
i := u, i = 1, . . . , n, (10)

xk+1
i := f−1

i

(
n

∑
j=1

aijxk
j + pi

)
, i = 1, . . . , n, (11)
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and the sequence (yk)k≥0 defined by

y0
i := v, i = 1, . . . , n, (12)

yk+1
i := f−1

i

(
n

∑
j=1

aijyk
j + pi

)
, i = 1, . . . , n. (13)

Then, (xk)k≥0 is increasing, (yk)k≥0 is decreasing, and the limit of both of them is z∗—
the unique positive solution of (S0).

Proof. We prove by induction the statement

M(k) : xk
i ≤ xk+1

i ≤ yk+1
i ≤ yk

i , i = 1, . . . , n.

To prove M(0), let us start by using (8) and (10)

x0
i = u < f−1

i

(
n

∑
j=1

aiju + pi

)
= f−1

i

(
n

∑
j=1

aijx0
j + pi

)
= x1

i .

Moreover,

x1
i = f−1

i

(
n

∑
j=1

aijx0
j + pi

)
= f−1

i

(
n

∑
j=1

aiju + pi

)

≤ f−1
i

(
n

∑
j=1

aijv + pi

)
= f−1

i

(
n

∑
j=1

aijy0
j + pi

)
= y1

i .

Finally, y1
i = f−1

i

(
n

∑
j=1

aijy0
j + pi

)
= f−1

i

(
n

∑
j=1

aijv + pi

)
. Using (9), we obtain

y1
i ≤ v = y0

i , and M(0) is proved.
Now, suppose that M(k) is true. Then,

xk+1
i = f−1

i

(
n

∑
j=1

aijxk
j + pi

)
≤ f−1

i

(
n

∑
j=1

aijxk+1
j + pi

)
= xk+2

i ,

xk+2
i = f−1

i

(
n

∑
j=1

aijxk+1
j + pi

)
≤ f−1

i

(
n

∑
j=1

aijyk+1
j + pi

)
= yk+2

i ,

yk+2
i = f−1

i

(
n

∑
j=1

aijyk+1
j + pi

)
≤ f−1

i

(
n

∑
j=1

aijyk
j + pi

)
= yk+1

i .

So, for each i = 1, . . . , n, (xk
i )k≥0 is increasing, (yk

i )k≥0 is decreasing, and xk
i ≤ yk

i . Let
xi := lim

k→∞
xk

i , yi := lim
k→∞

yk
i . Then, (x1, . . . , xn) and (y1, . . . , yn) are positive solutions to (S0).

However, according to Theorem 5, (S0) has a unique positive solution z∗, and we conclude
that z∗ = lim

k→∞
xk = lim

k→∞
yk.

Remark 2. The system (S0) is described with the functions fi, but the proofs and the iterative
methods are formulated in terms of the inverse functions f−1

i . In some places, fi(x) = xgi(x).
We close this section with some examples of continuous, strictly increasing, surjective functions

g : (0, ∞)→ (0, ∞) such that f (x) = xg(x) can be explicitly inverted.
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Example 3. Let q ≥ 1, c ≥ 0, g(x) = x2q−1 + cxq−1. Then f−1(x) =

(√
4x + c2 − c

2

)1/q

,

x ≥ 0.

Example 4. If q ≥ 1 and g(x) =
1
x
(exp(xq)− 1), then f−1(x) = (log(1 + x))1/q, x ≥ 0.

Example 5. Let q > 1, c ≥ 1, g(x) =
(1 + xc)q − 1

x
. Then f−1(x) =

(
(1 + x)1/q − 1

)1/c
,

x ≥ 0.

3. Applications of Brouwer’s Fixed Point Theorem

The above Theorem 5 was proved by using Brouwer’s fixed point theorem. The same
classical result was used in proving

Theorem 7 (Theorem 2 of [2]). Suppose that aij > 0, pi ≥ 0, i, j = 1, . . . , n. Let

fi(t) =
hi(t)

t
, t > 0, where hi : (0, ∞) → (0, ∞) is strictly decreasing and continuous. As-

sume that for each i = 1, . . . , n, there exists ti > 0 such that hi(ti) = si. Then, (S0) has a unique
positive solution.

To prove the next result, we again use Brouwer’s fixed point theorem.

Theorem 8. Let Mi > 0, ϕi : [0, ∞) → [0, ∞) continuous and bounded by Mi, aij ≥ 0, qi ≥ 0,
i, j = 1, . . . , n. Then,

(S1)


x1 = ϕ1(a11x1 + · · ·+ a1nxn + q1),
. . .
xn = ϕn(an1x1 + · · ·+ annxn + qn),

has a solution in [0, M1]× · · · × [0, Mn].

Proof. Let x = (x1, . . . , xn) and

F(x) = (ϕ1(a11x1 + a1nxn + q1), . . . , ϕn(an1x1 + · · ·+ annxn + qn)),

where x ∈ [0, M1]× · · · × [0, Mn].
The function F : [0, M1] × · · · × [0, Mn] → [0, M1] × · · · × [0, Mn] is continuous on

the compact and convex set [0, M1]× · · · × [0, Mn]. According to Brouwer’s fixed point
theorem, it has a fixed point, which is a solution to (S1).

Let us return to the system (S0) and take fi(t) = tci , t > 0. If ci > 1, we can apply
Theorem 5 or Theorem 6. If ci < −1, Theorem 3 can be applied. If 0 < ci ≤ 1, Theorems 1–4
could be useful.

When −1 ≤ ci < 0, we are dealing with the system

(S2)


x1 = (a11x1 + · · ·+ a1nxn + p1)

1/c1 ,
· · ·
xn = (an1x1 + · · ·+ annxn + pn)1/cn .

Corollary 1. Let −1 ≤ ci < 0, aij ≥ 0, pi > 0, i, j = 1, . . . , n. Then (S2) has a solution in

∏n
i=1[0, p1/ci

i ].

Proof. In Theorem 8, choose qi = 0 and ϕi(t) = (t + pi)
1/ci , t ≥ 0. Then, ϕi : [0,+∞) →

[0,+∞) is continuous and bounded by Mi = p1/ci
i . With these choices, (S1) becomes (S2)

and has a solution in ∏n
i=1[0, p1/ci

i ].
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Example 6. Let a, b, c, d > 0, p, q ≥ 0, ϕ, ψ : [0, ∞)→ [0, ∞) strictly decreasing. The system{
x = ϕ(ax + by + p),
y = ψ(cx + dy + q),

is of the form (S1). It is equivalent to
y =

1
b
(

ϕ−1(x)− ax− p
)
,

x =
1
c
(
ψ−1(y)− dy− q

)
.

It is easy to check that these two curves intersect exactly once in the first quadrant; hence, our system
has exactly one positive solution.

4. Aplications of Krasnoselskii’s Fixed Point Theorem

The Krasnoselskii’s fixed point theorem on the compression and expansion of a cone
can be employed to prove the existence of one or two positive solutions. In [28], the authors
use the Krasnoselskii’s fixed point theorem to prove the existence of solutions for a system
of nonlinear differential equations defined on the graph representation of the ethane. In fact,
this is an application of such a fixed-point theorem in the context of an applied boundary
value problem. Similarly, there is another application of the mentioned theorem to another
boundary value problem given in [29], where the existence results are proved for a nonlinear
quantum integro-difference boundary value problem.

The version of the Krasnoselskii’s theorem in conical shells is used in [33,34]. Moreover,
with a clever combination of ideas, the authors of these papers derive results concerning the
non-existence of solutions. Here, we use two results from [33,34] in order to complement
Theorems 1 and 5.

Remember that under the hypotheses of Theorem 1, (S0) has a non-negative solution,
and under those of Theorem 5, (S0) has exactly one positive solution. An important
condition in Theorem 5 is that each function fi(t)/t is strictly increasing on (0, ∞). We
show that without this condition, the uniqueness of the positive solution can be lost. We
present also an example where (S0) has no positive solution.

Let αi > 1, aij > 0, i, j = 1, . . . , n, λ > 0. Consider the system

(S3)


f1(x1) = λ(a11x1 + · · ·+ a1nxn),
· · ·
fn(xn) = λ(an1x1 + · · ·+ annxn),

where fi(t) = (et − 1)1/αi , t ≥ 0.
It is of the form (S0). Setting ϕi(t) := f−1

i (t) = log(1 + tαi ), t ≥ 0, i = 1, . . . , n, (S3)
can be written as

(S′3)

 x1
· · ·
xn

 = λ

 a11 · · · a1n
· · · · · · · · ·
an1 · · · ann

 ϕ(x1)
· · ·

ϕ(xn)

.

Systems of this form are investigated in [34,35].

Proposition 1. (i) There exists a λ0 > 0 such that for each λ > λ0, (S′3) has two positive solutions.
(ii) There exists a λ1 > 0 such that for each 0 < λ < λ1, (S′3) has no positive solutions.

Proof. Let us remark that

lim
t→0

ϕi(t)
t

= 0, lim
t→∞

ϕi(t)
t

= 0, and ϕi(t) > 0 if t > 0, i = 1, . . . , n.
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Now, (i) is a consequence of Theorem 4.1 in [33] (which gives sufficient conditions for the
existence of two positive solutions) and (ii) a consequence of Theorem 4.7 in [33] (which
gives sufficient conditions under which the system has no positive solution); see also
Example 2 in [34].

5. Conclusions and Further Work

In many application-oriented problems, an important step is represented by the study
of an algebraic system with positive coefficients. In such a case, only positive solutions are
of interest. Therefore, a considerable number of papers have been devoted to such systems.
Fixed point theorems and iterative methods are useful tools. In our paper, we obtain new
results related to several classes of systems. We relax some hypotheses used in the literature
concerning the strict monotonicity of the involved functions. We show that in some cases,
the unique positive solution can be obtained by a monotone increasing iterative method
and/or by a monotone decreasing iterative method. As a consequence of one of our results
(Theorem 3), we recover the existence of a non-negative solution of the Leontief system and
describe a monotone iterative method to find it. In Corollary 1, we fill in a gap in a series
of results from the literature concerning a special system. Examples of positive systems
having no positive solution or having two positive solutions are provided in Section 4 with
Krasnoselskii’s fixed point theorem as the main tool. Some applications of this theorem are
also mentioned.

The above-mentioned results can be starting points for new investigations. We pre-
sented iterative methods to get a solution, and we will be interested in estimating the rate of
convergence to the solution. Usually, there are several iterative methods, and a comparison
of their speeds of convergence will be one significant direction of study. Our efforts will be
also directed toward new applications.
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