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Abstract: Since the basic theory of the discontinue deformation analysis (DDA) method was proposed,
the DDA open source has gone through a long development process. At present, different kinds
of programs have been widely applied in rock mass engineering such as slope, dam, and tunnel.
This paper introduces the solution principle of DDA motion equations in detail, as well as the
development status of the 2D open-source program. Numerical simulation of shaking table test of
rock mass engineering using 2D DDA program is highlighted, and investigations of seismic wave
pre-processing and seismic input method are carried out. First, based on the Newmark integration
scheme, the integration algorithms of synthetic or measured seismic wave time history, correction
function of seismic wave, and DDA simulation are unified. Then, three seismic input methods are
implanted in the DDA program, and the applicability of various seismic input methods is discussed.
On this basis, using the improved seismic 2D DDA program, a shaking table test of typical rock mass
engineering is simulated. Through the comparison between the theoretical/test data and simulation
results, the reliability of the improved DDA program in seismic response analysis is verified; the
large mass method and the large stiffness method are more suitable for rigid foundation, such as
shaking table test; the propagation of the seismic wave presents a significant amplification effect due
to the reflection, refraction, and diffraction in the tunnel. The research results provide DDA theory
and an open-source program for analyzing the seismic response of rock mass engineering.

Keywords: discontinue deformation analysis; open-source program; seismic; rock mass; shaking
table test

MSC: 37M05; 37-04

1. Introduction

In the past century, a series of major earthquakes have occurred all over the world. The
rock mass damage caused by earthquakes has attracted great attention in the engineering
field [1]. Therefore, the dynamic response analysis of rock mass engineering under seismic
action is an important subject to be broken through. Usually, the seismic dynamic response
of rock mass engineering mostly adopts the finite element method, finite difference method,
finite volume method, boundary element method, etc. [2–8]. These numerical methods
concentrate on the elastic-plastic analysis. There are few open-source programs that can
reproduce the failure process. To solve this problem, many scholars have carried out
theoretical research and program development. At present, the methods based on discon-
tinuous medium theory, such as discrete element method and discontinuous deformation
analysis (DDA) method, are being developed rapidly. The DDA method is a new numerical
simulation technique for geotechnical stability analysis, and it was originally proposed
by Shi G.H. in his doctoral thesis [9–11]. DDA is a method parallel to the finite element
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method. The difference is that the DDA method can not only reflect the displacement and
deformation of a block, but also allow the block to have motion modes such as sliding,
opening, and rotation.

Since it was proposed, the DDA method has been deeply explored. Since 1996, the
international conference on analysis of discontinuous deformation has been held regularly,
and 15 sessions have been held so far. On the correctness and effectiveness of DDA method,
Ma, Maclaughlin and Yagoda-Biran et al. [12–14] carried out a comprehensive review of
relevant articles. However, the original DDA method also has limitations in dealing with
many problems, such as high-precision stress field in a rock block, stratified rock mass,
and so on. In order to solve these problems, many scholars have carried out in-depth
research, and the theoretical research can be roughly summarized as parameter selection,
block contact, accurate block stress, dynamic calculation, multiscale analysis, and 3D
simulation [15,16]. Meanwhile, the DDA method has also been widely used in practical
engineering, including slopes, dams, tunnels, and so on [17,18].

The DDA method adopts the Newmark integration scheme to simulate the discontin-
uous motion process of the rock block system in real time-steps. This approach makes it a
potential method for analyzing the seismic response of rock mass engineering. In slope
analysis, Wu, Zhang, Fu, Huang, and Wang et al. [19–23] simulated the failure process of
starting, moving, and stacking of Tsaoling landslide, Daguangbao landslide, Ganjiazhai
landslide, Niumiangou landslide, and Donghekou landslide under seismic action. In terms
of dam analysis, Shyu, Kong, and Kaidi et al. [24–26] evaluated the seismic stability of a
typical arch dam and rockfill dam. Relatively speaking, there are few DDA results of the
seismic response of tunnels [27,28]. In addition, the DDA method is also applied to the
seismic response analysis of landfill, bridge, retaining wall, and masonry structures [29–33].

Although DDA has been applied to the seismic response analysis of a number of rock
mass engineering examples, the verification of field monitoring data is still insufficient.
Compared with the scarcity of field monitoring data, the measured data based on shaking
table test is easier to obtain. Akao and Sasaki et al. [34,35] simulated the seismic response
of single block and three block systems using DDA, which was in good agreement with the
test results. Shimaoka, Irie, and Feng et al. [36–38] reproduced the shaking table test of a
rock slope by DDA simulation, and the comparison between the test data and simulation
result proved that the DDA method is reasonable to simulate seismic response of rock
mass engineering. It should be noted that at present, the 2D DDA open-source program
is mainly used in analyzing the seismic response of the rock mass engineering, while the
theory and program of the 3D DDA method are still developing [39–41]. Therefore, the 2D
DDA method is used in this paper. Based on the existing 2D DDA applied to numerical
simulation of shaking table test, this paper introduces the development status of the open-
source program of 2D DDA in detail, the seismic wave pre-processing and seismic input
method are investigated to extend the 2D DDA program; using the seismic DDA method, a
shaking table test of tunnel engineering is simulated, and the propagation law of seismic
wave in rock mass is analyzed.

2. A Brief Description of 2D DDA Method and Its Open-Source Program
2.1. Motion Equations Based on Newmark Integration Scheme

The motion equations of DDA method are used to describe the response of block
system under load, and its basis is the Lagrange function:

L
(
{D},

{ .
D
})

= T
({ .

D
})
−V({D}) (1)

where {Ḋ} and {D} are the velocity vector and displacement vector, respectively; T() and
V() are functions of kinetic energy and potential energy, respectively. In the block sys-
tem simulated by DDA, the potential energy is mainly composed of elastic stress, initial
stress, point load, volume load, and point displacement of a block, as well as the contacts
between blocks.
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The Lagrange function is time integrated, and then the motion equations are obtained
by the Hamilton principle:

d
dt

∂T

∂
{ .

D
} − ∂V

∂{D} = 0 (2)

Expanding the above equation, the dynamic ordinary differential equations of the
block system can be obtained,

[M]
{ ..

D
}
+ [C]

{ .
D
}
+ [K]{D} = {F} (3)

where
{ ..

D
}

is the acceleration vector; [M], [C], [K], and {F} are the mass matrix, damping
matrix, stiffness matrix, and load vector of the block system, respectively.

The solution methods of motion equations mainly include mode superposition method
and direct integration method. The solution object of DDA is a discrete block system. Once
the sliding and separation between block elements occurs, its vibration mode changes
constantly, so it is difficult to use the mode superposition method. The direct integration
method does not need to change the equation form before solving the motion equation. It
directly carries out numerical integration step-by-step, and is more suitable for solving the
differential equations of DDA.

The solution process of the direct integration method is based on two concepts. First,
it is assumed that the time solution domain [0, t] of the motion equations is equally divided
into N time-steps, and in each time-step, the motion equations should be satisfied. Second,
in a time-step, the displacement, velocity, and acceleration meet an approximate functional
expression. Therefore, according to Equation (3), the motion equations of the block system
in time-step n + 1 are:

[M]
{ ..

D
}

n+1
+ [C]

{ .
D
}

n+1
+ [K]{D}n+1 = {F}n+1 (4)

According to different expressions of the approximate function, the direct integration
method is divided into the Houbolt integration scheme, Wilson integration scheme, and
Newmark integration scheme. The Newmark integration scheme is commonly used by en-
gineers [42,43]. The relationships among displacement, velocity, and acceleration described
by the Newmark integration scheme are as follows:

{D}n+1 = {D}n + ∆t
{ .

D
}

n
+

∆t2

2

[
(1− 2β)

{ ..
D
}

n+2β
{ ..

D
}

n+1

]
(5)

{ .
D
}

n+1
=
{ .

D
}

n
+ ∆t

[
(1− γ)

{ ..
D
}

n+γ
{ ..

D
}

n+1

]
(6)

where ∆t is a time-step; β and γ are integration parameters. In the open-source program
released by Dr. Shi G.H., γ = 1 and β = 1/2, which is the expression of the constant
acceleration integration method. Then, substituting Equations (5) and (6) into Equation (4),
the equilibrium equations of the block system are obtained:[

K̂
]
{D}n+1 =

{
F̂
}

n+1
(7)

where, {
K̂
}
= [K] + 1

β∆t2 [M] + γ
β∆t [C]{

F̂
}

n+1
= {F}n+1 + [M]

[
1

β∆t2 {D}n + 1
β∆t

{ .
D
}

n
+
(

1
2β − 1

){ ..
D
}

n

]
+ [C]

[
γ

β∆t{D}n +
(

γ
β − 1

){ .
D
}

n
+
(

γ
2β − 1

)
∆t
{ ..

D
}

n

]
In the DDA method, the displacement of each deformable discrete block is a solving

target. For a 2D problem, six mechanical parameters with obvious physical significance
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are selected as the incremental displacement of a block element in one time-step. Taking
block-i as an object,

∆Di =
{

u0, v0, r0, εx, εy, γxy
}T (8)

where {∆Di} is the solution displacement of the block; (u0, v0) is the block centroid for the
rigid body translation; r0 is the rotation angle around the block centroid; and εx, εy, and γxy
are the normal and shear strains of the block deformation.

For the first order assumption, the incremental displacements of any point (x, y) of
block-i in the current time-step can be obtained:{

∆ui
∆vi

}
= [Ti]∆Di (9)

where ∆ui and ∆vi are components of the incremental displacements in the x direction and

the y direction, respectively; [Ti] =

[
1 0 −(y− y0) x− x0 0 (y− y0)/2
0 1 x− x0 0 −(y− y0) (x− x0)/2

]
is the shape function matrix, and (x0, y0) is the centroid of block-i.

Supposing there are n blocks in the defined block system, based on the Equation (7),
the equilibrium equations of are written as:

K11 K12 · · · K1n
K21 K22 · · · K2n

...
...

. . .
...

Kn1 Kn2 · · · Knn




∆D1
∆D2

...
∆Dn

 =


F1
F2
...

Fn

 (10)

2.2. Open-Source Program of 2D DDA

Since the basic theory of 2D DDA was put forward, the open-source program has gone
through a long development process. Among all developers, Dr. Shi G.H., the initiator
of the DDA method, made the greatest contribution. In 1986, the first DDA code was
developed on PC with Basic language and was written by Dr. Shi G.H. In 1989, Dr. Shi G.H.
used NDP C compiler to complete the first version of DDA code with C language. Since
then, he has modified the DDA code many times with C language. In order to improve
the generality of DDA, many scholars have also developed or improved the open-source
program, as shown in Table 1.

Table 1. Existing open-source program of 2D DDA.

Code Version Language Developer Remarks

DDA’1986 BASIC Shi G.H. The first DDA code

DDA’1989 C/PC Shi G.H. The first C DDA code

DDA’1992 C/UNIX Shi G.H. The first X-windows DDA code

DDA’1994 C/UNIX Shi G.H. Cohesion, tensile strength and auto stiffness

DDA’1995 C/UNIX Shi G.H. Correction of shear lock and rotation problem

DDA/W’1995 C/Win MacLaughlin and Doolin [44] The first DDA/Win DDA code

DDA/WT’1995 C/SUN Ohnishi et al. [45] Advanced, new functions, only on SUN

DDA/AJ’1994 FORTRAN Ke and Goodman [46] Artificial joint

DDA/SB’1995 FORTRAN Lin et al. [47] Sub-block, breakable block

DDAML’2001 XML Doolin and Sitar [48] Processing input files with XML

HDDA’2008 C, C++/Win He [49] Input CAD; enrich post-processing function

CDDA’2009 C/Win Zheng and Jiang [50] Complementary theory

DDA-SC’2010 C/Win Khan [51] Deformation joint model

DDA/Zhao’2012 C++/Win Zhao et al. [52] GUI based on shell concept

DDARF’2012 C, C++/Win Jiao et al. [53] Boundary or internal cracking algorithm

easyDDA’2013 C, C++/Win Cheng et al. [54] An easy-to-use GUI software
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The open-source program of 2D DDA used in this paper was provided by Dr. Shi
G.H. in 2012. This DDA code was developed based on Windows and programmed with
C language. The program consists of four modules, including DDA Lines (DL), DDA
Cut (DC), DDA Forward (DF), and DDA Graph (DG). DL module uses the Monte Carlo
method to generate a joint network. The main function of the DC module is to form a block
system based on computational geometry and combinatorial topology theory. DF is the
core module of the DDA program. It solves the displacement and stress of a block under
external load by inputting geometric model, physical and mechanical parameters, seismic
load, and other data. Its analysis process is shown in Figure 1. DG is a post-processing
module. It can draw the displacement and stress vector of a block and reproduce the failure
process of the block system.
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3. Seismic Wave Pre-Processing Based on Newmark Integration Scheme for
DDA Program
3.1. Pre-processing Method

As shown in Figure 1, before the DDA program is executed, input data of seismic
load are needed. Generally, the seismic wave observed by seismic stations or synthesized
is acceleration data. However, the input data of seismic wave of DDA simulation can be
acceleration, velocity, or displacement. Therefore, it is necessary to integrate the acceleration
once to obtain the velocity, and the displacement is obtained by secondary integration.
During these integration processes, there may be a drift phenomenon, which needs baseline
correction [55]. Most correction functions are continuous functions, and there are integrals
in the process of correcting discrete seismic wave data.

As shown in Figure 2, synthetic or measured seismic wave integration and baseline cor-
rection of seismic wave are pre-processed to provide reliable input data for DDA simulation.
It is necessary to ensure the unity of the integration scheme of the pre-processing and the
DDA simulation. In the DDA method, the Newmark integration scheme is used. Therefore,
this integration scheme is also required for seismic wave integration and baseline correction.
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Figure 2. Processing of seismic wave data in DDA simulation.

It is assumed that the acceleration data observed by seismic stations or synthesized are
known, (a0, a1, a2, . . . , am−1, am). The time-step of the data is ∆t, the total duration is T, the
initial seismic velocity is V0 = 0, and the initial displacement d0 = 0. Using the Newmark
integration scheme, the velocity can be obtained by integrating the acceleration once:

vn+1 = vn + ∆t
[
(1− γ)an+γan+1

]
(n = 0, 1, . . . , m− 1) (11)

The displacement can be obtained by integrating the acceleration twice:

dn+1 = dn + ∆tvn +
∆t2

2
[
(1− 2β)an+2βan+1

]
(n = 0, 1, . . . , m− 1) (12)
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At the end of seismic action, the acceleration am may be non-zero, or vm and dm
are not equal to zero after integration, which means that there is a drift phenomenon,
and the baseline correction is required. It is assumed that the time domain of baseline
correction is [0, t], and the correction functions of acceleration, velocity, and displacement
are expressed as Ia(t), Iv(t), and Id(t), respectively. For the correction functions, the following
two conditions must be met [56,57]:

(a) The initial values of acceleration, velocity, and displacement must be zero.
(b) The termination values of acceleration, velocity, and displacement must be equal to

−am, −vm, and −dm, respectively, which are the opposite of the termination value of
seismic action.

Generally, there are six unknowns in the above two conditions, and six linear equations
need to be solved. However, if the appropriate correction function is selected to automati-
cally meet the first condition (a), the unknowns can be reduced to 3. In this paper, the cubic
polynomial is selected as the correction function of acceleration, and its expression is:

Ia(t) = at + bt2 + ct3 (13)

where a, b, and c are the unknown coefficients.
On the premise that the initial value is zero, the first and quadratic integral expressions

of Ia(t) are:

Iv(t) =
1
2

at2 +
1
3

bt3 +
1
4

ct4 (14)

Id(t) =
1
6

at3 +
1

12
bt4 +

1
20

ct5 (15)

Equations (13)–(15) automatically satisfy the first condition (a). According the second
condition (b):

aT + bT2 + cT3 + am = 0
1
2 aT2 + 1

3 bT3 + 1
4 cT4 + vm = 0

1
6 aT3 + 1

12 bT4 + 1
20 cT5 + dm = 0

(16)

The unique values of a, b, and c can be obtained by solving Equation (16), and the
correction functions of acceleration, velocity, and displacement can be obtained by substi-
tuting them into Equations (13)–(15). In the process of obtaining Equations (14) and (15) by
integrating Equation (13), the accurate integration of continuous function is adopted. In
fact, due to the seismic data being composed of a number of discrete points and the DDA
simulation also being in discrete time-step, the correction function should be integrated in
the form of discrete points. On this basis, a baseline correction method based on Newmark
integration scheme is proposed.

For the cubic polynomial of the correction function, the seismic acceleration at each
time-step can be expressed as:

Ia(n) = an∆t + b(n∆t)2 + c(n∆t)3 (17)

The baseline correction method based on Newmark integration scheme includes the
following four steps.

Step 1: The velocity correction function is obtained by integrating the acceleration
correction function:

Iv(n + 1) =
k=n+1∫
k=0

Ia(k)dτ =

k=n∫
k=0

Ia(k)dτ+

k=n+1∫
k=n

Ia(k)dτ =Iv(n) +
k=n+1∫
k=n

Ia(k)dτ (18)
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Using the relationship between the velocity and the acceleration described by New-
mark integration scheme,

k=n+1∫
k=n

Ia(k)dτ ≈∆t[(1− γ)Ia(n) + γIa(n + 1)] = (n + γ)∆t2a

+
(

n2 + 2γn + γ
)

∆t3b +
(

n3 + 3γn2 + 3γn + γ
)

∆t4c

(19)

Substituting Equation (19) into Equation (18), the velocity correction function is writ-
ten as:

Iv(n) = Iv(0) +
i=n−1

∑
i=0

(
k=i+1∫
k=i

Ia(k)dτ

)
≈ Iv(0)+

i=n−1
∑

i=0

[
(i + γ)∆t2a +

(
i2 + 2γi + γ

)
∆t3b +

(
i3 + 3γi2 + 3γi + γ

)
∆t4c

]
(20)

Step 2: The displacement correction function is obtained from the correction function
of acceleration and velocity:

Id(n + 1) =
k=n+1∫
k=0

Iv(k)dτ =
k=n∫
k=0

Iv(k)dτ+
k=n+1∫
k=n

Iv(k)dτ =Id(n) +
k=n+1∫
k=n

Iv(k)dτ

= Id(n) + Iv(n)∆t +
k=n+1∫
k=n

[
i=k∫

i=k−1
Ia(i)dτ

]
dτ

(21)
Using the relationship between the displacement and the acceleration described by

Newmark integration scheme,

k=n+1∫
k=n

[
i=k∫

i=k−1
Ia(i)dτ

]
dτ ≈

(
1
2 − β

)
∆t2 Ia(n) + β∆t2 Ia(n + 1)

= ∆t2

2 [(1− 2β)Ia(n) + 2βIa(n + 1)]
=
[
(n + 2β)∆t3a

2 +
(
n2 + 4βn + 2β

)∆t4b
2 +

(
n3 + 6βn2 + 6βn + 2β

)∆t5c
2

] (22)

Substituting Equation (22) into Equation (21), the displacement correction function is
written as:

Id(n) ≈ Id(0) +
i=n−1

∑
i=0

(
Iv(0)∆t +

j=i−1
∑

j=0

[
(j + γ)∆t3a +

(
j2 + 2γj + γ

)
∆t4b +

(
j3 + 3γj2 + 3γj + γ

)
∆t5c

])
+

i=n−1
∑

i=0

[
(i + 2β)∆t3a

2 +
(
i2 + 4βi + 2β

)∆t4b
2 +

(
i3 + 6βi2 + 6βi + 2β

)∆t5c
2

] (23)

Step 3: Combined with Equations (17), (20) and (23), the values of parameters a, b, and c
can be calculated by solving Equation (16), and the acceleration, velocity, and displacement
correction functions are obtained.

Step 4: Using the correction functions, the acceleration, velocity, and displacement at
each time-step are corrected.

3.2. Example Verification

Taking a synthetic seismic wave as an example, its acceleration time history is shown
as the initial wave in Figure 3a. The duration of the seismic action is 40 s and the time-
step is 0.02 s [28]. Using the same Newmark integration scheme as in the DDA program,
where γ = 1 and β = 1/2, the acceleration is integrated into velocity and displacement,
which are shown as the initial wave in Figure 3b,c. It is not difficult to find that there is
a drift phenomenon in the integration of seismic data. Using the proposed method for
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baseline correction, the correction waves in Figure 3 are obtained, which show that the drift
phenomenon has been well eliminated. Specifically, Table 2 lists the initial and corrected
values at different time-steps. At the end of seismic action (40 s), the values of initial
acceleration, velocity, and displacement are −0.004090 m/s2, 0.013603 m/s, and −0.330420
m, respectively. After correcting based on the Newmark integration scheme, all values
are 0. Moreover, with the progress of integration, the correction magnitude of the initial
value becomes larger and larger, which means the correction magnitude meets this law:
displacement > velocity > acceleration.
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Table 2. Initial and corrected values at different time-steps.

Time/s
Acceleration/(m/s2) Velocity/(m/s) Displacement/m

Initial Correction Initial Correction Initial Correction

0 0 0 0 0 0 0

5 −0.114560 −0.112080 0.081587 0.089092 0.025958 0.039160

10 0.432663 0.435038 −0.088690 −0.068190 −0.227670 −0.144980

15 −0.01504 −0.014340 −0.139280 −0.110660 −0.175540 0.032970

20 −0.03556 −0.037090 −0.105020 −0.078490 −0.144660 0.206531

25 0.184509 0.181186 0.027189 0.041156 −0.198760 0.258175

30 0.448024 0.444370 −0.086800 −0.091100 −0.207480 0.275434

35 −0.054380 −0.05590 0.019649 0.001206 −0.391630 0.030864

40 −0.004090 0 0.013603 0 −0.330420 0

4. Seismic Input Method in the DDA Program
4.1. Multi-Blocks Newmark Method

In the original DDA program written by Dr. Shi G.H., the seismic loading is applied
to all blocks in the form of inertial force, and this treatment extends the classical Newmark
method to the block system, so we name it the multi-blocks Newmark method.

By the coordinate transformation and the linear interpolation of the synthetic or
measured seismic wave, the seismic accelerations for the DDA simulation in each time-step
are obtained, and the inertial force acted on the unit area of block-i is:{

fx
fy

}
= ρ

{
ax
ay

}
(24)

where fx and fy are the components of the inertial force in the x direction and the y direction,
respectively, ρ is the block medium density, and ax and ay are the seismic accelerations in
the x direction and the y direction, respectively.

Then, the potential energy of the inertia force is:

Πq = −
x {

∆ui ∆vi
}{ fx

fy

}
dxdy = −∆Di

T
x

[Ti]
Tdxdyρ

{
ax
ay

}
(25)

where
s

[Ti]
Tdxdy =



Si 0
0 Si
0 0
0 0
0 0
0 0

 and Si is the block area.

Using the principle of minimum potential energy, the contributions of the seismic
loading to the equilibrium equations of DDA are obtained:

ρSi



ax
ay
0
0
0
0


→ {Fi} (26)
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4.2. Large Mass Method

The large mass method is another acceleration input method. In this method, the
bottom block of the DDA model is special and has a large mass but no gravity [58]; the
seismic loading is applied to the bottom block and is timely passed to the block system.

The governing equations of the block system are rewritten as:

[M]
{ ..

D
}
+ [C]

{ .
D
}
+ [K]{D} = [Mbb]

{ ..
Dg

}
(27)

where [Mbb] is the mass matrix of the bottom block,
{ ..

Dg

}
is the seismic acceleration vector.

It can be decomposed into another form:[
Mss 0

0 Mbb

]{ ..
Ds..
Db

}
+

[
Css 0
0 Cbb

]{ .
Ds.
Db

}
+

[
Kss Ksb

Ksb
T Kbb

]{
Ds
Db

}
=

{
0

Mbb
..
Dg

}
(28)

where [Mss] and [Css] are the mass matrix and the damping matrix, respectively, of the
block system except for the bottom block; [Cbb] is the damping matrix of the bottom block;
the subscript s and b represent the block system except for the bottom block and the bottom
block, respectively.

Expanding the second row of Equation (28):

[Mbb]
{ ..

Db

}
+ [Cbb]

{ .
Db

}
+ [Ksb]

T{Ds}+ [Kbb]Db = [Mbb]
{ ..

Dg

}
(29)

Both sides of Equation (29) are pre-multiplied by [Mbb]−1 and it becomes:{ ..
Db

}
+ [Mbb]

−1[Cbb]
{ .

Db

}
+ [Mbb]

−1[Ksb]
T{Ds}+ [Mbb]

−1[Kbb]Db =
{ ..

Dg

}
(30)

As a result of the large mass of the bottom block, diagonal elements of [Mbb]−1 tend to
zero, if the damping of the bottom block is independent of the mass, Equation (29) can be
approximately written as: { ..

D
}

b
≈
{ ..

D
}

g
(31)

Thus, the large mass method is a kind of approximate solution, and it inputs a seismic
acceleration by setting a large number in the mass matrix. Equation (26) can be used to
calculate the contributions of the seismic loading of the bottom block to the equilibrium
equations of DDA.

4.3. Large Stiffness Method

The large stiffness method is a displacement input method. In this method, rigid
springs are forced to the bottom block of the DDA model; the seismic loading is applied to
the rigid springs in the form of displacement and is timely passed to the block system.

The governing equations of the block system are rewritten as:

[M]
{ ..

D
}
+ [C]

{ .
D
}
+ [K]{D} = [Kbb]

{
Dg
}

(32)

where [Kbb] is the stiffness matrix of the bottom block,
{

Dg
}

is the seismic displacement
vector.

It can be decomposed into another form:[
Mss 0

0 Mbb

]{ ..
Ds..
Db

}
+

[
Css 0

0 Cbb

]{ .
Ds.
Db

}
+

[
Kss Ksb

Ksb
T Kbb

]{
Ds

Db

}
=

{
0

KbbDg

}
(33)

Expanding the second row of Equation (33):

[Mbb]
{ ..

Db

}
+ [Cbb]

{ .
Db

}
+ [Ksb]

T{Ds}+ [Kbb]Db = [Kbb]
{

Dg
}

(34)
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Both sides of Equation (34) are pre-multiplied by [Kbb]−1 and it becomes:

[Kbb]
−1[Mbb]

{ ..
Db

}
+ [Kbb]

−1[Cbb]
{ .

Db

}
+ [Kbb]

−1[Ksb]
T{Ds}+ Db =

{
Dg
}

(35)

As a result of the rigid springs of the bottom block, diagonal elements of [Kbb]−1 tend
to zero, if the damping of the bottom block is independent of the stiffness, Equation (35)
can be approximately written as:

{Db} ≈
{

Dg
}

(36)

Thus, the large stiffness method is also a kind of approximate solution. It is very
convenient to implement this method in the DDA program by the displacement load
boundary, and the pseudo code is shown in Figure 4.
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4.4. Example Verification

Based on the original 2D DDA code, using the basic theories of the above three
seismic input methods, the seismic DDA program is extended. At the same time, using the
proposed baseline correction method in Section 3, the input waves required by the seismic
DDA program are pre-processed. In order to test the correctness of three different seismic
input methods in 2D DDA program, a verification example was designed.

The geometry of the established DDA model is shown in Figure 5a, where the size
of the fixed block A is 16 m × 4 m and the size of block B is 4 m × 4 m. The mechanical
parameters of the rock include an elastic Young’s modulus of 10 GPa, a Poisson’s ratio
of 0.25, a density of 2500 kg/m3, and a gravity acceleration of 10 m/s2. The mechanical
parameters of the contact face include a cohesion strength of zero, a tensile strength of zero,
a friction angle of 30◦, and a spring coefficient of 2.5 GPa.
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(c) large mass method; (d) large stiffness method.

As shown in Figure 6, the input dynamic loading is horizontal and its acceleration
time history is a sine wave of a period a(t) = 10 sin(πt), where 0 ≤ t ≤ 2 s. To record the
responded wave of the blocks with different seismic input methods, two measured points
are set as shown in Figure 5a. Here, a1, v1, and d1 represent the responsive horizontal
acceleration, velocity, and displacement, respectively, of measured point 1; a2, v2, and d2
represent the responsive horizontal acceleration, velocity, and displacement, respectively,
of measured point 2.
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As shown in Figure 5b, the multi-blocks Newmark method is used and the acceleration
time history is applied to both block A and block B. It is appointed that right is positive
and left is negative. The theoretical solution to this case is:

1. If v2 = 0
If a− g tan φ > 0, a2 = a− g tan φ
If a + g tan φ < 0, a2 = a + g tan φ
If a + g tan φ ≥ 0 ≥ a− g tan φ, a2 = 0

2. If v2 > 0, a2 = a− g tan φ
3. If v2 < 0, a2 = a + g tan φ

(37)

where a is the input acceleration, g is the gravity acceleration, and ϕ is the friction angle of
the contact face.

In Figure 5c, the large mass method is used, the horizontal constraint of block A is
released, and acceleration of the input dynamic loading is applied to block A. In Figure 5d,
the large stiffness method is used, and the input dynamic loading is applied to block A in
the form of a horizontal displacement loading. In these cases, the responsive acceleration
or displacement of block A is consistent with the input dynamic loading. The theoretical
solution is:

1. If v1 = v2
If |a1| ≤ g tan φ, a2 = a1
If a1 > g tan φ, a2 = g tan φ
If a1 < −g tan φ, a2 = −g tan φ

2. If v1 > v2, a2 = g tan φ
3. If v1 < v2, a2 = −g tan φ

(38)

Integrating on Equations (37) and (38), the analytical solutions of both velocity and
displacement are obtained.

The responded waves of measured point 2 are illustrated in Figure 7. It shows that
the DDA simulation results fit well with the corresponding analytical solutions, which
indicates that these seismic input methods are correctly programmed in the seismic DDA
method. In fact, for the multi-blocks Newmark method, it does not consider the seismic
wave propagation and the seismic loads are improperly applied when the block falls. While
for the large mass method and the large stiffness method, they consider the seismic wave
propagation by timely passing the seismic loading input from the bottom block to the
block system, and they are basically equivalent; since the bottom block is seen as a rigid
foundation, these two methods are more suitable for simulating the seismic response of the
geotechnical engineering with a rigid foundation, such as the shaking table test and the
slope with clear bedrock [59].
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Figure 7. Comparison of analytical and DDA simulation results: (a) velocity; (b) displacement.
Notes: M1: multi-blocks Newmark method, M2: large mass method, M3: large stiffness method, T1:
theoretical solution of Equation (37), T2: theoretical solution of Equation (38).
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5. Simulation of a Shaking Table Test Using the Seismic DDA Method
5.1. A Brief of the Shaking Table Test

The shaking table test is based on the large rock cavern complex of the Dagangshan
Hydropower Station in Dadu River Basin, China [60]. According to the engineering layout
of rock cavern complex, the physical model contains three main structures, including
a main machine building, a main transformer chamber, and a tail surge chamber. The
similarity ratio between the model and the prototype is 1:12.25. The structures and sizes of
the physical model are shown in Figure 8. The similar materials of rock mass in the test
are composed of iron powder, barite powder, quartz sand, gypsum, and water. The mass
ratio of the five components is 176: 264: 66: 50: 60. To simulate the flexible boundary of the
physical model, a polystyrene foam board is added inside the rigid model box [61].
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Figure 8. Structure and sizes of the physical model (unit: mm).

During the shaking table test, a seismic wave measured in the Kobe earthquake
of Japan which occurred in 1995 is used as the input load. According to the dynamic
similarity relationship, the similarity ratio of the test time is 12.25. The upper limit of the
effective frequency of the shaking table used is 50 Hz. Therefore, the waveform needs to be
compressed by 12.25 times on the time axis, and the frequency components above 50 Hz
are filtered out.

5.2. Numerical Simulation

According to the sizes of the physical model, the numerical model is established by
using the DC module of the open-source program of 2D DDA. As shown in Figure 9,
the DDA model includes rock mass, polystyrene foam board, rigid model box, shaking
table, and a large mass block used for seismic input. There are 4381 blocks formed in the
numerical model. Table 3 lists the physical and mechanical parameters of various materials,
where the rigid model box, shaking table, and large mass block are steel. The setting
method of damping parameters is very important for DDA to simulate seismic response
of rock mass engineering. The shaking table test results show that the damping ratio of
similar materials of rock mass is about 0.04–0.05. In the DDA method, the damping ratio in
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the motion equation comes from numerical damping and viscous damping. The damping
ratio of DDA is calculated as follows [62]:

ξtotal = ξnumerical + ξviscous =
ln
(

1 + Ω2

2

)
2Ω

+

(
1−gg2)

4Ω
(39)

where ξ is the damping ratio, Ω = ω∆t, gg is a dynamic coefficient, andω is the circular
frequency. In this paper, the time step is 0.004 s and the dynamic coefficient is set to 0.9965
for the rock mass. According to Equation (39), the distribution of damping ratio of the rock
mass in frequency domain is illustrated. As shown in Figure 10, in the frequency domain
of main concern (10–40 Hz), the DDA damping ratio is in good agreement with the shaking
table test results. Similarly, the dynamic coefficients of polystyrene foam board and rigid
model box are 0.9850 and 0.9995, respectively, and the damping ratios are controlled in the
range of 10~20% and 1~2%, respectively.
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Table 3. Physical and mechanical parameters of various materials.

Materials Density/(kg/m3) Young’s Modulus/MPa Poisson’s Ratio

Rock mass 2800 172 0.25
Polystyrene foam board 15 4.13 0.07

Steel 7800 21,000 0.30
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Figure 10. Distribution of damping ratio of the rock mass in frequency domain.

During the DDA simulation, the large mass method is used to input the seismic wave.
As shown in Figure 9, a large mass block at the bottom is modeled. The acceleration time
history measured on the shaking table during the test is applied to the large mass block.
At the same time, it must be ensured that the large mass block has no viscous damping,
because damping will reduce the input seismic energy, and the zero damping for seismic
input can be realized by setting the dynamic coefficient of the large mass block to 1.0.

5.3. Results Analysis
5.3.1. Seismic Input Method

In order to verify the correctness of the large mass method, as shown in Figure 9, a
measured point at the large mass block (numbered 1) and a measured point at the shaking
table (numbered 2) are set. The responded waves of measured points and the input seismic
wave are illustrated in Figure 11. It shows that the responded waves are basically consistent
with the input seismic wave. Therefore, the large mass method can effectively imitate the
excitation principle of the shaking table, that is, the excitation system drives the vibration
of the shaking table, and the shaking table drives the vibrations of the rigid model box and
the rock mass.
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5.3.2. Boundary Condition

In order to verify the effectiveness of polystyrene foam board as a flexible boundary,
as shown in Figure 9, the responded acceleration of measured point 3 and measured point
4 in DDA model are recorded. As shown in Figure 12, the acceleration curves of the
two measured points are basically the same. This means that the physical and mechanical
parameters of the polystyrene foam board in numerical simulation are appropriate, which
simulates the effect of the flexible boundary well.
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5.3.3. Comparisons of Responded Acceleration of Rock Mass

In order to further verify the correctness of DDA simulation, As shown in Figure 9,
taking the typical measured points of the main machine building structure as an example,
including upstream side wall (measured point 5), downstream side wall (measured point
6), bottom plate (measured point 7), and crown arch (measured point 8), the responded
accelerations of the test data and simulation results are compared. As shown in Figure 13,
the test data and simulation results are basically consistent regardless of time history or
Fourier spectrum. This means that the simulation results of DDA are reasonable.

5.3.4. Analysis of Propagation Law of Seismic Wave

In Figure 13, there is little difference between the responded accelerations of upstream
side wall and downstream side wall, while the responded accelerations of bottom plate and
crown arch are very different. This means that the propagation law of seismic wave has a
strong correlation with the elevation. Based on this understanding, as shown in Figure 9,
a measured line is arranged from the surface of the shaking table to the top of the model.
During DDA simulation, the responded accelerations of 26 measured points with different
elevations along the measured line are recorded. Here, it is assumed that the elevation
of the shaking table surface is zero. In order to study the propagation law of the seismic
wave, an amplification factor is defined as the ratio of the positive or negative maximum of
responded acceleration to the positive or negative maximum of input seismic wave.

As shown in Figure 14, regardless of the positive or negative amplification factor, the
amplification effect of seismic wave becomes more obvious with the increase of elevation,
and the negative amplification factor is significantly greater than the positive amplification
factor. According to the elevation, the distribution characteristics of magnification factor
can be divided into two sections. The first section is the elevation less than 0.435 m, that
is, below the bottom plate of the main machine building, and the amplification factor is
in the range of 1.02–1.22, which indicates that the amplification effect is not obvious. The
maximum positive amplification factor is 1.14, while the maximum negative amplification
factor is 1.22. The second section is the elevation greater than 0.925 m, that is, above the
crown arch of the main machine building, the positive amplification factor is in the range
of 1.51–1.89, and the negative amplification factor is in the range of 2.31–3.20, which shows
that the amplification effect is more obvious than that of the first section. It should be
noted that during crossing the main machine building, due to the existence of a huge cavity,
the seismic wave is reflected, refracted, and diffracted, and the amplification coefficient
suddenly increases greatly.
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6. Conclusions

The DDA method adopts the Newmark integration scheme to simulate the discontinu-
ous motion process of block system in real time-steps. The small displacement assumption
is satisfied in each time step, and the large displacement is formed by the accumulation
of small displacement. This paper studies the solution principle of DDA method and
the development status of a 2D open-source program. The seismic wave pre-processing
and seismic input method are systematically investigated. The following conclusions are
drawn:

(1) Based on the Newmark integration scheme, the integration algorithms of synthetic
or measured seismic wave time history, correction function of seismic wave, and DDA
simulation are unified.

(2) The formulae of various seismic input methods, including the multi-blocks New-
mark method, large mass method, and large stiffness method, are deduced and imple-
mented in DDA program using the C programming language. The large mass method and
the large stiffness method are more suitable for rigid foundation, such as shaking table test.

(3) To simulate the shaking table test of a typical tunnel, the correctness of DDA in
simulation of seismic input, boundary condition, and damping ratio of material are verified.
At the same time, the propagation law of seismic wave in rock mass is analyzed. It reveals
that the propagation of the seismic wave presents a significant amplification effect due to
the reflection, refraction, and diffraction in the tunnel.
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