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Abstract: Production of electricity from the burning of fossil fuels has caused an increase in the
emission of greenhouse gases. In the long run, greenhouse gases cause harm to the environment.
To reduce these gases, it is important to accurately forecast electricity production, supply and con-
sumption. Forecasting of electricity consumption is, in particular, useful for minimizing problems
of overproduction and oversupply of electricity. This research study focuses on forecasting electric-
ity consumption based on time series data using different artificial intelligence and metaheuristic
methods. The aim of the study is to determine which model among the artificial neural network
(ANN), adaptive neuro-fuzzy inference system (ANFIS), least squares support vector machines
(LSSVMs) and fuzzy time series (FTS) produces the highest level of accuracy in forecasting electricity
consumption. The variables considered in this research include the monthly electricity consumption
over the years for different countries. The monthly electricity consumption data for seven countries,
namely, Norway, Switzerland, Malaysia, Egypt, Algeria, Bulgaria and Kenya, for 10 years were
used in this research. The performance of all of the models was evaluated and compared using
error metrics such as the root mean squared error (RMSE), average forecasting error (AFE) and
performance parameter (PP). The differences in the results obtained via the different methods are
analyzed and discussed, and it is shown that the different models performed better for different
countries in different forecasting periods. Overall, it was found that the FTS model performed the
best for most of the countries studied compared to the other three models. The research results can
allow electricity management companies to have better strategic planning when deciding on the
optimal levels of electricity production and supply, with the overall aim of preventing surpluses or
shortages in the electricity supply.

Keywords: electricity consumption; artificial neural network; adaptive neuro-fuzzy inference system;
least squares support vector machines; fuzzy time series; fuzzy system

MSC: 68T07

1. Introduction

Electricity consumption, production and supply are increasingly important areas that
are being looked into seriously by governments, researchers and corporate companies due
to the fact of their inevitable importance on livelihoods and economic development all
around the world. Electricity is conventionally generated using sources of primary energy
including fossil fuels, nuclear energy and renewable energy. However, a high percentage
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of electricity production comes from the burning of fossil fuels, leading to an increase in
greenhouse gas emissions, which are harmful to the environment in the long run. One of
the cruxes of the United Nation’s Sustainable Development Goals (UNSDGs) (https://sdgs.
un.org/goals, accessed on 5 November 2021) is to reduce greenhouse gases as an effective
method to reduce carbon emissions worldwide and promote the use of renewable energy
sources. Specifically, SDG 12 (https://www.cdp.net/en/companies-discloser, accessed on
5 November 2021), which concerns “Responsible Consumption and Production”, aims to
reduce greenhouse gases and carbon emissions worldwide. To effectively reduce carbon
emissions, the solutions are to reduce electricity production from the burning of fossil fuels
and to minimize the problems of electricity overproduction and oversupply.

Electricity consumption varies greatly from one region to another depending on
the availability of electricity and the level of development of the region. One of the
measures of the development of a country is the Human Development Index (HDI) (https:
//hdr.undp.org/en/content/human-development-index-hdi, accessed on 5 November
2021). Countries with a higher HDI are considered more developed compared to countries
with a lower HDI. Therefore, it is important to develop methods to accurately forecast
electricity consumption in different geographical regions at different times so that we are
able to produce and supply electricity in correct amounts. This would enable us to optimize
electricity production and supply to match electricity demand. This would also ensure that
all regions are supplied with adequate amounts of electricity supporting their livelihood
and development. Forecasting electricity consumption accurately would help to prevent
excessive burning of fossil fuels and is crucial for the strategic planning of electricity
production and supply. Inefficiency in electricity production may cause a shortage or
surplus of electricity supply. A shortage of electricity may affect a region’s development;
meanwhile, a surplus of electricity would be a wastage.

There are many available methods in the relevant literature for forecasting electricity
consumption. The most common models for this purpose are the autoregressive integrated
moving average (ARIMA), the autoregressive moving average (ARMA), the grey models
and the linear regression models [1–6]. In recent years, many methods that improve the
forecasting ability of existing models have been introduced. However, a model devel-
oped for one region may not be appropriate for another region with different patterns of
electricity consumption. Hence, in this study, we investigated the ability of the artificial
neural network (ANN) [1], the adaptive neuro-fuzzy inference system (ANFIS) [2], the least
squares support vector machines (LSSVMs) [3] and the fuzzy time series model (FTS) [4] to
forecast electricity consumption in different countries with different development levels.
The forecasting accuracy of these models are also studied and analyzed. The variables
considered in this research included the monthly electricity consumption in seven (7) coun-
tries: Norway, Switzerland, Malaysia, Egypt, Algeria, Bulgaria and Kenya. The selection of
countries was mainly based on their development level, whereby Norway and Switzerland
are developed countries; Malaysia, Egypt, Algeria and Bulgaria are developing countries;
Kenya is an underdeveloped country.

There have been many research proposals for forecasting electricity consumption.
Akdi, Gölveren and Okkaoğlu [5] forecasted daily electricity consumption in Turkey us-
ing ARIMA and harmonic regression models. Cevik and Cunkas [6,7], Peng et al. [8]
and Tay et al. [9] studied the application of the ANFIS model in forecasting short-term
electricity load, while Al-Hamad and Qamber [10] used the ANFIS model to forecast the
long-term peak electricity loads of Gulf Cooperation Council member countries, and all of
these studies found that the ANFIS model performed better than the other models. Koo
and Park [11] used the ANN model to forecast short-term electricity load, while Panklib
et al. [12], Ozoh et al. [13] and Azadeh et al. [14] applied the ANN model in forecasting
electricity consumption, and all but [11,13] found that the ANN model performed the best
compared to the other models. On the other hand, Rahman et al. [15] studied the use of the
ANN model for forecasting air quality in Malaysia, while Adebiyi et al. [16] and Laboissiere
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et al. [17] studied the application of the ANN model for forecasting stock prices, and these
studies found that the ANN model produced the most accurate results.

Kaytez et al. [18] applied the LSSVM model for forecasting electricity consumption in
Turkey and found that this model performed better than the other models. Pham et al. [19],
Ahmadi et al. [20], Kisi and Parmar [21], Deo et al. [22], and Arabloo et al. [23] studied
the LSSVM model in environmental forecasting, whereby all but [19,22] found that the
LSSVM model performed the best. Efendi et al. [24,25] used the FTS model to forecast the
electric load in Taiwan, using Taiwan’s regional electric load from 1981 to 2000, and in
the forecasting of the electricity load demand in Malaysia using the daily electricity load
data from the National Electricity Board of Malaysia (TNB) from January to August 2006
in [24,25], respectively. Chen [26], Lee et al. [27], and Sun et al. [28] also used the FTS model
in forecasting and all of the studies in [24–28] found that the FTS model produced the best
results.

There has been also massive research on the use of machine learning models in the
area of forecasting, and this has led to an increase in the introduction of hybrid models that
combine traditional statistical models with the latest machine learning models [29]. Semero
et al. [30] used an integrated GA–PSO–ANFIS method to forecast electricity production,
and Göçken et al. [31] introduced a hybrid ANN model that used metaheuristic methods
and applied this model to stock price prediction, whereas Shukur and Lee [32] studied
daily wind speed forecasting using a hybrid KF–ANN model that was based on the ARIMA
model. Chaabane [33] introduced a hybrid ARFIMA and neural network model to forecast
electricity prices, while Cerjan et al. [34] and Ardakani and Ardehali [35] studied short-term
and long-term electricity forecasting, respectively, using different types of dynamic hybrid
models. Khandelwal et al. [36] and Babu and Reddy [37] studied time series forecasting
using different types of hybrid ARIMA and ANN models. Kabran and Ünlü [38], on the
other hand, used a two-step machine learning approach on the support vector machine
(SVM). Yuan et al. [39], Zhu and Chevallier [40], Jung et al. [41] and Li et al. [42] all used
various types of hybrid LSSVM models and applied these to problems related to forecasting
and prediction. Chen and Chen [43], Dincer and Akkuş [44] and Wang et al. [45] used
hybrid FTS models in forecasting stock prices and air pollution, respectively.

Even though studies exist regarding the application of machine learning models to the
forecasting of electricity consumption, none have been published to validate and compare
several typical forecasting methods within a concrete case study with real data. This paper
is structured as follows. In Section 2, we recapitulate the concepts related to the ANN,
ANFIS, LSSVM and FTS models. In Section 3, we introduce our proposed methodology
on forecasting electricity consumption with the proposed models. In Section 4, the im-
plementation of the methodology is described, and the results are analyzed. Electricity
consumption data for the seven studied countries were obtained from ceicdata.com. In
Section 5, a summary of our findings is presented. In Section 6, the limitations of this
research are presented. Finally, Abbreviations section provides a table of the acronyms that
are used throughout the present work and their descriptions.

2. Preliminaries

In this section, we briefly present an introduction to the concepts that are pertinent to
the study presented in this paper.

2.1. Artificial Neural Network (ANN)

McCulloch and Pitts [1] introduced this model whereby the neural network structure
is based on the neurons in the human nervous system. The dendrites receive information
from other neurons, which is processed through synapses and is sent to the axon for output.

Figure 1 shows an example of the multilayer perceptron (MLP), which is the network
structure of the ANN that consists of three layers: the input layer, the hidden layer, and
the output layer, all of which are connected through weights. Every neuron in the hidden
layer is connected to every neuron in the input layer and the output layer [46]. External
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information is received from the input layer, and the result is sent out in the output layer.
The parameters of the neural network structure are adjusted to identify which structure
gives a more accurate result, thus increasing the performance of predicting the testing
data [47].
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Figure 1. Example of a network structure of an ANN.

Generally, there is a transfer function that connects the hidden layer to the output,
which is given by g(x) = 1/(1 + e−x), where x is the input.

The MLP with only the input layer and the hidden layer can be computed using the
equation below:

Yt = W0 +
n

∑
i=1

WiYi (1)

where Yt is the output, and WiYi denotes the connection weights. The function of the
hidden layer is given by:

Yt = W0 +
q

∑
k=1

Wk · g
(

W0,k +
p

∑
j=1

Wj,k ·Yt−j

)
+ εt (2)

Referring to Equation (2), the connection weights are denoted as Wk and Wj,k, while
p is the number of input nodes, q is the number of output nodes and εt is the error term.
Thus, Equation (2) maps a nonlinear equation based on the historical observations given by
Yt = g

(
Yt−1, Yt−2, . . . , Yt−p, ω

)
+ εt, whereby g is the function formed by the connection

weights, and ω is a vector for all parameters [48].

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

This model was introduced by Jang [2], and it was based on the Takagi–Sugeno
inference system. This model was proposed to overcome some of the weaknesses of the
ANN model as well as some of the weaknesses of the fuzzy logic system. The ANFIS uses
the hybrid learning method to decide the optimal distribution of membership functions in
order to obtain the mapping relationship of the input and output data [49].

Figure 2 shows the basic ANFIS model consisting of two input data and one output.
The rule base of the ANFIS contains the IF–THEN rules of the Sugeno type. The rules are
as shown below:

Rule 1. If x is A1 and y is B1, then f1 = p1x + q1y + r1.

Rule 2. If x is A2 and y is B2, then f2 = p2x + q2y + r2.
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where Ai and Bi are known as linguistic variables of the fuzzy sets; x and y are the input
data; pi, qi and ri are the output parameters. The ANFIS model consists of five layers,
and they are explained below. Layer 1 can be known as the fuzzification layer. The nodes
are fuzzified in the first layer to provide the output stated as O1

i = µAi(x), i = 1, 2 and
O1

i = µBi(y), i = 3, 4. Every node in this layer will have a bell function for fuzzification,
which is:

µAi(x) = µBi−2(y) = exp

[
−
(

xi − ci
ai

)2
]
=

1

1 +
{(

x−ci
ai

)2
}bi

(3)

where x is known as the input; ai, bi and ci are the premise parameters of control; µAi(x)
is known as the output.
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In Layer 2, every node will be multiplied by input signals to serve as output given
as O2

i = wi = µAi(x)µBi(y), i = 1, 2. The output, wi, is also known as the firing strength
of rules.

Layer 3 is the normalization layer, also known as the normalization of the firing
strength. The output of the third layer is denoted as O3

i = wi =
wi

w1+w2
.

Layer 4 is known as the defuzzification stage, where the firing strengths from the
third layer are multiplied by the first-order polynomial of the Sugeno model and then
normalized. The output is denoted as O4

i = wi fi = wi(pix + qiy + ri), i = 1, 2, where
pi, qi and ri are the consequent parameters.

Layer 5 is where all input signals are summed to calculate the overall output of the
ANFIS model. The output is denoted as O5

i = ∑i wi fi
∑i wi

, where fi is the first-order polynomial
based on the first-order Sugeno model.

2.3. Least Squares Support Vector Machines (LSSVMs)

This model was proposed by Suykens and Vandewalles [3] in order to solve quadratic
programming (QP) problems faced by the support vector machines (SVMs). Instead of
solving QP problems, LSSVMs solve a set of linear equations under the least squares cost
function with equality constraints, thus reducing the complexity of computation [51]. Wang
and Yu [52] used the LSSVM model to forecast electricity consumption. The modified
LSSVM model introduced by Wang and Yu [52] is presented below.

• The modified LSSVM model by Wang and Yu [52] supposing the extracted samples
are D = {(x1, y1), (x2, y2), . . . , (xN , yN)}, where N is the number of samples and xi is
the extracted factor vector, xi ∈ Rn, yi ∈ R;

• The electricity consumption model, y = wT ϕ(x) + b, is derived from the data
D = {(xi, yi)}N

i=1 by minimizing the least squares cost function, min
w,b

J1(w, b) = µEw + ζED.
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The regularization and error term are defined as Ew = 1
2 wTw and ED = 1

2 ∑N
i=1 ei2.

Thus, the minimized cost function is min
w,b

J1(w, b) = µ
2 wTw + ζ

2 ∑N
i=1 ei2, which is

subjected to the constraint ei = yi −
(
wT ϕ(xi) + b

)
, where i = 1, . . . , N;

• The Lagrangian function, L1(w, b, e, α) = J1(w, e) − ∑N
i=1 αi

[
wT ϕ(xi) + b + ei − yi

]
,

is constructed by introducing the Lagrange multipliers for equality constraints and
taking the conditions for optimality to find the solution for the minimized cost function;

• A linear Karush–Kuhn–Tucker (KKT) system, used to find the load model, is ob-

tained in dual space as
[

0 1T
v

1v Ω + γ−1 IN

][
b
α

]
=

[
0
Y

]
, where Y = [y1; . . . ; yN ],

1v = [1; . . . ; 1], e = [e1; . . . ; eN ] and α = [α1; . . . ; αN ];
• Mercer’s condition is applied within Ω matrix results in Ωij = ϕ(xi)

T ϕ
(
xj
)
= K

(
xi, xj

)
.

The possible kernel functions are linear kernel, K(x1, x2) = xT
1 x2 and radial basis

function (RBF) kernel, K(x1, x2) = exp
(
−||x1 − x2||22/σ2), where Mercer’s condition

holds for all possible kernel parameters;
• Then, the electricity consumption regressor is constructed as y(x) = ∑N

i=1 αiK(x, xi) + b.
The mapping relationship of electricity consumption and its extracted influence factors
are obtained in this way.

2.4. Fuzzy Time Series (FTS)

In 1965, Zadeh [4] developed the fuzzy set theory in order to solve the vagueness of
the data by combining linguistic variables with the analysis process of applying fuzzy logic
into time series. Song and Chissom [53] further expanded the study of Zadeh’s fuzzy set
theory in forecasting. In 1996, Chen [54] improved the steps involved in the fuzzy time
series (FTS) model using simple operations. The main characteristic of Chen’s model is
that it uses simple calculations and can provide better forecasting results [55]. The model
begins with the process of fuzzification, developing fuzzy logical relationships (FLRs),
forming the fuzzy logical group (FLG) and the defuzzification process [25]. The definitions
and concepts of FTS forecasting were developed by Song and Chissom [56] as well as by
Singh [57].

Singh [57] developed a method for time series to solve real-life problems. The steps
for FTS forecasting based on historical time series data that were introduced by Singh [57]
is presented below (Figure 3):

Step 1: Define the universe of discourse (U).

U = [Dmin − D1, Dmax − D2] (4)

Step 2: Divide the universe of discourse into equal-length intervals, u1, u2, . . . , um,
according to the number of linguistic variables, A1, A2, . . . , Am. The number of intervals
is the same as the number of linguistics variable, which is m.

Step 3: Define a fuzzy set for observation according to the intervals in Step 2. The
triangular membership rule is applied to each interval in each fuzzy set that is constructed.

Step 4: Fuzzify the historical data.
Step 5: Establish FLRs by the following rule:
Rule: Ai (current state) is a fuzzy production of year n, Aj (next state) is a fuzzy

production of year n + 1; then, the FLRs is denoted as Ai → Aj .
Step 6: Determine the forecasting rule.
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3. Methodology

In this section, we present the research methods used in this paper. The section also
presents a description of the countries studied as well as the utilized data sources, error
metrics and forecasting procedures.

3.1. Countries Chosen for the Study

The seven countries studied in this paper were Norway, Switzerland, Malaysia, Egypt,
Algeria, Bulgaria and Kenya. The selection of these specific countries was mainly based
on their level of development, whereby Norway and Switzerland are developed countries;
Malaysia, Egypt, Algeria and Bulgaria are developing countries; Kenya is an underdevel-
oped country. In this research, the electricity consumption data for the seven countries
studied were required in order to train and test the forecasting models. The electricity
consumption data were obtained from ceicdata.com; the monthly electricity consumption
data for the years 2007 to 2016 were utilized in this study. A data set from the years 2007
to 2015 was used as the training set, while a data set for the year 2016 was used as the
testing set.

3.2. Error Metrics

There are many error metrics that can be used to compare the accuracy of the fore-
casting models such as mean absolute error (MAE), mean absolute deviation (MAD), root
mean square error (RMSE), average forecasting error (AFE) and performance parameter
(PP). In this paper, the accuracy of the forecasting results was compared using the RMSE,
AFE and PP metrics. The reason for using these specific error metrics was because RMSE is
the most popular error metric used in regression problems. AFE was used to calculate the
mean absolute forecasting error based on the relativeness of the error to the actual value,
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whereas PP was used to indicate the efficiency of the model. The formulae to calculate
these three metrics are as below:

RMSE =

√
1
n

n

∑
i
(Ai − Fi)

2 (5)

AFE =
1
n

(
n

∑
i

|Fi − Ai|
Ai

× 100%

)
(6)

PP = 1− RMSE
σ

(7)

3.3. Forecasting Procedures

The procedures that were implemented for the forecasting of electricity consumption
are briefly expounded upon in this section.

3.3.1. Overview of Forecasting Procedures

The overview of the forecasting process is shown in Figure 4 below.
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3.3.2. ANN

The “keras” library in the Spyder IDE (https://keras.io/, accessed on 5 November
2021) was used to model the artificial neural network. The electricity consumption data
were normalized using the formula as given below:

Normalization o f data =
Yi −miny

maxy −miny
(8)

The normalized data were then imported into the data frame, and the model was
trained using 2 hidden layers (6,3). The model was then used to forecast the electricity
consumption for 2016.

3.3.3. ANFIS

The computation for the ANFIS was conducted using the Fuzzy Logic toolbox in MAT-
LAB. The training and testing data were imported into workspace. Then, the Neuro-fuzzy
Designer window was initiated using anfisedit(). The model was trained and exported to
the workspace to generate output values.

https://keras.io/
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3.3.4. LSSVMs

The computation for the LSSVMs was performed using the LSSVMlab toolbox in
MATLAB. The training and testing data were imported into the workspace. Then, the
model was tuned using the LSSVMlab’s built-in procedure. The model was trained and
used to forecast electricity consumption for the year 2016.

3.3.5. FTS

The computation for the FTS was conducted in RStudio using the AnalyseTS package.
Figure 3 displays the general procedures for forecasting using the fuzzy time series model.
The data set was first imported into RStudio and was fit into a time series. Then, the time
series data were fit into Singh’s fuzzy time series model.

4. Performance Evaluation

In this section, a brief overview of the countries studied is discussed. The evaluation
of the error metrics computed from the forecasted results and actual results are presented
as well.

4.1. Brief Overview of the Countries Studied

In this section, a brief overview of the seven countries that were studied in this paper,
namely, Norway, Switzerland, Malaysia, Egypt, Algeria, Bulgaria and Kenya, are presented.

4.1.1. Norway

A plot of Norway’s electricity consumption from 2007 to 2016 is shown in Figure 5.
Norway is a highly developed country due to the fact of its high standard of living as
well as high human development. Although Norway has a rather low population count,
this country has a large energy-intensive manufacturing sector, hence, explaining the high
consumption of electricity. Norway experiences winter from December to February every
year and also faces polar nights in midwinter, where daylight only lasts for approximately
five to six hours. Citizens in Norway may use more electricity during the winter for heating
purposes, which explains the higher electricity consumption from December to February.
Electricity is widely used to heat up buildings and water in Norway compared to other
countries in the world. As Norway experiences summer from June to August, there is a
lesser need for citizens to use electricity for heating purposes. Furthermore, hydropower is
Norway’s main source of energy, and Norway is able to generate enough energy for their
own usage.
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4.1.2. Switzerland

A plot of Switzerland’s electricity consumption from 2007 to 2016 is shown in Figure 6.
Switzerland is also a highly developed country with low unemployment and a highly
skilled labor force. Since Switzerland is already a developed country, the electricity con-
sumption pattern for every year was almost the same. The climate in Switzerland is often
moderate, where it does not get too warm during summer or too cold during winter. How-
ever, citizens in Switzerland may use more electricity during the winter from December to
February for heating purposes. Switzerland’s main source of energy is hydropower, since
approximately two-thirds of the country’s land is covered by the Alps, and Switzerland is
able to produce enough energy for their own usage.
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4.1.3. Malaysia

A plot of Malaysia’s electricity consumption from 2007 to 2016 is shown in Figure 7.
Malaysia is a developing country. Even though Malaysia has been undergoing rapid
economic growth over the past few years, its standard of living is still not on par with
that of developed countries. The major consumers of energy in Malaysia include the
manufacturing sector, transportation sector and the domestic sector. As Malaysia has been
undergoing periods of economic growth, its electricity consumption has increased for
developmental purposes over the years. Malaysia’s climate is hot and humid throughout
the whole year; hence, there is no rapid change in electricity consumption throughout the
months of every year due to the weather. It also experiences monsoon seasons, which are
the northeast monsoon from mid-October to January and the southeast monsoon from June
to September. Malaysia’s main source of energy is from the burning of fossil fuels, and
Malaysia is able to generate enough energy for their own usage.

4.1.4. Egypt

A plot of Egypt’s electricity consumption from 2007 to 2016 is shown in Figure 8.
Egypt is a developing country, where lately there have been some economic reforms

and the building of infrastructure, thereby making Egypt a fast-growing economy. Egypt is
one of the countries whereby a large proportion of citizens have access to electricity. The
increase in electricity consumption over the years is driven by factors such as population
growth, industrial output and economic growth [58]. The climate in Egypt is rather
moderate, even though temperatures are lower from December to February. Egypt’s main
source of energy is oil, natural gas and hydroelectric power. Egypt is also able to generate
enough energy for their own usage with rapid increases each year, especially in September
2012, whereby a number of protests were organized along with political reforms.
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4.1.5. Algeria

A plot of Algeria’s electricity consumption from 2007 to 2016 is shown in Figure 9.
Algeria is a slow-developing country with a slightly high unemployment rate. Al-

though Algeria and Malaysia are both developing countries, and the population of Algeria
is approximately 10 million more than the population of Malaysia, Algeria has a relatively
lower electricity consumption compared to Malaysia. The economy in Algeria is growing
too slowly to provide jobs for the increasing population. The temperature in Algeria is
moderate with a higher temperature during the month of August, which may explain the
increase in electricity consumption for cooling purposes in that month. Algeria’s main
source of energy is natural gas. The total energy consumption in Algeria increased by
32% from 2010 to 2014, whereby the increase was mainly in electricity consumption by the
residential sector [59].
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4.1.6. Bulgaria

A plot of Bulgaria’s electricity consumption from 2007 to 2016 is shown in Figure 10.
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Bulgaria is a developing country with a rather high literacy rate and low unemploy-
ment rate. Bulgaria has a temperate-continental climate with moderate features with
January being the coldest month of the year with an average low temperature of −3.9 ◦C.
This may explain the increase in electricity consumption for heating purposes in the month
of January. Approximately 65% of houses in Bulgaria were built in poor condition and
with inefficient or non-existent thermal insulation [60]. A study in 2016 stated that 41% of
Bulgarians are unable to maintain thermal comfort in their homes due to the fact of rising
electricity prices [61]. This has led Bulgarians to use other heat sources, such as coal and
wood, which in turn worsens the quality of the air. Bulgaria’s main energy source is coal
and nuclear, and they are also able to generate enough energy for their own usage.

4.1.7. Kenya

A plot of Kenya’s electricity consumption from 2007 to 2016 is shown in Figure 11.
Kenya is an underdeveloped country where there is limited access to electricity, especially
in rural areas. As some of the citizens in Kenya live in poverty, they are also unable to afford
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electricity. The temperature in Kenya is moderate throughout the whole year. Its electricity
consumption is rather stable with slight increases over the years. Approximately 75% of the
population in Kenya uses biomass for activities such as cooking and for heating purposes.
Electricity only accounts for approximately 9% of the energy source in Kenya [62]. Kenya
is able to generate enough energy for its own usage.
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4.2. Forecasting the Results for Each of the Forecasting Models

The results of the forecasting of electricity consumption for the year 2016 using the
ANN, ANFIS, LSSVM and FTS models for the seven countries that were considered in this
study are presented in Tables 1–4.

Table 1. Forecasting results for the ANN model.

Country RMSE AFE PP

Norway 1041.44 6.692% 0.5324
Switzerland 243.366 4.349% 0.5862

Malaysia 402.031 3.046% 0.0204
Egypt 930.467 5.510% 0.09297

Algeria 644.781 7.815% 0.1147
Bulgaria 310.047 7.986% 0.3264
Kenya 24.9145 2.931% 0.2365

Table 2. Forecasting results for the ANFIS model.

Country RMSE AFE PP

Norway 1096.19 7.566% 0.5078
Switzerland 148.11 2.042% 0.7481

Malaysia 439.077 3.327% −0.0699
Egypt 1503.57 10.125% −0.4657

Algeria 629.779 8.436% 0.1353
Bulgaria 197.786 4.642% 0.57031
Kenya 59.634 7.103% −0.8274
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Table 3. Forecasting results for the LSSVM model.

Country RMSE AFE PP

Norway 2029.66 18.199% 0.08867
Switzerland 659.568 9.929% −0.12161

Malaysia 1878.88 14.863% −3.5783
Egypt 1044.99 6.517% −0.01867

Algeria 1402.33 18.863% −0.9254
Bulgaria 437.077 14.376% 0.0504
Kenya 45.7663 5.654% −0.4024

Table 4. Forecasting results for the FTS model.

Country RMSE AFE PP

Norway 311.5172 2.279% 0.8601
Switzerland 80.4274 1.419% 0.8632

Malaysia 197.3471 1.357% 0.5191
Egypt 678.3792 4.245% 0.3387

Algeria 179.9432 2.649% 0.7529
Bulgaria 33.7686 1.008% 0.9266
Kenya 14.0048 1.725% 0.5708

4.3. Forecasting Results by Country

The forecasting of electricity consumption for different forecasting periods (i.e., short-
term and long-term forecasting) for the seven countries were studied for the ANN, ANFIS,
LSSVM and FTS models. The short-term and long-term forecasting results for each country
are presented in Tables 5–11.

Table 5. Short-term and long-term forecasting results for Norway.

Error
Metrics Term

Forecasting
Period

(Months)

Results

ANN ANFIS LSSVM FTS

RMSE

Short
1 2096.413 1696.852 1922.852 472.412
2 1460.055 1424.731 1430.165 476.622
3 1394.546 1169.448 1485.376 434.117

Long
6 1078.152 863.878 2934.775 360.517
9 960.801 846.011 2159.390 324.677

12 1041.438 1096.189 2029.658 311.517

AFE

Short
1 13.902% 11.252% 12.751% 3.133%
2 9.300% 9.769% 6.908% 3.400%
3 7.616% 7.059% 7.351% 3.142%

Long
6 6.699% 5.321% 19.900% 2.782%
9 6.344% 5.869% 16.278% 2.649%

12 6.692% 7.566% 18.199% 2.479%
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Table 6. Short-term and long-term forecasting results for Switzerland.

Error
Metrics Term

Forecasting
Period

(Months)

Results

ANN ANFIS LSSVM FTS

RMSE

Short
1 262.208 12.300 68.000 108.271
2 229.624 63.391 182.180 109.344
3 247.570 66.025 152.605 93.044

Long
6 188.855 133.304 726.361 87.479
9 229.037 111.302 392.951 78.193

12 243.366 148.110 558.568 80.427

AFE

Short
1 4.345% 0.204% 1.127% 1.794%
2 3.885% 0.884% 3.062% 1.869%
3 4.239% 1.001% 2.055% 1.509%

Long
6 3.258% 2.105% 12.139% 1.526%
9 4.042% 1.621% 6.323% 1.410%

12 4.349% 2.042% 9.929% 1.419%

Table 7. Short-term and long-term forecasting results for Malaysia.

Error
Metrics Term

Forecasting
Period

(Months)

Results

ANN ANFIS LSSVM FTS

RMSE

Short
1 169.870 208.875 1006.775 317.575
2 216.093 308.832 364.774 217.658
3 232.151 279.019 777.816 212.657

Long
6 657.047 419.912 2056.195 266.102
9 449.889 426.963 1355.522 191.616

12 402.031 439.077 1878.882 197.347

AFE

Short
1 1.552% 1.909% 9.200% 2.902%
2 1.896% 2.677% 3.304% 1.967%
3 1.795% 2.426% 6.914% 1.938%

Long
6 5.077% 3.120% 16.079% 2.305%
9 3.431% 3.066% 9.951% 1.290%

12 3.046% 3.327% 14.863% 1.357%

Table 8. Short-term and long-term forecasting results for Egypt.

Error
Metrics Term

Forecasting
Period

(Months)

Results

ANN ANFIS LSSVM FTS

RMSE

Short
1 202.510 1944.000 927.000 450.220
2 491.664 1847.654 595.619 619.783
3 460.109 1508.609 292.002 537.221

Long
6 957.278 1281.302 1013.112 772.526
9 1028.350 1476.916 1054.410 698.380

12 930.467 1503.568 1044.990 678.379

AFE

Short
1 1.683% 16.153% 7.703% 3.741%
2 4.122% 15.615% 4.614% 5.118%
3 3.791% 10.429% 2.412% 4.257%

Long
6 6.283% 8.839% 6.945% 4.910%
9 6.429% 9.747% 7.348% 4.292%

12 5.510% 10.125% 6.517% 4.245%
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Table 9. Short-term and long-term forecasting results for Algeria.

Error
Metrics Term

Forecasting
Period

(Months)

Results

ANN ANFIS LSSVM FTS

RMSE

Short
1 158.350 166.900 369.300 18.768
2 261.263 300.353 269.208 21.796
3 160.681 255.136 227.074 128.216

Long
6 487.918 422.336 376.919 181.178
9 790.539 698.369 771.629 171.200

12 644.781 629.779 1402.331 179.943

AFE

Short
1 2.992% 3.154% 6.978% 0.355%
2 3.563% 5.552% 5.010% 0.426%
3 2.644% 4.498% 3.469% 1.720%

Long
6 7.448% 6.913% 6.296% 2.709%
9 9.704% 9.250% 12.925% 2.519%

12 7.815% 8.436% 18.863% 2.649%

Table 10. Short-term and long-term forecasting results for Bulgaria.

Error
Metrics Term

Forecasting
Period

(Months)

Results

ANN ANFIS LSSVM FTS

RMSE

Short
1 413.928 270.500 194.700 13.219
2 321.005 437.719 384.138 13.079
3 351.930 359.284 357.663 19.092

Long
6 329.956 256.268 680.297 28.449
9 314.810 221.491 387.990 24.638

12 310.047 197.786 437.077 33.769

AFE

Short
1 11.091% 7.248% 5.217% 0.354%
2 7.232% 12.985% 11.677% 0.395%
3 9.756% 9.364% 11.057% 0.567%

Long
6 9.478% 5.618% 19.979% 0.988%
9 9.013% 5.172% 9.369% 0.808%

12 7.986% 4.642% 14.376% 1.008%

Table 11. Short-term and long-term forecasting results for Kenya.

Error
Metrics Term

Forecasting
Period

(Months)

Results

ANN ANFIS LSSVM FTS

RMSE

Short
1 20.640 12.212 75.044 0.611
2 27.151 38.796 28.880 17.670
3 17.957 36.245 30.494 17.482

Long
6 26.272 43.140 102.902 16.571
9 28.411 57.988 56.487 15.483

12 24.914 59.634 45.766 14.005

AFE

Short
1 3.108% 1.839% 11.299% 0.092%
2 3.486% 5.164% 3.789% 2.028%
3 2.422% 4.967% 3.755% 2.207%

Long
6 3.428% 5.658% 15.229% 2.065%
9 3.727% 6.970% 7.641% 1.983%

12 2.932% 7.103% 5.654% 1.725%
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4.4. Analysis and Discussion

The results of the forecasting of electricity consumption for the year 2016 for the seven
countries that were studied are tabulated according to the forecasting model and presented
in Tables 1–4, while the results for the short-term and long-term forecasting are tabulated for
each country and presented in Tables 5–11. Table 1 presents the computation results for the
ANN model, whereby this model produced the lowest AFE for Kenya, which was 2.931%.
The ANN model produced a positive PP for all seven countries, whereby a higher PP value
shows greater efficiency of the model. Table 2, on the other hand, presents the computation
results for the ANFIS model, whereby this model produced the lowest AFE value of 2.042%
and a PP of 0.7481 for Switzerland. The ANFIS model, however, produced a negative
PP for Malaysia, Egypt and Kenya, showing that this model was not very efficient in the
forecasting of electricity consumption for these countries. Table 3 presents the computation
results for the LSSVM model, whereby this model produced the lowest AFE of 5.654%
but a negative PP of −0.4024 for Kenya. It also produced a negative PP for Switzerland,
Malaysia, Egypt and Algeria, showing that the LSSVM model was not very effective in
forecasting electricity consumption for these countries. Table 4 presents the computation
results for the FTS model, whereby this model produced the lowest AFE of 1.008% for
Bulgaria. The FTS model produced a positive PP for all seven countries studied, which
shows that this model was efficient in forecasting electricity consumption.

Table 5 presents the short-term and long-term forecasting results for Norway, whereby
the FTS model produced the lowest RMSE for all forecasting periods. Its RMSE was
relatively lower than the other models. The FTS model also produced the lowest AFEs for all
of the forecasting periods with values of 3.133%, 3.400%, 3.142%, 2.782%, 2.649% and 2.479%
for 1, 2, 3, 6, 9 and 12 months, respectively. The FTS model consistently performed the best
in forecasting electricity consumption for all forecasting periods in Norway. Table 6 presents
the short-term and long-term forecasting results for Switzerland, whereby the ANFIS model
produced the lowest RMSEs for short-term forecasting, while the FTS model produced the
lowest RMSEs for long-term forecasting. The ANFIS model also produced the lowest AFEs
for short-term forecasting at 0.204%, 0.884% and 1.001% for 1, 2 and 3 months, respectively.
The FTS model, on the other hand, produced the lowest AFEs for long-term forecasting at
1.526%, 1.410% and 1.419% for 6, 9 and 12 months, respectively. Hence, the ANFIS model
was the most accurate for short-term electricity consumption forecasting, while the FTS
model was the most accurate for long-term electricity consumption forecasting.

Table 7 presents the short-term and long-term forecasting results for Malaysia, where
the ANN model showed the lowest RMSEs for 1 and 2 months of forecasting, while the
FTS model showed the lowest RMSEs for 3, 6, 9 and 12 months of forecasting. The ANN
model also showed the lowest AFEs for 1, 2 and 3 months at 1.552%, 1.896% and 1.795%
respectively, while the FTS model showed the lowest AFEs for 6, 9 and 12 months of
forecasting at 2.305%, 1.290% and 1.357%, respectively. Thus, the ANN model was more
accurate in short-term forecasting, while the FTS model was more accurate in the long-
term forecasting of electricity consumption. Table 8 presents the short-term and long-term
forecasting results for Egypt, whereby the ANN model produced the lowest RMSEs for
1 and 2 months of forecasting, while the LSSVM model produced the lowest RMSE for
3 months of forecasting. The FTS model produced the lowest RMSEs for 6, 9 and 12 months.
The ANN model produced the lowest AFEs of 1.683% and 4.122% for 1 and 2 months
of forecasting, respectively, while the LSSVM produced the lowest AFE of 2.412% for
3 months forecasting. The FTS model on the other hand produced the lowest AFEs for 6, 9
and 12 months of forecasting at 4.910%, 4.292% and 4.245%, respectively. Hence, the ANN
model was the most accurate for 1 and 2 months of forecasting, while the LSSVM model
was the most accurate for 3 months of forecasting, and the FTS model provided the most
accurate results for long-term forecasting.

Table 9 presents the short-term and long-term forecasting results for Algeria, whereby
the FTS model produced the lowest RMSE for both short-term and long-term forecasting
with RMSEs of 18.768, 21.796, 128.216, 181.178, 171.200 and 179.943 for 1, 2, 3, 6, 9 and
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12 months, respectively. The FTS model also produced the lowest AFE compared to the
other models. Thus, the FTS model was the most accurate in both short-term and long-term
forecasting of electricity consumption in Algeria. Table 10 presents the short-term and
long-term forecasting results for Bulgaria, whereby the FTS model produced the lowest
RMSEs for 1, 2, 3, 6, 9 and 12 months of forecasting at 13.219, 13.079, 19.092, 28.449, 24.638
and 33.769, respectively. There was also quite a large difference in the RMSEs of the FTS
model compared to the other three models. The FTS model also produced the lowest AFEs
for both short-term and long-term forecasting. Hence, this shows that the FTS model was
the most accurate in both short-term and long-term forecasting of electricity consumption
in Bulgaria. Table 11 presents the short-term and long-term forecasting results for Kenya,
whereby the FTS model produced the lowest RMSEs for 1, 2, 3, 6, 9 and 12 months of
forecasting at 0.611, 17.670, 17.482, 16.571, 15.483 and 14.005, respectively. The FTS model
also produced the lowest AFEs for 1, 2, 3, 6, 9 and 12 months of forecasting at 0.092%,
2.028%, 2.207%, 2.065%, 1.983% and 1.725%, respectively. Thus, the FTS model was the
most accurate in both long-term and short-term forecasting of electricity consumption in
Kenya.

Summary of the main findings: Overall, the different models performed better than
others in different forecasting periods and different countries. The ANN model was the
most accurate in forecasting short-term electricity consumption in Malaysia as well as 1
and 2 months of forecasting of electricity consumption in Egypt. The ANFIS model was the
most accurate in short-term electricity consumption forecasting in Switzerland. The LSSVM
model, on the other hand, was the most accurate in 3 months of forecasting of electricity
consumption in Egypt. The FTS model was the most accurate in short-term forecasting
of electricity consumption in Norway, Algeria, Bulgaria and Kenya. The FTS model was
also the most accurate in the long-term forecasting of electricity consumption, which was
considered to be 6, 9 and 12 months of forecasting, in all of the seven countries studied
in this research. The FTS model was able to perform well and produced low AFEs of less
than 6% for all seven countries. This may be due to the ability of the FTS model to perform
well with small numbers of data, and the fuzzy component that was present in the FTS
model enabled it to capture the uncertainty of the data. The ANN model may not have
performed as well as the FTS model because the ANN model requires large numbers of
time series data to train the model before it is able to produce accurate results. It can also
be seen that the ANFIS model did not perform as well as the FTS model due to the fact
that the ANFIS model usually performs better on volatile data. The LSSVM model, on the
other hand, was shown to produce the highest AFEs for quite many forecasting periods
and different countries. Its lack of accuracy may be due to the fact of its nature as a model
that lacks in sparsity. The LSSVM model was also sensitive to the parameters of the kernel
function; thus, it was rather difficult to train the model well.

5. Conclusions

The main contributions of this study are summarized below:

1. Seven countries were studied in this research, namely, Norway, Switzerland, Malaysia,
Egypt, Algeria, Bulgaria and Kenya, and the monthly electricity consumption data
for these seven countries from 2007 to 2016 were used as the data sets for this study.
The main objective of this study was to determine the best model to forecast elec-
tricity consumption with the highest level of accuracy for countries with different
characteristics;

2. The ANN, ANFIS, LSSVM and FTS models were used to forecast the electricity
consumption for the year 2016 for the seven selected countries. These four models
showed differing performances in different forecasting periods and in the forecasting
of electricity consumption for the different countries. The ANN model was found
to be the most accurate model in forecasting short-term electricity consumption for
Malaysia as well as for 1 and 2 months of forecasting electricity consumption in
Egypt. The ANFIS model was found to be the most accurate model in short-term
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electricity consumption forecasting in Switzerland. The LSSVM model, on the other
hand, was found to be the most accurate model for 3 months of forecasting electricity
consumption in Egypt. The FTS model was found to be the most accurate model
for short-term forecasting of electricity consumption in Norway, Algeria, Bulgaria
and Kenya. The FTS model was also found to be the most accurate model for the
long-term forecasting of electricity consumption for the periods of 6, 9 and 12 months
for all of the seven countries that were studied in this research;

3. In terms of long-term forecasting, the FTS model was found to be the most accurate
model and produced the lowest AFEs for all seven countries that were studied. This
may be due to the ability of the FTS model to perform well with small numbers of
data, and the fuzzy component that is present in the FTS model enabled it to capture
the uncertainty of the data;

4. From the graphs of the electricity consumption patterns for the seven countries that
were studied in this paper, it can be seen that Norway, Switzerland and Bulgaria had a
rather similar electricity consumption pattern, while Algeria’s electricity consumption
pattern had a higher peak during August, instead of a peak between the months of
December and February. Malaysia, Egypt and Kenya, on the other hand, had a more
stable electricity consumption pattern, although Egypt’s electricity consumption had
an obvious outlier. Although the seven countries that were studied had different
electricity consumption patterns, the FTS model was found to perform the best and
consistently produced the lowest AFE values compared to the other models;

5. The application of predictive models in the forecasting of electricity consumption and
production is continuously gaining ground in the area of power generation due to the
fact of their improved accuracy and increased ability to handle complex relationships
and to uncover hidden patterns in big data. Among the most commonly applied su-
pervised learning approaches for electricity consumption and production forecasting
are ML models, such as ANNs and SVMs, and metaheuristic methods, such as fuzzy
logic-based approaches that include the ANFIS and FTS models. This can be seen from
the various studies that were expounded upon in Section 1 of this paper. The absence
of a clearly defined answer to every problem and the fact that different results may
be produced, even for the same problem, but under different circumstances, makes
comparative studies involving different ML models highly relevant and an important
component of the body of knowledge in that area of research. Furthermore, due to the
complex nature of electricity consumption, which involves many different factors, it is
a challenging task to compare the performance of different models/methods that are
used in forecasting electricity consumption. Hence, our study, which compared the
performances of the ANN, ANFIS, FTS and LSSVM models, is in fact adequate, as it
studied the performance of several of the most commonly applied supervised learning
approaches in the context of electricity consumption. Our study contributes to the
continuous efforts of the research community to assess the performances of various
ML models to develop accurate data-driven forecasting models for the forecasting of
electricity consumption.

6. Limitations and Future Research

The limitations of this study are as given below:

(i) Monthly electricity consumption data for 10 years for seven countries was used in this
research. It would have been better if daily or hourly electricity consumption data
were used, as many machine learning methods work best with large amounts of data,
and the use of larger amounts of data for training of the models would also produce
better forecasts. However, it is rather difficult to obtain daily or even hourly electricity
consumption data of countries. Better forecasts would be more useful, as it would
enable electricity management companies, city councils and governments to better
estimate the amount of electricity needed to be supplied to each region in a country.

Some suggestions for future research are as given below:
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(ii) It is recommended for future studies in this area to use a larger size of sample data, as
increasing the numbers of data would help improve the accuracy of the forecasts that
are produced;

(iii) It is recommended to consider a larger number of countries in future studies in this
area. The difficulty in obtaining electricity consumption data for many countries led
to only seven countries being considered in this study. Using longer periods of data
for a larger number of countries would enable future research in this area to study
the electricity consumption patterns of different countries to be able to draw more
conclusive and convincing conclusions.
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Abbreviations

Acronym Description
AFE Average forecasting error
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
FLG Fuzzy logical group
FLR Fuzzy logical relationship
FTS Fuzzy time series

GA–PSO–ANFIS
Genetic algorithm–particle swarm optimization–adaptive neuro-fuzzy
inference system

HDI Human development index
KKT Karush–Kuhn–Tucker
LSSVMs Least squares support vector machines
MAD Mean absolute deviation
MAE Mean absolute error
MLP Multilayer perceptron
PP Performance parameter
QP Quadratic programming
RBF Radial basis function
RMSE Root mean square error
SVMs Support vector machines
UNSDGs United Nation’s Sustainable Development Goals
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