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Abstract: We analyze a Dirichlet (p(x), µq(x))-Laplace problem. For a gradient dependent non-
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Keywords: Lebesgue and Sobolev spaces with variable exponents; parametric problems; gradient
dependent term; Nemitsky map; pseudomonotone operator.

MSC: 35J60; 35J92

1. Introduction

We study a inhomogeneous equation with Dirichlet boundary condition of the form

− ∆p(x)u(x)− µ∆q(x)u(x) = f (x, u(x),∇u(x)) in Ω, u
∣∣
∂Ω = 0, (1)

on a bounded domain Ω ⊆ RN , with smooth boundary ∂Ω. On the left-hand side, we
find the sum of two m(x)-Laplace differential operators with m ∈ C(Ω), whose combined
effects are related to the values of a non-negative real number µ. In details, we recall that
the notation ∆m(x) corresponds to the following largely investigated operator

∆m(x)u = div(|∇u|m(x)−2∇u) for all u ∈W1,m(x)
0 (Ω),

where
1 < m− := min

x∈Ω
m(x) ≤ m(x) ≤ m+ := max

x∈Ω
m(x) < +∞.

The m(x)-Laplace equation −∆m(x)u = f arises naturally in the analysis of nonlinear
phenomena of physical interest, as in the study of rheological fluids and elasticity of
materials. For pure mathematicians, the interest for this equation originates from the
(Dirichlet) variational integral

I(u) =
∫

Ω
|∇u(x)|m(x)dx, 1 < m(x) < +∞.

Indeed, this variational integral is related to the total energy of the equation and its
manipulation leads to the proper definition of a weak solution to the same equation. This is
done according to John Ball’s total energy theorem, and a clear introduction to these argu-
ments is the monography of Lindqvist [1]. Turning to the right-hand side of Equation (1),
we find a gradient-dependent function, whose regularity and growth conditions will be
given in Section 2 (see assumptions A1, A2) and in Section 5 (see assumptions A3, A4, A5).
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We point out that the presence of the gradient-dependence is crucial in the choice of a
working strategy, as it inhibits the use of variational methods. Consequently, we establish
our results by using the properties of pseudomonotone operators.

Briefly, we give some comments over the existing literature. A special form of the m-Laplace
equation in the case m(x) = m = constant was given attention by de Figueiredo–Girardi–
Matzeu [2], Fragnelli–Papageorgiou–Mugnai [3] and Ruiz [4]. These papers deal respectively
with mountain-pass techniques [2], the Leray–Schauder alternative principle [3], the blow-up
argument and a Liouville-type theorem to obtain a priori estimates [4].

Later, Equation −∆p(x)u − ∆q(x)u = f (x, u,∇u) was studied by Faria–Miyagaki–
Motreanu [5] and Papageorgiou–Vetro–Vetro [6] (special case with both p and q constant
exponents), Liu–Papageorgiou [7] (where f is also resonant) and Gasiński–Winkert [8]
(double phase operator). These papers use respectively a comparison principle together
with an approximation reasoning [5], Leray–Schauder principle and method of freezing
variables [7], and surjectivity results of suitable operators [8].

A feature of Equation (1) is the presence of a parameter µ acting on the q(x)-Laplace
differential operator. In the case µ = 0, (1) reduces to the p(x)-Laplace equation, as it
is given in Wang–Hou–Ge [9] (existence and uniqueness of weak solution). Similarly,
Vetro [10] deals with the case µ = 0, but in the presence of a Kirchhoff term weighting the
p(x)-Laplace differential operator (both degenerate and non-degenerate Kirchhoff type
problems are considered). Dealing with the case µ 6= 0, we will analyze the asymptotic
behavior of weak solutions to (1). The results are obtained working in the context of the
variable exponent Lebesgue space Lm(x)(Ω) and the variable exponent Sobolev spaces
W1,m(x)(Ω), W1,m(x)

0 (Ω) (where W1,p(x)
0 (Ω) is the W1,p(x)-norm closure of C∞

0 (Ω)). The
required notions and notation are given in Section 2, but the readers can consult the books
by Diening–Harjulehto–Hästö–Rŭzĭcka [11] and by Rădulescu–Repovš [12], for details. A
discussion about the uniqueness of weak solution will conclude the work herein, using
certain additional assumptions on the nonlinearity. For additional problems involving
different p(x)-Laplace type differential operators, we suggest the works by Ekincioglu and
co-workers [13–17]. Finally, we mention the recent work by Bahrouni-Repovš [18] dealing
with the existence and the nonexistence of solutions for a new class of p(x)-curl systems
arising in electromagnetism.

2. Functional Framework

We give some notions involving a reflexive Banach space (X, ‖ · ‖) with topologi-
cal dual X∗. By 〈·, ·〉, we mean the duality brackets of (X∗, X). According to Gasiński–
Papageorgiou [19], we recall the following concept and lemmas of a generalized pseu-
domonotone operator.

Definition 1. For a generalized pseudomonotone operator, we mean an operator T : X → X∗ such
that, for every {xn}n∈N ⊆ X, with

xn
w−→ x in X, for some x ∈ X,

T(xn)
w−→ x∗ in X∗, for some x∗ ∈ X∗,

lim sup
n→+∞

〈T(xn), xn − x〉 ≤ 0,

we obtain

x∗ = T(x),

〈T(xn), xn〉 → 〈T(x), x〉.

Lemma 1. Each bounded generalized pseudomonotone operator T : X → X∗ is also pseudomonotone.
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We recall that an operator T : X → X∗ is strongly coercive if
〈T(u), u〉
‖u‖ goes to +∞, as

‖u‖ goes to +∞ too. This property leads to the following surjectivity lemma.

Lemma 2. Each pseudomonotone, bounded and strongly coercive operator T : X → X∗ is
surjective (hence range(T) = X∗).

We also recall the following Lemma 2.2.27, p. 141, of Gasiński–Papageorgiou [19].

Lemma 3. Given two Banach spaces X and Y with X ⊆ Y, we have that:

(a) if the embedding is continuous and X is dense in Y, then the embedding Y∗ ⊆ X∗ is continu-
ous;

(b) in addition to (a), if X is reflexive, then Y∗ is dense in X∗.

Now, we focus on the Lebesgue space Lm(x)(Ω) and the Sobolev space W1,m(x)(Ω),
where the study of Equation (1) will be developed. Precisely, we consider

Lm(x)(Ω) =

{
u : Ω→ R such that u is measurable with

∫
Ω
|u(x)|m(x)dx < +∞

}
,

with norm

‖u‖Lm(x)(Ω) := inf
{

λ > 0 :
∫

Ω

∣∣∣ u
λ

∣∣∣m(x)
dx ≤ 1

}
,

and
W1,m(x)(Ω) := {u ∈ Lm(x)(Ω) : |∇u| ∈ Lm(x)(Ω)},

with norm
‖u‖W1,m(x)(Ω) = ‖u‖Lm(x)(Ω) + ‖∇u‖Lm(x)(Ω)

(recall ‖∇u‖Lm(x)(Ω) = ‖|∇u|‖Lm(x)(Ω)).

About these norms, from [11], we know that

‖u‖Lm(x)(Ω) ≤ c1‖∇u‖Lm(x)(Ω) for all u ∈W1,m(x)
0 (Ω), some c1 > 0.

This means that there is equivalence between ‖u‖W1,m(x)(Ω) and ‖∇u ‖Lm(x)(Ω) on

W1,m(x)
0 (Ω). Consequently, ‖∇u‖Lm(x)(Ω) can be used in place of ‖u‖W1,m(x)(Ω), and ‖u‖ =

‖∇u‖Lm(x)(Ω) in W1,m(x)
0 (Ω).

Let Lm′(x)(Ω) denote the conjugate space of Lm(x)(Ω), where
1

m(x)
+

1
m′(x)

= 1. For

any u ∈ Lm(x)(Ω) and v ∈ Lm′(x)(Ω), the Hölder type inequality∫
Ω

uvdx ≤ 2‖u‖Lm(x)(Ω)‖v‖Lm′(x)(Ω)

holds true.
Fan–Zhao [20] gives us that Lm(x)(Ω), W1,m(x)(Ω) and W1,m(x)

0 (Ω), equipped with
these norms, are separable, reflexive, and uniformly convex Banach spaces. In the same pa-
per [20], some Sobolev embedding results are given. We recall them in the following lemma.

Lemma 4. Let m1, m2 ∈ C(Ω) be such that m1(x), m2(x) > 1 for all x ∈ Ω. Then, we have:

(a) W1,m1(x)
0 (Ω) ↪→ Lm2(x)(Ω) is compact, provided that m2(x) < m∗1(x) for all x ∈ Ω, where

m∗1(x) = Nm1(x)
N−m1(x) if m1(x) < N or m∗1(x) = +∞ if m1(x) ≥ N;

(b) Lm1(z)(Ω) ↪→ Lm2(x)(Ω) is continuous, provided that m2(x) ≤ m1(x) for all x ∈ Ω;
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(c) W1,m1(x)
0 (Ω) ↪→Wm2(x)

0 (Ω) is continuous, provided that m2(x) ≤ m1(x) for all x ∈ Ω

Another significant result for our analysis is the following theorem of [20].

Theorem 1. Let u ∈ Lm(x)(Ω) and ρm(u) :=
∫

Ω |u(x)|m(x)dx. Then, the following rela-
tions hold:

(a) ‖u‖Lm(x)(Ω) < 1 (= 1, > 1)⇔ ρm(u) < 1 (= 1, > 1);

(b) if ‖u‖Lm(x)(Ω) > 1, then ‖u‖m−
Lm(x)(Ω)

≤ ρm(u) ≤ ‖u‖m+

Lm(x)(Ω)
;

(c) if ‖u‖Lm(x)(Ω) < 1, then ‖u‖m+

Lr(x)(Ω)
≤ ρm(u) ≤ ‖u‖m−

Lm(x)(Ω)
.

Remark 1. The inequalities in Theorem 1 can be used to obtain some a priori estimates. For further
use, starting from

‖u‖m−
Lm(x)(Ω) − 1 ≤ ρm(x)(u) ≤ ‖u‖m+

Lm(x)(Ω) + 1, (2)

we can deduce that, if u ∈ Lm(x)(Ω), then |u|m(x)−1 ∈ Lm′(x)(Ω) and

‖|u|m(x)−1‖Lm′(x)(Ω)
≤ 2 + ‖u‖m+

Lm(x)(Ω)
. (3)

Precisely, we observe that

‖|u|m(x)−1‖(m
′)−

Lm′(x)(Ω)
≤ 1 +

∫
Ω
(|u|m(x)−1)

m(x)
m(x)−1 dx (by (2))

= 1 +
∫

Ω
|u|m(x)dx

≤ 1 + 1 + ‖u‖m+

Lm(x)(Ω)
,

which establishes (3). Following a similar argument, one can derive the inequality

‖|∇u|
p(x)
α′(x) ‖Lα′(x)(Ω)

≤ 2 + ‖∇u‖p+

Lp(x)(Ω)
, α ∈ C(Ω) with α(x) > 1 for all x ∈ Ω. (4)

We will work with the integral operator

〈Tm(u), h〉 =
∫

Ω
|∇u|m(x)−2(∇u,∇h)RN dx for all u, h ∈W1,m(x)

0 (Ω),

with range(Tm) = W−1,m′(x)(Ω) = W1,m(x)(Ω)∗ and possessing the following features:

(i) boundedness, that is, Tm maps bounded sets to bounded sets;
(ii) continuity;
(iii) monotonicity, and hence maximal monotonicity;

(iv) (S)+-property, that is, if un
w−→ u in W1,m(x)

0 (Ω) and lim sup
n→+∞

〈Tm(un), un − u〉 ≤ 0, then

un → u in W1,m(x)
0 (Ω).

Since we know that there is absence of homogeneity in Tm, we will impose the follow-
ing assumptions for the exponents:

Let α ∈ C(Ω) be such that

1 < q(x) ≤ min
x∈Ω

α(x) ≤ max
x∈Ω

α(x) ≤ p(x) for all x ∈ Ω, (5)

and
max
x∈Ω

q(x) = q+ < p− = min
x∈Ω

p(x). (6)
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Therefore, the inequality (5) leads to

λ1 := inf
u∈W1,p(x)

0 (Ω)\{0}

∫
Ω(|∇u|p(x) + |∇u|q(x))dx∫

Ω |u|α(x)dx
> 0. (7)

Observe that, for any x ∈ Ω, we have p(x) ≥ α+ ≥ α(x) ≥ α− ≥ q(x). Thus, we
deduce that, for all u ∈W1,p(x)

0 (Ω), the following inequalities hold

|∇u(x)|α+ + |∇u(x)|α− ≤ 2(|∇u(x)|p(x) + |∇u(x)|q(x)),

and
|u(x)|α(x) ≤ |u(x)|α+ + |u(x)|α− .

Integrating the above inequalities, we find∫
Ω
(|∇u|α+ + |∇u|α−)dx ≤ 2

∫
Ω
(|∇u|p(x) + |∇u|q(x))dx (8)

for all u ∈W1,p(x)
0 (Ω), and∫

Ω
|u|α(x)dx ≤

∫
Ω
(|u|α+ + |u|α−)dx for all u ∈W1,p(x)

0 (Ω). (9)

By Sobolev embeddings, there exist positive constants Cα+ and Cα− such that

Cα+

∫
Ω
|u|α+dx ≤

∫
Ω
|∇u|α+dx for all u ∈W1,α+

0 (Ω), (10)

and
Cα−

∫
Ω
|u|α−dx ≤

∫
Ω
|∇u|α−dx for all u ∈W1,α−

0 (Ω). (11)

Using again the fact that α− ≤ α+ ≤ p(x) for any x ∈ Ω, we deduce that W1,p(x)
0 (Ω)

is continuously embedded in W1,α+
0 (Ω) and in W1,α−

0 (Ω). Thus, inequalities (10) and (11)

hold true for any u ∈W1,p(x)
0 (Ω). Using inequalities (9)–(11), it is clear that there exists a

positive constant λ such that

λ
∫

Ω
|u|α(x)dx ≤

∫
Ω
(|∇u|α+ + |∇u|α−)dx for all u ∈W1,p(x)

0 (Ω). (12)

Next, inequalities (8) and (12) yield

λ
∫

Ω
|u|α(x)dx ≤ 2

∫
Ω
(|∇u|p(x) + |∇u|q(x))dx for all u ∈W1,p(x)

0 (Ω).

This establishes (7).

Before stating the assumptions on the nonlinearity, we recall that a function f : Ω×
R×RN → R is said to be “Carathéodory” provided that:

(i) for all (z, y) ∈ R×RN , x → f (x, z, y) is measurable;
(ii) for almost all x ∈ Ω, (z, y)→ f (x, z, y) is continuous.

Therefore, f is jointly measurable (see Hu-Papageorgiou [21], p. 142). We impose the
following assumptions on the Carathéodory function f : Ω×R×RN → R:

A1 : there exist σ ∈ Lα′(x)(Ω), α ∈ C(Ω) satisfying (5) and c > 0 such that

| f (x, z, y)| ≤ c(σ(x) + |z|α(x)−1 + |y|
p(x)
α′(x) ) for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN ;
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A2 : there exist a0 ∈ L1(Ω) and b1, b2 ≥ 0 with b1λ−1
1 + b2 < 1 such that

f (x, z, y)z ≤ a0(x) + b1|z|α(x) + b2|y|p(x) for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN .

We note that the interest for equations subject to m(x)-growth conditions (and hence
the significance of assumptions as A1 and A2) is supported by their applications. For in-
stance, there are fluids that start flowing only after a certain threshold/strength is overcome,
but the same fluids freeze as soon as the forcing factor leaves (that is, the typical behavior
of certain oil paints (Bingham fluids)). The study of these phenomena requires variable
exponents spaces and variable exponents growth conditions (see again [11,12]).

Example 1. A nonlinearity satisfying the assumptions A1 and A2 is obtained combining two
power terms in the form

f (x, z, y) = −b1|z|α(x)−2z + b2|y|
p(x)
α′(x) for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN .

Here, b1, b2 ≥ 0 satisfy the inequality (b1 +
b2
α− )λ

−1
1 + b2

(α′)− ) < 1.
To check A1 and A2, we recall that both

| f (x, z, y)| = | − b1|z|α(x)−2z + b2|y|
p(x)
α′(x) |

≤ b1|z|α(x)−1 + b2|y|
p(x)
α′(x) ,

and

f (x, z, y)z = [−b1|z|α(x)−2z + b2|y|
p(x)
α′(x) ]z

≤ b1|z|α(x) + b2|y|
p(x)
α′(x) |z|

≤ (b1 +
b2

α−
)|z|α(x) +

b2

(α′)−
|y|p(x),

hold for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN .

3. Existence and Asymptotic Results

Before establishing the existence of a weak solution to (1), we define the Nemitsky
map N∗f : W1,p(x)

0 (Ω) ⊂ Lα(x)(Ω)→ Lα′(x)(Ω) associated with the nonlinearity. Precisely,
we have

N∗f (u)(·) = f (·, u(·),∇u(·)) for all u ∈W1,p(x)
0 (Ω).

Such map possesses some regularities. Indeed, referring to the work of Galewski [22],
A1 ensures the boundedness and continuity of N∗f (·).

With respect to the embedding i∗ : Lα′(x)(Ω)→W−1,p′(x)(Ω), we deduce by Lemma 3
that i∗ is continuous. This fact leads to the boundedness and continuity of the operator
N f : W1,p(x)

0 (Ω)→W−1,p′(x)(Ω) given as N f = i∗ ◦ N∗f .
Now, we say in which sense the solutions to (1) are considered here. By Lemma 4, a

solution will be sought in the variable exponent space W1,p(x)
0 (Ω). Precisely, u ∈W1,p(x)

0 (Ω)
is a weak solution of Equation (1) if

〈Tp(u), h〉+ µ〈Tq(u), h〉 =
∫

Ω
f (x, u,∇u)hdx for all h ∈W1,p(x)

0 (Ω). (13)

These notions will be used to construct the following result, along with the theory of
pseudomonotone operators.
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Theorem 2. Assume that A1, A2 and (6) are satisfied, then Equation (1) has at least one weak
solution for all µ ≥ 0.

Proof. Let µ ≥ 0 be fixed. We consider the operator T : W1,p(x)
0 (Ω) → W−1,p′(x)(Ω)

given as
T(u) = Tp(u) + µTq(u)− N f (u) for all u ∈W1,p(x)

0 (Ω).

This operator possesses some regularities. Indeed, boundedness and continuity can be
deduced easily by definition. Thus, we focus on the pseudo-monotonicity of T(·). We observe
that T(·) is everywhere defined and bounded, and hence, with respect to ([19], Proposition
3.2.49), we remain to prove that T(·) is generalized pseudomonotone. Thus, we assume it
satisfies the hypotheses un

w−→ u in W1,p(x)
0 (Ω), T(un)

w−→ u∗ in W−1,p′(x)(Ω) and

lim sup
n→+∞

〈T(un), un − u〉 ≤ 0. (14)

From (14), we have

lim sup
n→+∞

[〈Tp(un), un − u〉+ µ〈Tq(un), un − u〉 −
∫

Ω
f (x, un,∇un)(un − u)dx] ≤ 0. (15)

Now, assumption A1 leads to the following estimate∣∣∣∣∫Ω
f (x, un,∇un)(un − u)dx

∣∣∣∣ ≤ c
∫

Ω
[|σ(x)|+ |un|α(x)−1 + |∇un|

p(x)
α′(x) ] |un − u|dx

≤ 2c‖un − u‖Lα(x)(Ω)

[
‖σ‖Lα′(x)(Ω)

+
∥∥∥|un|α(x)−1

∥∥∥
Lα′(x)

+

∥∥∥∥|∇un|
p(x)
α′(x)

∥∥∥∥
Lα′(x)(Ω)

]
(by Hölder inequality)

≤ 2c‖un − u‖Lα(x)(Ω)

[
‖σ‖Lα′(x)(Ω)

+ 2 + ‖un‖α+

Lα(x)(Ω)
+ 2 + ‖∇un‖p+

p(x)

]
(16)

(by (3) and (4)).

The importance of this estimate lays in the fact that, along with the boundedness of
{un}n∈N in W1,p(x)

0 (Ω) and the convergence un → u in Lα(x)(Ω), we obtain∫
Ω

f (x, un,∇un)(un − u)dx → 0 as n→ +∞.

On the other side, (15) leads to

lim sup
n→+∞

[
〈Tp(un), un − u〉+ µ〈Tq(un), un − u〉

]
≤ 0,

⇒ lim sup
n→+∞

[
〈Tp(un), un − u〉+ µ〈Tq(u), un − u〉

]
≤ 0,

(recall the monotonicity of Tq(·)),
⇒ lim sup

n→+∞
〈Tp(un), un − u〉 ≤ 0,

⇒ un → u in W1,p(x)
0 (Ω) (use the (S)+-property of Tp(·)).

Now, un → u in W1,p(x)
0 (Ω), together with the fact that T(·) is continuous, give us

u∗ = T(u), 〈T(un), un〉 → 〈T(u), u〉.

The proof of general pseudo-monotonicity of T(·) is completed, and hence also the
pseudo-monotonicity of T(·) is established.
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Next, we show the strong coercivity of T(·), using assumption A2. Precisely, we have

〈T(u), u〉 =
∫

Ω
|∇u|p(x)dx + µ

∫
Ω
|∇u|q(x)dx−

∫
Ω

f (x, u,∇u)udx

≥
∫

Ω
|∇u|p(x)dx + µ

∫
Ω
|∇u|q(x)dx−

∫
Ω
|a0(x)|dx− b1

∫
Ω
|u|α(x)dx

− b2

∫
Ω
|∇u|p(x)dx (see assumption A2)

≥
∫

Ω
|∇u|p(x)dx + µ

∫
Ω
|∇u|q(x)dx− b1λ−1

1

( ∫
Ω
|∇u|p(x)dx +

∫
Ω
|∇u|q(x)dx

)
− b2

∫
Ω
|∇u|p(x)dx− ‖a0‖L1(Ω)

= (1− b1λ−1
1 − b2)

∫
Ω
|∇u|p(x)dx + (µ− b1λ−1

1 )
∫

Ω
|∇u|q(x)dx− ‖a0‖L1(Ω),

⇒ 〈T(u), u〉 ≥ (1− b1λ−1
1 − b2)(‖u‖p− − 1) + (µ− b1λ−1

1 )g(‖∇u‖)− ‖a0‖L1(Ω)

(by (2)),

where
g(‖∇u‖) = ‖∇u‖q−

Lq(x)(Ω)
− 1 if µ− b1λ−1

1 > 0,

and
g(‖∇u‖) = ‖∇u‖q+

Lq(x)(Ω)
+ 1 if µ− b1λ−1

1 < 0.

As q+ < p− by (6), we deduce the strong coercivity of T(·).
By Lemma 2, every pseudomonotone strongly coercive operator is surjective. Conse-

quently, there exists û ∈W1,p(x)
0 (Ω) such that T(û) = 0. We conclude that Equation (1) has

at least one weak solution for all µ ≥ 0.

Next, we will analyze the asymptotic behavior of weak solutions to (1). We indicate
some of the notations used throughout this section. Let

Sµ = set of solutions to Equation (1), fixed µ ≥ 0,

S = ∪µ≥0 Sµ = set of solutions to Equation (1).

We observe that these two sets are bounded in W1,p(x)
0 (Ω). We give the proof in the

following lemma.

Lemma 5. Assume that A1, A2, and (6) are satisfied, then Sµ is a bounded set in W1,p(x)
0 (Ω) for

all µ ≥ 0. Moreover, S = ∪µ≥0 Sµ is also bounded in W1,p(x)
0 (Ω).

Proof. We first establish the boundedness of Sµ in W1,p(x)
0 (Ω) for a fixed µ ≥ 0. Thus,

without loss of generality, we consider a solution to (1), namely u ∈W1,p(x)
0 (Ω), such that

‖u‖ > 1. From the definition of weak solution (see (13)), choosing the test function h = u,
we deduce that



Mathematics 2022, 10, 1336 9 of 15

∫
Ω
|∇u|p(x)dx ≤ 〈Tp(u), u〉+ µ〈Tq(u), u〉

=
∫

Ω
f (x, u,∇u)udx

≤
∫

Ω
(a0(x) + b1|u|α(x) + b2|∇u|p(x))dx (see assumption A2)

≤ ‖a0‖L1(Ω) + b1λ−1
1

( ∫
Ω
|∇u|p(x)dx +

∫
Ω
|∇u|q(x)dx

)
+ b2

∫
Ω
|∇u|p(x)dx

⇒
∫

Ω
|∇u|p(x)dx ≤

‖a0‖L1(Ω) + b1λ−1
1

∫
Ω |∇u|q(x)dx

1− b1λ−1
1 − b2

,

⇒ ‖∇u‖p−

Lp(x)(Ω)
≤
‖a0‖L1(Ω) + b1λ−1

1 (‖∇u‖q+

Lq(x)(Ω)
+ 1)

1− b1λ−1
1 − b2

+ 1 (by (2)). (17)

Since q+ < p− by (6) and the continuity of Lp(x)(Ω) ↪→ Lq(x)(Ω), we conclude that Sµ

is bounded in W1,p(x)
0 (Ω).

We remain to prove that S = ∪µ≥0Sµ is bounded in W1,p(x)
0 (Ω) too. Observe that (17)

is independent from µ, and hence holds for each u ∈ S . Consequently, S is bounded in
W1,p(x)

0 (Ω).

Before stating our next lemma, we remark that, throughout this paper, given a sequence
{un}n∈N, we denote every relabeled subsequence again with {un}n∈N.

The first lemma concerns the behavior of (1) in the case µ→ 0+.

Lemma 6. Assume that A1, A2 and (6) are satisfied. Given a sequence of parameters {µn}n∈N
converging to 0+, and a sequence {un}n∈N of solutions to Equation (1) such that un ∈ Sµn for all

n ∈ N, then there is a relabeled subsequence of {un}n∈N such that un → u in W1,p(x)
0 (Ω) with

u ∈W1,p(x)
0 (Ω) solution to (1).

Proof. Let un ∈ Sµn for all n ∈ N. The proof of the boundedness of S = ∪µSµ in W1,p(x)
0 (Ω)

in Lemma 5 gives us that {un}n∈N is bounded in W1,p(x)
0 (Ω). Thus, we can find a relabeled

subsequence of {un}n∈N such that un
w−→ u in W1,p(x)

0 (Ω) and un → u in Lα(x)(Ω), for some

u ∈W1,p(x)
0 (Ω). By (16), we derive that∫

Ω
f (x, un,∇un)(un − u)dx → 0 as n→ +∞,

whenever un → u in Lα(x)(Ω) (by assumption A1). From un ∈ Sµn for all n ∈ N, we obtain

〈Tp(un), h〉+ µn〈Tq(un), h〉 =
∫

Ω
f (x, un,∇un)hdx for all h ∈W1,p(x)

0 (Ω). (18)

Putting h = un − u ∈W1,p(x)
0 (Ω) in (18), we have

〈Tp(un), un − u〉+ µn〈Tq(un), un − u〉 =
∫

Ω
f (x, un,∇un)(un − u)dx (19)

for all n ∈ N. Taking the limit as n→ +∞ in (19), since µn → 0+, we deduce that

lim
n→+∞

〈Tp(un), un − u〉 = 0,

⇒ un → u in W1,p(x)
0 (Ω) (by (S)+-property of Tp).
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Assumption A1 ensures that N f : W1,p(x)
0 (Ω)→W−1,p′(x)(Ω) defined by N f = i∗ ◦N∗f

is bounded and continuous. It follows that

〈N f (un), h〉 → 〈N f (u), h〉 in W−1,p′(x)(Ω).

Moreover, 〈Tp(un), h〉 → 〈Tp(u), h〉 in W1,−p′(x)(Ω) and 〈Tq(un), h〉 is bounded. Com-
bining these informations and passing to the limit in (18) for n→ +∞, we obtain that u ∈
W1,p(x)

0 (Ω) is a weak solution of Equation (1) in the case µ = 0. Formally, u ∈W1,p(x)
0 (Ω)

is a weak solution of the p(x)-Laplace equation

−∆p(x)u(x) = f (x, u(x),∇u(x))

subject to the Dirichlet boundary condition u
∣∣
∂Ω = 0.

In a similar fashion, the following lemma deals with the case µ→ +∞.

Lemma 7. Assume that A1, A2 and (6) are satisfied. Given a sequence {µn}n∈N of parameters
diverging to +∞, then every {un}n∈N such that un ∈ Sµn for all n ∈ N converges to zero in

W1,q(x)
0 (Ω).

Proof. Following the proof of Lemma 6 and using Lemma 5, {un}n∈N bounded in W1,p(x)
0 (Ω)

ensures that we can find a relabeled subsequence of {un}n∈N such that un
w−→ u in W1,p(x)

0 (Ω),

for certain u ∈ W1,p(x)
0 (Ω). Since µn → +∞ here, the Equation (18) remains well posed,

dividing both its members by µn, that is,

1
µn
〈Tp(un), h〉+ 〈Tq(un), h〉 = 1

µn

∫
Ω

f (x, un,∇un)hdx for all h ∈W1,p(x)
0 (Ω). (20)

Clearly, the asymptotic behavior of (20) can be established on the similar lines as in
the proof of Lemma 6. Indeed, interchanging Tp(·) with Tq(·), we obtain easily that un → u

in W1,q(x)
0 (Ω). Note that the limit of the right-hand side in (20) as n→ +∞ is equal to zero.

Thus, for n→ +∞, (20) reduces to the q(x)-Laplace equation

−∆q(x)u(x) = 0,

which gives us the solution u = 0. Since this result does not depend on the choice of the
subsequence of {un}n∈N, we conclude that, for the whole sequence, we have un → 0.

4. Compactness Results

In this section, we discuss compactness (hence closedness), of Sµ and S . The starting

point is the boundedness of Sµ and S in W1,p(x)
0 (Ω), given in Lemma 5.

Proposition 1. Assume that A1, A2 and (6) are satisfied, then Sµ is compact in W1,p(x)
0 (Ω) for

all µ ≥ 0.

Proof. Consider u ∈ Sµ \ Sµ for some µ ≥ 0 fixed. This means that we can find {un}n∈N ⊂
Sµ such that un → u. We give the proof in two steps.

Claim 1: We show that Sµ is closed for all parameter values 0 ≤ µ < +∞.
In a similar fashion as in the proof of Lemma 6 (recall (18)), un ∈ Sµ for all n ∈ N

means that

〈Tp(un), h〉+ µ〈Tq(un), h〉 =
∫

Ω
f (x, un,∇un)hdx for all h ∈W1,p(x)

0 (Ω). (21)
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If we take the limit in (21) for n→ +∞, we obtain that

〈Tp(u), h〉+ µ〈Tq(u), h〉 =
∫

Ω
f (x, u,∇u)hdx for all h ∈W1,p(x)

0 (Ω).

This implies that u ∈ Sµ, and hence Sµ is closed in W1,p(x)
0 (Ω). This concludes the proof of

Claim 1.

Claim 2: We show that every {un}n∈N ⊂ Sµ has a convergent subsequence to certain
u ∈ Sµ.

From Lemma 5, we know that every sequence {un}n∈N ⊂ Sµ is bounded in W1,p(x)
0 (Ω).

Therefore, we can find a relabeled subsequence of {un}n∈N satisfying

un
w−→ u in W1,p(x)

0 (Ω) and un → u in Lα(x)(Ω), for some u ∈W1,p(x)
0 (Ω).

We know from the a priori estimate in (16) that∫
Ω

f (x, un,∇un)(un − u)dx → 0 as n→ +∞

in the case that un → u in Lα(x)(Ω) (recall assumption A1). Putting h = un− u ∈W1,p(x)
0 (Ω)

in (21), we obtain that

〈Tp(un), un − u〉+ µ〈Tq(un), un − u〉 =
∫

Ω
f (x, un,∇un)(un − u)dx for all n ∈ N. (22)

From the monotonicity of Tq(·), taking the limit as n→ +∞ in (22), we obtain

lim sup
n→+∞

〈Tp(un), un − u〉 ≤ 0,

⇒ un → u in W1,p(x)
0 (Ω) (by (S+)-property of Tp).

Thus, we conclude that u ∈ Sµ, and hence Claim 2 is established.

We observe that the two claims together give us the compactness of Sµ in W1,p(x)
0 (Ω).

Proposition 2. Assume that A1, A2 and (6) are satisfied, then S is closed whenever 0 ∈ S . Thus,
S ∪ {0} is a closed subset of W1,p(x)

0 (Ω).

Proof. Lemma 7 plays a crucial role in establishing our result here. Observe that Lemma 7
leads to 0 ∈ S . Now, we assume that u ∈ S \ (S ∪ {0}) and prove that u ∈ S . Since
u ∈ S \ (S ∪ {0}), then we can find {un}n∈N ⊂ S with un → u. Moreover, to each n ∈ N
corresponds a parameter value µn so that un ∈ Sµn . From un ∈ Sµn , we obtain

〈Tp(un), h〉+ µn〈Tq(un), h〉 =
∫

Ω
f (x, un,∇un)hdx for all h ∈W1,p(x)

0 (Ω). (23)

Now, Lemma 7 gives us the boundedness of {µn}n∈N. Hence, we suppose µn → µ for a
certain µ ∈ [0,+∞). The convergence un → u ensures that

〈N f (un), h〉 → 〈N f (u), h〉, 〈Ap(un), h〉 → 〈Ap(u), h〉, 〈Aq(un), h〉 → 〈Aq(u), h〉

in W−1,p′(x)(Ω). Passing to the limit in (23) as n→ +∞, we obtain

〈Tp(u), h〉+ µ〈Tq(u), h〉 =
∫

Ω
f (x, u(x),∇u(x))hdx for all h ∈W1,p(x)

0 (Ω),

which implies u ∈ Sµ ⊂ S . We conclude that S is closed whenever 0 ∈ S . In addition,

S ∪ {0} is in any case closed in W1,p(x)
0 (Ω).
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Let F : [0,+∞)→ 2W1,p(x)
0 (Ω) be the multivalued mapping defined by

F(µ) = Sµ for all 0 ≤ µ < +∞. (24)

This mapping represents the solution mapping of Equation (1). We show that F
possesses some regularities.

Proposition 3. Assume that A1, A2, and (6) are satisfied; then, the multivalued mapping F defined
by (24) is upper semicontinuous.

Proof. Observe that the upper semicontinuity of (24) means that, for every closed subset C
of W1,p(x)

0 (Ω),
F−(C) := {µ ∈ [0,+∞) : F(µ) ∩ C 6= ∅}

is a closed set in [0,+∞).
Consider {µn}n∈N ⊂ F−(C) satisfying µn → µ in [0,+∞). Clearly, for every n ∈ N,

there exists un ∈ F(µn) ∩ C. From the last sentence in the proof of Lemma 5 (boundedness
of S), we know that {un}n∈N is a bounded sequence. Moreover, from the proof of Lemma 6,
we know that un → u in W1,p(x)

0 (Ω).
Using the similar arguments as in the proof of Proposition 2 (recall un ∈ Sµn ), we

obtain u ∈ Sµ = F(µ). Since we know that u ∈ C as C is closed, then µ ∈ F−(C).

Proposition 4. Assume that A1, A2, and (6) are satisfied, then the multivalued mapping F defined
by (24) is compact (that is, F maps the bounded sets in [0,+∞) into relatively compact subsets of
W1,p(x)

0 (Ω)).

Proof. Consider a bounded set Λ ⊂ [0,+∞), {un}n∈N ⊂ F(Λ), and µn ∈ Λ satisfying
un ∈ Sµn for all n ∈ N.

To establish the assertion, we discuss separately two situations. We distinguish the
following two cases:

Case 1. If {µn : n ∈ N} is a finite set, then we can find µ ∈ Λ with µ = µn for infinite values
of n. It follows that

{un}n∈N has a subsequence {unk}k∈N ⊂ Sµ,

⇒ {unk}k∈N has a subsequence converging to some u ∈ Sµ ⊂ F(Λ)

(by compactness of Sµ).

Case 2. If {µn : n ∈ N} is not a finite set, then {µn}n∈N admits a convergent subsequence
(without loss of generality, we continue to call it {µn}n∈N). Now, if µn → µ for certain
µ ∈ Λ, we obtain

un
w−→ u in W1,p(x)

0 (Ω) for some u ∈W1,p(x)
0 (Ω)

(recall that {un}n∈N is bounded),

⇒ un → u in W1,p(x)
0 (Ω).

We easily obtain u ∈ Sµ and u ∈ F(Λ).
Assume {un}n∈N in F(Λ) \ F(Λ). Since F(Λ) ⊂ S , we deduce that {un}n∈N ⊂ S and

so it is bounded. Consequently, for a subsequence of {un}n∈N (namely, again {un}n∈N),
we obtain

un → u in W1,p(x)
0 (Ω) for some u ∈ S ,

and hence u ∈ F(Λ). We conclude that F(Λ) is a relatively compact subset of W1,p(x)
0 (Ω),

and this proves the compactness of F.
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5. A Complete Uniqueness Result

This section is devoted to the study of uniqueness of solution to Equation (1), using
some additional assumptions on the nonlinearity. Precisely, we impose the following:

A3 : ( f (x, z, y)− f (x, w, y))(z− w) ≤ 0 for a.a. x ∈ Ω, all z, w ∈ R, all y ∈ RN ;
A4 : there exists b3 ≥ 0 such that

| f (x, z, ξ)− f (x, z, y)| ≤ b3|ξ − y|
p(x)
α′(x) for a.a. x ∈ Ω, all z ∈ R, all ξ, y ∈ RN .

For the sake of clarity, we underline that the above assumptions work in addition to
A1, A2 and hence α herein has to satisfy A1, A2. Moreover, f : Ω×R×RN → R is always
Carathéodory.

This time, we also have to impose certain restrictions on the exponents, as follows:

A5: q(x), p(x) ≥ 2 for all x ∈ Ω and 2p+−2
(

b3

α−
λ−1

1 +
b3

(α′)−

)
< 1.

Assumption A5 is motivated by technical needs of our proof below, in obtaining
certain estimates (see also Lindqvist [1], p. 97).

Theorem 3. Assume that A1 − A5 and (6) are satisfied, then Equation (1) has a unique weak

solution for all µ ∈
[

b3

α−
λ−1

1 2q+−2,+∞
)

.

Proof. Suppose that, for certain µ ∈ [ b3
α− λ−1

1 2q+−2,+∞), there exist u1, u2 ∈ Sµ with u1 6=
u2. From (13) putting u = u1 and u = u2, respectively, and h = (u1 − u2) ∈ W1,p(x)

0 (Ω),
we obtain

〈Tp(u1), u1 − u2〉+ µ〈Tq(u1), u1 − u2〉 =
∫

Ω
f (x, u1,∇u1)(u1 − u2)dx,

and

〈Tp(u2), u1 − u2〉+ µ〈Tq(u1), u1 − u2〉 =
∫

Ω
f (x, u2,∇u2)(u1 − u2)dx.

Now subtracting member to member the two equations, we obtain

〈Tp(u1)− Tp(u2), u1 − u2〉+ µ〈Tq(u1)− Tq(u2), u1 − u2〉

=
∫

Ω
[ f (x, u1,∇u1)− f (x, u2,∇u2)](u1 − u2)dx.

We have the following estimate:

〈Tp(u1)− Tp(u2), u1 − u2〉+ µ〈Tq(u1)− Tq(u2), u1 − u2〉

≤
∫

Ω
| f (x, u1,∇u1)− f (x, u2,∇u2)| |u1 − u2|dx

=
∫

Ω
| f (x, u1,∇u1)− f (x, u2,∇u1) + f (x, u2,∇u1)− f (x, u2,∇u2)| |u1 − u2|dx

≤
∫

Ω
b3|∇u1 −∇u2|

p(x)
α′(x) |u1 − u2|dx (by assumptions A3 and A4)

≤
∫

Ω
b3

∫
Ω

|∇u1 −∇u2|p(x)

α′(x)
dx + b3

∫
Ω

|u1 − u2|α(x)

α(x)
dx

≤
(

b3

α−
λ−1

1 +
b3

(α′)−

) ∫
Ω
|∇u1 −∇u2|p(x)dx +

b3

α−
λ−1

1

∫
Ω
|∇u1 −∇u2|q(x)dx.
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On the other hand (see Lindqvist [1]), we know that

(|ξ|m(x)−2ξ − |η|m(x)−2η)(ξ − η) ≥
(1

2

)m(x)−2
|ξ − η|m(x),

holds for m(x) ≥ 2 for all x ∈ Ω, and hence we deduce that

1
2p+−2

∫
Ω
|∇u1 −∇u2|p(x)dx >

(
b3

α−
λ−1

1 +
b3

(α′)−

) ∫
Ω
|∇u1 −∇u2|p(x)dx,

and for each µ ∈ [ b3
α− λ−1

1 2q+−2,+∞), we have

µ

2q+−2

∫
Ω
|∇u1 −∇u2|q(x)dx ≥ b3

α−
λ−1

1

∫
Ω
|∇u1 −∇u2|q(x)dx.

This ensures that∫
Ω
|∇u1 −∇u2|p(x)dx ≤ 2p+−2

(
b3

α−
λ−1

1 +
b3

(α′)−

) ∫
Ω
|∇u1 −∇u2|p(x)dx.

Thus, we obtain that∫
Ω
|∇u1 −∇u2|p(x)dx = 0 (by assumption A5).

We conclude that u1 = u2, which contradicts the assumption u1 6= u2. We deduce that
Sµ is singleton, and hence the solution to Equation (1) is unique.
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