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Abstract: The differential quadrature method (DQM) is a numerical technique widely applied in
structure mechanics problems. In this work, a top-tensioned riser conveying fluid is considered.
The governing equation of this riser under parametric excitations is deduced. Through Galerkin’s
method, the partial differential governing equation with respect to time t and vertical coordinate z
is reduced into a 1D differential equation with respect only to time. Moreover, the DQM is applied
to discretize the governing equation to give solution schemes for the risers’ parametric vibration
problem. Furthermore, the instability region of Mathieu equation is studied by both the DQM and
the Floquet theory to verify the effectiveness of the DQM, and the solutions of both methods show
good consistency. After that, the influences of some factors such as damping coefficient, internal
flow velocity, and wet-weight coefficient on the parametric instability of a top-tensioned riser are
discussed through investigating the instability regions solved by the DQM solution scheme. Hence,
conclusions are obtained that the increase of damping coefficient will save the riser from parametric
resonance while increasing internal flow velocity, or the wet-weight coefficient will deteriorate the
parametric instability of the riser. Finally, the time-domain responses of several specific cases in both
stable region and unstable region are presented.

Keywords: differential quadrature method; Mathieu equation; parametric instability; riser;
parametric resonance

MSC: 74H55; 39A14; 35G10; 65M12

1. Introduction

The risers are pipelines linking the seabed and the platform above the sea. Because
of the vertically dynamic excitations induced by the heave motion of the platform, the
parametrical resonance of the risers would occur, and fatigue damage will follow. To avoid
such risk, it poses an urgent demand to make a parametric instability prediction plan at the
designing phase of the risers.

The study of the dynamic properties of pipes dates back to the 1970s. From 1970 to
1972, Chen [1–4] presented a comprehensive investigation of the free vibration, forced
vibration, and stability of pipes conveying fluids. Since then, the vibrations of pipes have
been drawing attention from researchers. In 1975, Hsu [5] figured out, for the first time in
the engineering application, the parametric instability characters of the straight and vertical
configuration of a hanging. He analyzed the parametric instability of hanging string risers
with a Ω–Γ instability chart and studied the influences of nonlinear fluid dynamic damping
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on the steady-state responses of risers under parametrically unstable conditions. Later, a
lot of classic contributions [6–12] were carried out about the parametric vibration of risers.
Recently, Lou et al. [13] studied the horizontal parametric vibration of a compliant vertical
access riser, and mode coupling and damping’s effects on risers’ parametric instability
were discussed. Zhang et al. [14] investigates the vibration of a top tensioned riser under
both parametrical and vortex-induced excitations by numerical simulation and experiment,
and the aggravation of the riser’s VIV response affected by parametric excitation has been
evaluated. Liang and Lou [15] studied the effects of multiphase internal flows that consider
hydrate phase transitions on the parametric stability of marine risers.

In the current study, a top-tensioned riser subjected to parametrical excitation is stud-
ied. For the dynamic problems in engineering applications, some numerical methods,
such as the finite element method [8,16–20], Runge–Kutta (R–K) method [7,10], and finite
differences method [9], have been verified to be valid and accurate in coping with such
problems. Ni et al. [21,22] considered the dynamic problems of a pipe conveying fluid by
the differential quadrature method (DQM) and generalized differential quadrature rule
(GDQR). They found that DQM and GDQR show good competency in such problems.
Illuminated by their works, we decide to consider the parametric instability of the top-
tensioned riser with DQM. The DQM was first introduced by Bellman and Casti [23] as
a new technique to solve the initial-value problems of ordinary and partial differential
equations. Based on such work, DQM was extended into various applications such as
fluid flow and turbulence, the Hodgkin–Huxley model, structural mechanics and mechan-
ical dynamics, etc. [24–28]. Furthermore, Wu and Liu [29,30] complement the DQM by
introducing the generalized differential quadrature rules (GDQR) to equip this method
with the ability to treat high-order differential equations and complex boundary conditions
more flexibly. In recent years, the study on DQM continues. Essam et al. [31] proposed a
new hybrid linearization-differential quadrature method (HLDQM), and some numerical
experiments on a Fe3O4 ferrofluid flow over a vertical radiate plated were conducted
by this method. Constantin et al. [32] applied the least-squares differential quadrature
method (LSDQM) to nonlinear partial differential equations, and solutions with better
accuracy were acquired compared to other well-known methods: homotopy perturbation
method (HPM) and the Adomian decomposition method (ADM). Additionally, some novel
modifications on DQM have been made to accommodate more flexible situations [33–36].

Based on the aforementioned studies of the risers’ parametric vibration and DQM, in
the current study, the DQM would be introduced to calculate the vibration properties of
risers under parametric excitation. Additionally, the effects of some key factors such as
damping, internal flow velocity, and unit wet weight on the risers’ parametric instability
would be discussed in detail. In Section 2, the governing equation of the parametric
vibration of a top-tensioned riser with internal flows and the implementation of solving
this governing by DQM was presented, and the deduction of the unstable zone of the
Mathieu equation is conducted. In Section 3, the validation of DQM in analyzing risers’
parametric instability is verified with the Mathieu equation; also, the instability charts
of a top-tensioned riser under different conditions are given to discuss the influences of
different parameters on risers’ instability. In Section 4, the parametrically excited responses
of this riser are given. In Section 5, the conclusions are made.

2. Modelling and Method
2.1. Governing Equation of Parametric Vibration

In the ocean oil drilling industry, the riser is an indispensable structure transporting
oil from the seabed to the platform. Our study is based on a top-tensioned one whose
figure is illustrated in Figure 1. As shown in Figure 1, the riser is hinged at the bottom end
and the top of the riser is pulled by tension cables. An array of buoyancy tanks is arranged
along the riser to counteract the weight of the riser and provide extra tension to keep the
riser erect. Since the use of risers is to transport fluid, there is liquid flowing inside risers.
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When the platform heaves up and down, the riser will suffer axial dynamic tension, which
will generate parametric excitation to the riser.
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Figure 1. A model of a top-tensioned riser.

To transform this engineering model into mathematical expression, some hypotheses
are introduced, and a simplification of the riser is given. The material, mechanical prop-
erties, and the buoyancy distribution are regarded as uniform and continuous along the
length of the riser. Thus, the riser considered in our study can be simplified as a vertical
Euler beam hinged at both ends with internal fluid flowing inside it and with uniformly-
distributed tension along with it. The simplified structure of this and the force diagram of
an infinitesimal unit of this riser are depicted in Figure 2.
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Figure 2. Simplified model and force diagram: (a) schematic of the top-tensioned riser and (b) force
diagram of the infinitesimal unit.

The riser is simplified into a 2D beam subjecting to the horizontal forcing displace-
ment excitation uL(t) and the vertical parametric excitation TL(t) at the top end. For this
infinitesimal unit, there is tension T and shear force N at both ends. mwg is the unit wet
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weight, and it equals the difference between the total weight of the unit and the buoyancy
of the unit, namely,

mwg = msg + m f g− fb (1)

where fb is the buoyancy provided by the riser and the buoyancy tanks of unit length, and
ms and mf are, respectively, pipe weight and internal fluid weight of unit length:

ms = ρsπ
(

Dh− h2
)

, (2)

m f =
1
4

ρ f π(D− 2h)2, (3)

where D is the outer diameter of the riser; h is the thickness of the pipe wall; ρs is the riser
wall density, and ρf is the internal fluid density. To simplify the model, the wet-weight mwg
is defined with an adjustable coefficient kmw because the wet weight can be adjusted by the
size of buoyancy tanks:

mwg = kmw

(
msg + m f g− 1

4
ρwπD2g

)
. (4)

U is the flowing velocity of the internal fluid. fnd and fτd are damping forces at normal
and tangential directions of the unit. According to the force diagram in Figure 2b, the force
equilibrium of this infinitesimal unit could be expressed as [10] in the axial direction:

ms ds
∂2u
∂t2 + m f ds

D2u
Dt2 =

∂T
∂s

ds cos
(
−dϕ

2

)
+ 2N sin

(
−dϕ

2

)
−mwgds cos ϕ + fτd ds, (5)

and in the transverse direction:

(ms + ma)ds
∂2w
∂t2 + m f ds

D2w
Dt2 =

∂N
∂s

ds cos
(
−dϕ

2

)
− 2T sin

(
−dϕ

2

)
+ mwgds sin ϕ + fndds, (6)

where u and w, respectively, are displacements of the unit in the axial direction and trans-
verse direction; ma represents added mass of unit length, and here, the added mass is
hypothesized as the weight of the water in a volume of the unit length of riser [11]:

ma =
1
4

πρwD2, (7)

where ρw is the density of water; D2/Dt2 is the material derivation of the internal fluid:

D2

Dt2 =

(
∂

∂t
+ U

∂

∂s

)2
=

∂2

∂t2 + 2U
∂2

∂t∂s
+ U2 ∂2

∂s2 ; (8)

and here, linear damping is utilized [11]:

fτd = −cτ
∂u
∂t

, (9)

fnd = −c
∂w
∂t

, (10)

In our study, the riser is assumed as a Euler beam, which means the bending angle ϕ is
close to zero, and axial displacement u is quite smaller compared to transverse displacement
w. Thus, Equation (4) can be simplified into a static equilibrium:

∂T
∂s

= mwg. (11)
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Considering small elastic deformation and transverse deflection, the coordinate s
could be replaced with vertical coordinate z. As the tension at the top is TL(t), the tension
distribution along the riser could be represented as

T(z, t) = TL(t)−mw(L− z) = T0 + Td(t)−mwg(L− z), (12)

where T0 is the static pretension at the top, and Td is the dynamic tension at the top. In a
Euler beam, the shear force N could be approximated with

∂N
∂s
∼= −EI

∂4w
∂z4 , (13)

where EI is the stiffness of the riser. Thus, Equation (6) can be simplified as

M
∂2w
∂t2 + 2m f U

∂2w
∂t∂z

+ m f U2 ∂2w
∂z2 − T

∂2w
∂z2 + EI

∂w4

∂z4 −mwg
∂w
∂z

+ c
∂w
∂t

= 0, (14)

where M = ms + mf + ma.
Equation (14) is a partial differential equation with respect to time t and vertical

position z. In the following section, solution schemes for this equation will be discussed.

2.2. Galerkin’s Method and Derivation of Mathieu Equation

As the governing equation is a partial differential equation with two variables, it
is advisable to reduce this govern equation into a differential equation with only one
variable. Thus, Galerkin’s method and modes’ superposition principle could be applied. It
can be assumed that the deflection function w(z,t) could be represented with a weighted
summation of the orthogonal basis:

w(z, t) = q0(t)ϕ0(z) +
∞

∑
i=0

qi(t)ϕi(z), (15)

where ϕi is the basic shape function of ith mode, and qi is the weight function of ith mode;
ϕ0 is the rigid shape function, which means there is no deformation in this mode, and the
displacement of the riser is linear along the vertical coordinate, namely,

ϕ0(z) =
z
L

. (16)

Substituting Equation (15) into Equation (14),

∞
∑

i=1

[
Mqi

′′ ϕi + 2m f Uqi
′ϕ′ i +

(
m f U2 + mwgL− T0

)
qi ϕi

′′ −mwgzqi ϕi
′′ − Td(t)qi ϕi

′′

+EIqi ϕi
′′′′ −mwgqi ϕi

′ + cqi
′ϕi] =

mwg
L q0 − M

L zq0 ′′ − 2miU
L q0

′ − c
L zq0

′
(17)

where

qi
′′ =

d2qi
dt2 , qi

′ =
dqi
dt

, (18)

ϕi
′′′′ =

d4 ϕi

dt4 , ϕi
′′ =

d2 ϕi
dt2 , ϕi

′ =
dϕi
dt

. (19)

Here in our study, the mode functions are a series of sine functions:

ϕi(z) = sin
(

iπz
L

)
, i = 1, 2, 3, · · · . (20)

According to the orthogonality of trigonometric functions,∫ π

0
sin(mt) sin(nt) = 0, m 6= n. (21)
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Thus, applying this orthogonality to the mode functions,
∫ L

0 ϕi ϕjdz = 0∫ L
0 ϕi

′ ′ϕjdz = 0∫ L
0 ϕi

′ ′ ′ ′ϕjdz = 0

, i 6= j. (22)

With this orthogonality of trigonometric functions, Equation (17) could be reduced
into a one-dimensional differential equation by integrating the partial equation along the
coordinate z from 0 to L with the weight function ϕj:

L
2 Mqj

′′ − j2π2

2L

(
m f U2 + mwgL− T0

)
qj +

j2π2

2L Td(t)qj +
j4π4

2L3 EIqj +
L
2 cqj

′

+
∞
∑

i=1

∫ L
0

[
2m f Uqi

′ϕ′ i −mwgzqi ϕi
′′ −mwgqi ϕi

′
]

ϕjdz

=
∫ L

0

[
mwg

L q0 − M
L zq0 ′′ −

2m f U
L q0

′ − c
L zq0

′
]

ϕjdz

(23)

In the current research, we assume the parametric excitation Td to be a cosine function
with respect to time t:

Td(t) = S cos(Ωt), (24)

where S is the amplitude of parametric excitation, and Ω is the excitation frequency. Re-
placing the time t with dimensionless term τ,

τ =
1
2

Ωt. (25)

Substituting Equations (24) and (25) into Equation (23) and evaluating the integrations,
the governing equation could be reduced to

qj
′′ +

(
αj + β j cos 2τ

)
qj + ζqj

′ +
∞

∑
i=0

(
µ1Pijqi + µ2Qijqi + µ3Qijqi

′)+ µ3γjqj = Hj, (26)

where

qj
′ =

dq
dτ

, qj
′′ =

d2q
dτ2 , (27)

αj =

[√
EI
M

(
jπ
L

)4
+ T0−mwgL

M

(
jπ
L

)2
/
(

Ω
2

)]2

, β j =
S
M

(
2jπ
ΩL

)2
, ζ = 2c

MΩ ,

γj = (jπ)2,

(28)

µ1 = − 8mwg
MΩ2L

, µ2 = − 8mwg
MΩ2L

, µ3 =
8m f U
MΩL

, µ4 = −
4m f U2

MΩ2L2 , (29)

Pij =


− (iπ)2

4 , (i = j)
4i3 j

(i2−j2) , (i + j is odd)

0, (i + j is even, and i 6= j)

, Qij =

{ 2ij
j2−i2 , (i + j is odd)

0, (i + j is even)
, (30)

Hj =
8mwg

[
1− (−1)j

]
jπMΩ2L

q0 +
2(−1)j

jπ
q0
′′ −

8m f U
[
1− (−1)j

]
jπMΩL

q0
′ +

4c(−1)j

jπMΩ
q0
′. (31)

In Equation (26), ζ is the damping term, µ1 and µ2 are wet-weight terms, and µ3 and µ4
are internal flow terms. Moreover, Pij and Qij are coupling coefficient matrices. Especially,
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when the damping, wet weight, internal flow terms, and forcing excitation are omitted,
Equation (26) will be reduced to the classic Mathieu equation:

q′′ + (α + β cos 2τ)q = 0. (32)

2.3. The Differential Quadrature Solution Scheme for Risers’ Parametric Vibration

According to the studies of previous researchers, the DQM is proved to be a powerful
technique to solve the initial-value problems. Here, we will give a brief introduction to
the DQM.

f (x) is a function in the domain of [a, b] with nth order continuous derivatives with
respect to x. According to the Lagrange interpolation formula, f (x) could be approximated
to a weighted summation:

f (x) ∼=
K

∑
k=1

λk(x) f (xk). (33)

where

λk(x) =
K

∏
m=1,m 6=k

(
x− xk

xm − xk

)
. (34)

Thus, the nth order derivative of f (x) can also be approximated to the derivative of
this interpolation function:

dn f (x)
dxn

∼=
K

∑
k=1

dnλk(x)
dxn f (xk). (35)

If {xk} are given nodes, the derivatives of f (x) on these given nodes can be expressed as(
d f (x)

dx

)
x=xl

∼=
K

∑
k=1

Akl f (xk), (36)

(
d2 f (x)

dx2

)
x=xl

∼=
K

∑
k=1

Bkl f (xk), (37)

where

Akl =

(
dλk(x)

dx

)
x=xl

, (38)

Bkl =

(
d2λk(x)

dx2

)
x=xl

. (39)

With this interpolation and derivation scheme, the value of f (x) and its derivatives
can be expressed with weighted summations of the function values at several discrete
nodes. Sherbourne and Pandey [25] found that the DQ solution is very sensitive to the node
spacing. Runge’s phenomenon may easily occur when the nodes are uniformly distributed.
Thus, the Chebyshev node spacing scheme is utilized:

τk = τ1 +
1
2

[
1− cos

(
k− 1
K− 1

π

)]
(τK − τ1), k = 1, 2, 3, . . . , K. (40)

Then, qi and its derivatives on these node points could be expressed as

qil = qi(τl) =
K

∑
k=1

Eklqik, (41)

qil
′ =

K

∑
k=1

Aklqik, (42)
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qil
′′ =

K

∑
k=1

Bklqik, (43)

where

Ekl =

{
1, (k = l)
0, (k 6= l)

. (44)

Substituting Equations (41)–(43) to Equation (26),

I
∑

i=1

K
∑

k=1
[ ]
[
EijBkl +

(
αjEij + β jEij cos 2τl

)
Ekl + ζEij Akl

+
(
µ1PijEkl + µ2QijEkl + µ3Qij Akl

)
+ µ4γjEijEkl

]
qik = Hjl

; j = 1, 2, 3, . . . , I; l = 1, 2, 3, . . . , K (45)

where
Hjl = Hj(τl). (46)

In Equation (45), index i is the order number, and index k represents the node number
of dimensionless time coordinate τ. The discretized differential equation is obtained by
using Equation (45), but the equation is underdetermined if the boundary conditions are
not given [37]. To avoid the right end of Equation (45) to be constant at zero, the initial
value for each mode is given as 0.001, namely

qj(τ1) = 0.001, j = 1, 2, 3, . . . , I. (47)

The initial velocity of each mode is set to zero:

qj
′(τ1) = 0, j = 1, 2, 3, . . . , I. (48)

In discretized form,

I

∑
i=1

K

∑
k=1

EijEklqik = 0.001; l = 1; j = 1, 2, 3, . . . , I; (49)

I

∑
i=1

K

∑
k=1

Eij Aklqik = 0; l = 1; j = 1, 2, 3, . . . , I. (50)

The initial condition can be embedded to the discretized differential equation set
Equation (45) by replacing the equations of index l = 1, N with Equations (49) and (50).
However, such a replacement would raise the problem that the properties at these replaced
indexes will be overlooked. According to [26,27,38], adjacent δ points can be arranged,
and the mechanical properties of these replaced points can be approximated by those of
adjacent δ points. Additionally, the closeness between the adjacent point and the replaced
point is usually set to be of the order δ = 10−5. Thus, the Chebyshev node spacing scheme
Equation (40) should be reorganized with adjacent δ points:

τ1 = 0, τ2 = δ, τK−1 = 1− δ, τK = 1; δ = 10−5;

τk = τ2 +
1
2

[
1− cos

(
k−1
K−1 π

)]
(τK−1 − τ2), k = 3, . . . ., K− 2.

(51)

As mentioned in many previous works, for a large number of node points and a
large-ordered algebraic equation system, the matrix of DQM will be ill-conditioned [37,39].
However, for the current problem, a large number of node points is needed to acquire a
long-time scope numerical solution. Thus, the block-marching technique [39] is introduced
to overcome such conflict between the long-time solution and the ill-conditioned matrix. As
the level-by-level solution scheme in R–K schemes, the block-marching of DQM divides the
temporal problem domain into a sequence of blocks, and the solving procedure is organized
block-by-block, which means the initial conditions of each lateral block are determined by
the solution of the former block, as shown in Figure 3. For instance, the solution of qi in the
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first block τ = [0, T] can be solved by Equations (45), (49), and (50). For the second block
where τ = [T, 2T], the initial conditions can be defined with the q and q′ values on the last
node of the first block, and the equation set of the second block can be expressed as

I
∑

i=1

2K−1
∑

k=K

[
EijBkl +

(
αjEij + β jEij cos 2τl

)
Ekl + ζEij Akl

+
(
µ1PijEkl + µ2QijEkl + µ3Qij Akl

)
+ µ4γjEijEkl

]
qik = Hjl

; j = 1, 2, . . . , I; l = K + 1, K + 2, . . . , 2K− 2 (52)

I

∑
i=1

2K−1

∑
k=K

EijEklqik = qjK; j = 1, 2, 3, . . . , I; l = K; (53)

I

∑
i=1

2K−1

∑
k=K

Eij Aklqik = q′ jK =
I

∑
i=1

K

∑
k=1

Eij Ak(K)qik; = 1, 2, 3, . . . , K; l = 2K− 1. (54)
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Similarly, the sequential blocks can be solved by this block-marching scheme.

2.4. Analytical Solution for Mathieu Instability

According to the Floquet theory [40], we have the the Mathieu equation:

q′′ (τ) + (α + β cos 2τ)q(τ) = 0 (55)

having a pair of solution basis {
q1(τ) = στ/π

1 p1(τ)

q2(τ) = στ/π
2 p2(τ)

, (56)

where p1 and p2 are periodic functions with period π, and σ1 and σ2 are complex coefficients.
Additionally, σ1 and σ2 are the roots of the quadratic Equation [40]:

σ2 − 2aσ + 1 = 0, (57)

namely,
σ1,2 = a±

√
a2 − 1. (58)

When |a| < 1, both σ1 and σ2 are complex roots with modulus 1, and the solution of
Equation (56) is stable with respect to τ. On the contrary, when |a| > 1, moduli of σ1,2 are
bigger than 1, and that means the solution of Equation (56) is unstable. For the situation
|a| = 1, both σ1 and σ2 are equal to 1 or −1, and the solution of Equation (56) is periodic
with period π or 2π. Therefore, |a| = 1 is the critical condition between the stable regions
and unstable regions, and it means that for the cases at the critical edge between stable and
unstable regions, the solutions for Equation (56) are periodic functions with period π or 2π.

To obtain the borderlines of the unstable region, firstly, we assume the solutions to be
with period π. Thus, the assumed solution could be expanded with the Fourier series:

q(τ) =
∞

∑
n=0

an cos(2nτ) +
∞

∑
n=1

bn sin(2nτ). (59)
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Substituting Equation (59) into Equation (55),

∞
∑

n=0

(
α− 4n2)an cos(2nτ) +

∞
∑

n=1

(
α− 4n2)bn sin(2nτ)

+β cos(2τ)

[
∞
∑

n=0
an cos(2nτ) +

∞
∑

n=1
bn sin(2nτ)

]
= 0

(60)

Using the prosthaphaeresis rules,{
cos(2τ) cos(2nτ) = 1

2 [cos(2n + 2)τ + cos(2n− 2)τ]

cos(2τ) sin(2nτ) = 1
2 [sin(2n + 2)τ + sin(2n− 2)τ]

. (61)

According to the orthogonality the trigonometric functions,
∫ π

0 cos(2nτ) cos(2mτ)dτ =

{
0, m 6= n
π/2, m = n∫ π

0 sin(2nτ) cos(2mτ)dτ = 0
, m = 1, 2, 3, . . . , (62)

and 
∫ π

0 cos(2nτ) sin(2mτ)dτ = 0∫ π
0 sin(2nτ) sin(2mτ)dτ =

{
0, m 6= n
π/2, m = n

, m = 1, 2, 3, . . . . (63)

Substituting Equation (61) into Equation (60), and integrating this equation multiplied
with weight function cos(2mτ) from 0 to π, a group of linear equation set is formed:

α β/2 0 0 0 · · ·
β α− 4× 12 β/2 0 0 · · ·
0 β/2 α− 4× 22 β/2 0 · · ·
0 0 β/2 α− 4× 32 β/2 · · ·
...

...
...

. . . . . . . . .




a0
a1
a2
a3
...

 =


0
0
0
0
0

. (64)

Similarly, integrating the equation multiplied with weight function sin(2mτ):
α− 4× 12 β/2 0 0 0 · · ·

β/2 α− 4× 22 β/2 0 0 · · ·
0 β/2 α− 4× 32 β/2 0 · · ·
0 0 β/2 α− 4× 42 β/2 · · ·
...

...
...

. . . . . . . . .




b1
b2
b3
b4
...

 =


0
0
0
0
0

. (65)

To ensure the solution of Equation (59) is a constant 0 value, the determinant of the
coefficient matrix of Equations (64) and (65) must be zero. Namely,∣∣∣∣∣∣∣∣∣∣∣

α β/2 0 0 0 · · ·
β α− 4× 12 β/2 0 0 · · ·
0 β/2 α− 4× 22 β/2 0 · · ·
0 0 β/2 α− 4× 32 β/2 · · ·
...

...
...

. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣
= 0, (66)

or ∣∣∣∣∣∣∣∣∣∣∣

α− 4× 12 β/2 0 0 0 · · ·
β/2 α− 4× 22 β/2 0 0 · · ·

0 β/2 α− 4× 32 β/2 0 · · ·
0 0 β/2 α− 4× 42 β/2 · · ·
...

...
...

. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣
= 0. (67)
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For cases where the solution of Equation (56) is of period 2π, there exist the
eigen equations∣∣∣∣∣∣∣∣∣∣∣

α− 12 + β/2 β/2 0 0 0 · · ·
β/2 α− 32 β/2 0 0 · · ·

0 β/2 α− 52 β/2 0 · · ·
0 0 β/2 α− 72 β/2 · · ·
...

...
...

. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣
= 0, (68)

or ∣∣∣∣∣∣∣∣∣∣∣

α− 12 − β/2 β/2 0 0 0 · · ·
β/2 α− 32 β/2 0 0 · · ·

0 β/2 α− 52 β/2 0 · · ·
0 0 β/2 α− 72 β/2 · · ·
...

...
...

. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣
= 0. (69)

3. Verification and Validation of DQM

In this section, two simple equations, a first-order linear differential equation with har-
monic coefficients and a second-order linear differential equation with constant coefficients,
are considered:

y′ + sin(x)y = 0, y(0) = e, (70)

and
y′′ + y = 0, y(0) = 0, y′(0) = 1. (71)

The analytical solutions of these equations can be expressed as

y = ecos (x) (72)

for Equation (70), and
y = sin(x) (73)

for Equation (71).
As discussed in Section 2.3, the initial-value problems can be studied by the block-

marching DQM. In the current solving scheme for these two equations, the computation
domain x ∈ [0, 10× 2π] is divided into 10 blocks with a length of 2π. Therefore, the
long-time-scope initial problem of Equations (70) and (71) is divided into two sequences
of short-time-scope subproblems that can be solved by DQM with a small number of
nodes. Additionally, the DQM, whose node number N = 51, and analytical solutions for
Equations (70) and (71) are given in Figure 4.
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It can be acknowledged from Figure 4 that the solutions of DQM reach good agree-
ments with those of the analytical solution. Furthermore, the convergence of DQM is
evaluated with the average error

Rave =
MN

∑
i=1
|yi − ỹi|, (74)

where yi is the analytical value and ỹi is the numerical value; M is the block number and, in
the current examples, M is set to 10; N is the DQM node number of each block. Under such
conditions, the average errors with different node numbers are computed and presented in
Figure 5.
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As shown in Figure 5, the average errors of both examples diminish sharply with the
increase of node number per block when N remains in relatively small values. Additionally,
when the node number exceeds a certain value, which is 34 for Equation (70) or 18 for
Equation (71), the decreasing trend of the average errors falls to a relatively slight rate.
However, when the node number increases further, the average error begins to alter in
an increasing trend until at N = 737, the DQM solution scheme aborts because of the
ill-conditioned matrix. Thus, in application practice, a relatively small node number is
chosen in DQM. In the following study, 51 nodes are utilized in each block to form the
DQM solution scheme.

According to the previous studies, the R–K method is a commonly utilized method in
coping with the initial value problems. Here, the R–K solutions for Equations (70) and (71)
are carried out to make a comparison with the DQM solutions. The R–K solution schemes
in our study for Equations (70) and (71) are:

y1 = e

yn+1 = yn +
h
6 (K1 + 2K2 + 2K3 + K4)

K1 = − sin(xn)yn

K2 = − sin
(

xn +
h
2

)(
yn +

h
2 K1

)
K3 = − sin

(
xn +

h
2

)(
yn +

h
2 K2

)
K4 = − sin(xn + h)(yn + hK3)

(75)
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for Equation (70), and 

y1 = 0

z1 = 1

yn+1 = yn +
h
6 (K1 + 2K2 + 2K3 + K4)

zn+1 = zn +
h
6 (L1 + 2L2 + 2L3 + L4)

K1 = zn, L1 = −yn

K2 = zn +
h
2 L1, L2 = −

(
yn +

h
2 K1

)
K3 = zn +

h
2 L2, L3 = −

(
yn +

h
2 K2

)
K4 = zn + hL3, L4 = −(yn + hK3)

(76)

for Equation (71).
The R–K solution scheme utilized in the current examples is an explicit single-step

method. To ensure the same node number in each block as that in DQM, the step lengths
for the current R–K schemes are:

h =
2π

N − 1
, N = 51. (77)

The solution of Equations (70) and (71) are solved by both DQM and R–K, and the
average errors per block are evaluated and presented in Figure 6.
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According to Figure 6, it can be informed that for these two examples the average
error of the R–K method is much bigger than the DQM. That means with the same number
of nodes the DQM could acquire more accurate solutions than the R–K. In addition, it can
be told from the figures that the average error of the DQM for Equation (71) is smaller than
Equation (70), while the trend of the R–K is the opposite. That means the causes of errors
for these two methods are irrelevant.

4. Instability Analysis of a Top-Tensioned Riser
4.1. DQM Solution for Mathieu Equation

In this section, the Mathieu equation (32) is considered. Additionally, the initial values
for the current examples are: {

q(0) = 0.001

q′(0) = 0
. (78)
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For specific values of α and β as listed in Table 1, the accordingly time-domain solutions
for the Mathieu equation are solved by both DQM and R–K, and the solutions are presented
in Figure 7.

Table 1. α and β values of four examples.

Example 1 Example 2 Example 3 Example 4

α 6 6 9 9

β 2.2 8.8 2.2 8.8
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Firstly, according to Figure 7, the curves of DQM show good consistency with that of
R–K, which is a vastly applied technique for the parametric vibrating problem. Additionally,
it can be easily told from the figures that for Examples 1, 2, and 4, the solutions for the
Mathieu equation are stable; however, for Example 2, the solution is divergent with respect
to time τ. Following such logic, a series of Mathieu equation examples with α ranging from
−5 to 20 and β ranging from 0 to 30 are calculated by this DQM solution scheme to form
the instability chart of the Mathieu equation. When it comes to how to tell whether an
example is divergent, we set up a verification scheme as follows:

1. Separate the long-time-scope solutions into blocks with lengths of 2π;
2. Extract the maximum of each block;
3. Compare the maxima between every neighboring block, and if the maximum is

increasing block by block, we define the solution for the current example as divergent;



Mathematics 2022, 10, 1331 15 of 23

4. For the examples that fail the test in step three, calculate the ratio of the maximum
of the last block and that of the initial block, and if the ratio is bigger than 100, we
define the solution for the current example as divergent; otherwise, it is defined
as convergent.

For the solutions defined as divergent, we mark the corresponding (α, β) point in
the α-β plane. Thus, after all of the verification schemes of every example are considered,
a map of the instability chart for the Mathieu equation is acquired. Additionally, this
instability chart is acquired via the aforementioned scheme as well as the borderline solved
by Equations (62)–(65) and is depicted in Figure 8.
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As is shown in Figure 8, the instability region acquired by the DQM fits well with the
borderline defined by the Floquet theory. Therefore, it can be easily concluded that the
DQM is a suitable method to evaluate the parametric vibration problems of risers. In the
following sections, the parametric instability of risers under different conditions will be
discussed with the solutions of the DQM.

4.2. Instabilities of Risers with Different Damping Coefficients

In this section, the parametric instability of a top-tensioned riser with different damp-
ing coefficients is discussed through the solutions of the DQM. Additionally, the riser we
study is modified from a mini-TLP in the Gulf of Mexico [11] whose major parameters are
listed in Table 2. The internal flow velocity U and wet-weight coefficients kmw are set to
zero, which means that the fluid inside the pipe is assumed to be still, and the weight of
the riser unit and the buoyancy provided by the tanks are assumed to be compensating
for each other. The parametric excitation is defined through Td(t) = Scos(2πt/P), where the
amplitude S ranges from 0 to 5 × 106 N and the period P ranges from 0 to 18s. Therefore,
the instability charts of six different damping coefficients ζ = (0.00, 0.05, 0.10, 0.15, 0.20,
0.25) are acquired and are presented in Figure 9.

Because the coupling terms µ1Pijqi, µ2Qijqi, and µ3Qijqi’ are set to zero, there are
no coupling effects between different modes. As a result, the parametric instabilities of
different modes are independent of each other. In Figure 9, the instability regions of
different damping coefficients of the first ten orders are presented. The instability regions
are represented with translucent shades confined to the solid borderlines. It can be told
from the pictures that with the increase of damping coefficients, the shaded areas move
upwards accordingly. It means that the risers with larger damping coefficients are less
prone to vibrate unstably Besides, at a specific heave period, stronger dynamic tension
amplitude is needed to induce the parametric instability of the riser.
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Table 2. Major parameters of the top-tensioned riser and the environment.

Items Symbols Values

Young’s modulus E 210 GPa
Sea water density ρw 1025 kg/m3

Pipe wall density ρs 7850 kg/m3

Internal fluid density ρf 800 kg/m3

Pipe’s outer diameter D 0.66 m
Pipe’s Length h 0.026 m

Static Tension of the riser T0 5 × 107 N

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 25 
 

 

compensating for each other. The parametric excitation is defined through Td(t) = 
Scos(2πt/P), where the amplitude S ranges from 0 to 5 × 106 N and the period P ranges 
from 0 to 18s. Therefore, the instability charts of six different damping coefficients ζ = 
(0.00, 0.05, 0.10, 0.15, 0.20, 0.25) are acquired and are presented in Figure 9. 

Table 2. Major parameters of the top-tensioned riser and the environment. 

Items Symbols Values 
Young’s modulus E 210 GPa 
Sea water density ρw 1025 kg/m3 

Pipe wall density ρs 7850 kg/m3 

Internal fluid density ρf 800 kg/m3 

Pipe’s outer diameter D 0.66 m 
Pipe’s Length h 0.026 m 

Static Tension of the riser T0 5 × 107 N 

 
Figure 9. Parametric instability charts of risers with different damping coefficients. 

Because the coupling terms μ1Pijqi, μ2Qijqi, and μ3Qijqi’ are set to zero, there are no 
coupling effects between different modes. As a result, the parametric instabilities of dif-
ferent modes are independent of each other. In Figure 9, the instability regions of differ-
ent damping coefficients of the first ten orders are presented. The instability regions are 

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

0

1

2

3

4

5

0 3 6 9 12 15 18
Heave period P (s)

D
yn

am
ic

 T
en

sio
n

S
(×

10
6 N

)

(c) 3rd mode (d) 4th mode (e) 5th mode (f) 6th mode

(g) 7th mode (h) 8th mode (i) 9th mode (j) 10th mode

(a) 1st mode (b) 2nd mode

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

ζ = 0.00
ζ = 0.05
ζ = 0.10
ζ = 0.15
ζ = 0.20
ζ = 0.25

Figure 9. Parametric instability charts of risers with different damping coefficients.

4.3. Instabilities of Risers with Different Internal Flow Velocity

According to Chen’s [1–4] research, the velocity of the internal flow will alter the
vibrating characters of the pipe. Due to the role of the risers being to transport fluid from
seabed to the platform, in this section, the instabilities of the riser with different internal
flow velocities are studied. The parameters of the riser and the environment are listed in
Table 2. The damping coefficient ζ is set to 0.1, and the wet-weight coefficient kmw is set
to zero. The instability charts of different internal flow velocities U, which range in array
[0–5] m/s, are obtained and depicted in Figure 10.
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Figure 10. Parametric instability charts of risers with the different internal flow velocities.

The existence of the nonzero coupling term µ3Qijqi’ would induce interferences be-
tween different modes. Therefore, when one order of the modes vibrates unstably, the
divergent response of the current mode will gradually trigger other modes to vibrate unsta-
bly. Namely, when the internal flow velocity is not equal to zero, the µ3Qijqi’ term would
take effect crossing different modes. For instance, in case the first mode of the riser vibrates
unstably in the shape of sin

(
πz
L
)
, the divergent vibration of the first order would pump

continuous excitations to other modes because of the existence of the coupling term µ3Qijqi’.
Thus, the parametrically unstable vibrations of other modes will be triggered. Therefore,
the parametrical instabilities of different modes are coexistent, and such an instability chart
will no longer be presented individually by mode. In Figure 10, it could be found that
with the increase of internal flow velocity, the unstable regions move towards the bottom
right. It can be informed that when the internal flow velocity increases, the risers are more
easily to be parametrically unstable, and the minimal dynamic tension that could induce
the parametric instability would decrease accordingly. Besides, it can also be spotted that
the movement of the unstable borderline is accelerating with the increase of internal flow
velocity. The acceleration phenomenon is due to the coefficient µ4, which is proportional to
U2. Thus, the influence of the internal flow velocity on the riser’s parametric instability is
small at a low-frequency range where U is less than 2 m/s, while its influence would reach
a considerable extent otherwise.

4.4. Instability of Risers with Different Wet-Weight Coefficients

According to the governing equation Equation (29), the terms αjqj, µ1Pijqi, and µ2Qijqi,
which are relative to the unit wet weight, are considered. Thus, the influences of wet weight
on risers’ parametric instability are unavoidable. Since the unit wet weight can be adjusted
by changing the size of buoyancy tanks distributed along with the risers, a dimensionless
coefficient kmw is used in our research to control the unit wet weight. In this section, a
series of parametric vibration examples is set up focusing on the riser defined in Table 2
with damping ζ = 0.1 and internal flow velocity U = 2 m/s, and the time-domain vibrating
solution is calculated through the DQM. After that, the parametric instability charts of the
aforementioned model are obtained and depicted in Figure 11.
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Figure 11. Parametric instability charts of risers with different wet-weight coefficients.

With the solutions shown in Figure 11, it can be easily inferred that when the wet-
weight coefficient increases, the instability region of the riser’s parametric vibration moves
towards the bottom right. Thus, it can be concluded that the increase of wet-weight
coefficients will decrease the minimum dynamic tensions S, which means the parametric
resonance will occur more easily. In addition, it can be inferred that longer excitation
periods are needed to induce the risers’ parametric resonance for models with larger wet-
weight coefficients. Being different from the acceleration phenomenon of the influence of
the internal flow velocity, the alteration of the unstable region is uniform with the increase
of the wet-weight coefficient. This is because the coefficients αj, µ1 and, µ2 are linearly
related to wet weight mw, while the U-dependent coefficient µ4 is quadratically related to
the internal flow velocity.

5. Dynamic Responses of Risers’ Parametric Vibration
5.1. The Dynamic Response of Different Excitation Periods

In this section, the responses of different cases are considered. Firstly, we discuss
the responses of a riser with wet-weight coefficient kmw = 0.3 subjecting to parametric
excitations of different periods, and the detailed parameters for these cases are listed in
Table 3.

Table 3. Detailed parameters of different cases.

Parameter Case I(d) Case II(d) Case III(d) Case IV(d) Case V(d) Case VI(d)

ζ 0.1
U 2 m/s

kmw 0.3
S 1.5 × 106 N
P 6.5 s 6.7 s 6.9 s 7.1 s 7.3 s 7.5 s

According to the instability chart shown in Figure 12, which is excerpted from
Figure 11, the Cases I(d)–III(d) are located at the stable region of the riser with kmw = 0.3 (the
cyan instability borderline), while the Cases IV(d)–VI(d) are located at the unstable region.
Additionally, the response solutions of the first four modes of these cases are presented in
Figure 13.
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According to the response solutions shown in Figure 13, it can be informed that the
solutions of Cases I(d)–III(d) are convergent while the responses of the other cases are
divergent with respect to time. For the unstable cases (i.e., Cases IV(d)–VI(d)), the time-
domain weight function of the second order q2 fluctuates with a growing amplitude, while
the fluctuating amplitudes of other modes are decreasing at the beginning and start to
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increase starting at a certain time. It also can be observed that the divergent speed of the
second mode is much faster than other modes as it is shown that the vibrating amplitude
of Case VI(d) at t = 300 s of the second reaches 0.05 m, while the vibrating amplitude at
t = 300 s of other modes is no more than 0.005 m. This is because Cases IV(d)–VI(d) lie
in the second order parametric unstable region. Thus, the instability of the second mode
is stimulated by the parametric excitation initially. Whereafter, as the existence of the
coupling effect between different modes, the vibration of other modes begins to diverge
with the growth of the vibrating amplitude of the second mode. In Figure 13, we draw two
transversal lines at t = t1 and t = t2. Observing the time-domain responses between t1 and
t2, it can be informed that there is only one waveform between these two time-points in
the solution of the first order, while there are three waveforms in the third order and four
waveforms in the fourth order, regardless of the change of excitation period. This is because
for the first, third and fourth modes, the free vibration takes a major part of the responses at
the beginning before the coupling effect induced by the parametric resonance of the second
mode takes effect. When observing the responses in the amplitude-increasing phase, it can
be found that there exist slight phase differences between different cases, and these phase
differences can be spotted with their accumulation with the increase of time. Moreover,
when observing the responses between t = t3 and t = t4, it can be seen that there is only one
waveform for Case VI, regardless of which mode it is. The cause of these phenomena is
that the free vibrations die down with the passing of time and the coupling effect induced
by the second-order parametric resonance, whose period is related to the excitation period,
gradually takes the major part. Thus, the response solutions of different modes vibrate
with the same period as the second-order parametric resonance.

5.2. The Dynamic Response of Different Wet-Weight Coefficients

To study the influence of wet weight on risers’ parametric vibration responses, we set
a series of cases with different wet-weight coefficients, as listed in Table 4. The response
solutions of these cases are solved with DQM and presented in Figure 14.

Table 4. Detailed parameters of different cases.

Parameter Case III(a) Case III(b) Case III(c) Case III(d) Case III(e) Case III(f)

ζ 0.1
U 2 m/s

kmw 0.0 0.1 0.2 0.3 0.4 0.5
S 1.5 × 106 N
P 6.9 s

In Figure 14, the responses of the first four orders of the six cases listed in Table 4 are
illustrated. According to the response solution of the second order q2, it can be assumed that
the vibrating amplitude of the second order responses of Cases III(a)–III(b) are increasing
with the time, and those of Case III(c) are keeping stable, while those of Cases III(d)–III(f)
are decreasing. The convergences of these six cases are consistent with the prediction of
the instability chart Figure 12, that the mark of Case III lies in the unstable region of the
instability regions of kmw = 0.0 and 0.1, and on the edge of the instability region of kmw = 0.2,
but out of the instability regions of kmw = 0.3, 0.4, and 0.5.

For the first, third, and fourth orders of the modes, the response amplitudes decrease
initially. Due to the coupling effect between modes, the divergence of the second-order
excites the first and third mode to vibrate divergently from a certain time. At the decreasing
phase of the responses where time t is between t1 and t2, the vibrating period is altered in
accordance with the wet-weight coefficient. For a bigger wet-weight coefficient, the free
vibrating period increases. However, for the time between t3 and t4, the free vibrations die
down, and the parametric resonance takes the main part of the responses. At this phase, the
vibrating periods of different modes reach an agreement. Additionally, these phenomena
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can tell that the alteration of the wet-weight coefficients will change the period of free
vibration but have little effect on the period of parametric vibration.
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6. Conclusions

In the current work, the parametrical vibration problem of risers has been considered.
The governing equation of parametrically excited risers is deduced. Moreover, the DQM
is applied to Galerkin’s reduced form of this equation to study the parametric vibration
problem of the risers. By testing this solution scheme in two simple equations, the accuracy
of the DQM method is evaluated. With the good consistency between the DQM and the
R–K for the Mathieu equation, the competency of the DQM in risers’ parametric vibration
problem has been verified.

According to the numerical experiments on risers with different parameters, some
important conclusions can be drawn as follows:
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• The instability charts are given by both DQM fitting well and with the borderlines
given by the Floquet theory.

• Increasing damping can control the parametric resonance from occurring.
• The increase of internal flow velocity and the wet-weight coefficients will deteriorate

the parametric instability of the riser. Additionally, the influences of internal flow
velocity on risers’ parametric instability are nonlinear, while the those of wet weight
are linear.

• According to the response solutions, the existence of the coupling term will give a
chance to the parametrically unstable modes to excite other modes to vibrate unstably.

• The alteration of the parametric excitation period will not change the period of
free vibration, while the excitation period will have an effect on the parametrically
vibrating period.

• The alteration of the wet-weight coefficients will change the period of free vibration
but have little effect on the period of parametric vibration.

Although some results can be obtained as referred above, there are still some limita-
tions in the current study. Firstly, as the node distribution for the current solution scheme
is nonuniform, it is to make the frequency domain analysis for the solutions. Secondly,
since the block marching technique calculates the solution block by block, the error of this
solution scheme would accumulate block by block. Thus, further study could be added to
slow down the error accumulation.
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