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Abstract: Relation extraction tasks aim to predict potential relations between entities in a target
sentence. As entity mentions have ambiguity in sentences, some important contextual information can
guide the semantic representation of entity mentions to improve the accuracy of relation extraction.
However, most existing relation extraction models ignore the semantic guidance of contextual
information to entity mentions and treat entity mentions in and the textual context of a sentence
equally. This results in low-accuracy relation extractions. To address this problem, we propose
a contextual semantic-guided entity-centric graph convolutional network (CEGCN) model that
enables entity mentions to obtain semantic-guided contextual information for more accurate relational
representations. This model develops a self-attention enhanced neural network to concentrate
on the importance and relevance of different words to obtain semantic-guided contextual information.
Then, we employ a dependency tree with entities as global nodes and add virtual edges to construct
an entity-centric logical adjacency matrix (ELAM). This matrix can enable entities to aggregate
the semantic-guided contextual information with a one-layer GCN calculation. The experimental
results on the TACRED and SemEval-2010 Task 8 datasets show that our model can efficiently use
semantic-guided contextual information to enrich semantic entity representations and outperform
previous models.

Keywords: graph convolutional network; relation extraction; machine learning; natural language
processing

MSC: 68T50

1. Introduction

Relation extraction is an important task in natural language processing (NLP) which
aims to predict the semantic relations between entities. It extracts special events or infor-
mation in unstructured text. For example, it can extract events, institutions, and people
relations from reports. Therefore, relation extraction is widely used in downstream natural
language processing (NLP) tasks, such as information relation extraction [1,2], knowledge
network construction [3,4], and intelligent question-answering systems [5,6].

In recent years, deep learning models have made remarkable progress in many re-
search areas, such as convolutional neural networks (CNNs) [7], recurrent neural networks
(RNNs) [8], and other neural network architectures [9], which are are widely used in rela-
tion extraction tasks. These models convert words or phrases in text into low-dimensional
vectors through NLP processing tools and obtain the word-level or sentence-level se-
mantic representation through a feature extractor. Finally, the relation between the entity
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pair is acquired through a specifically designed classifier. However, in entity relation ex-
traction processing, predicates have significant meaning, which means long distances
between entities and predicates will cause semantic information loss. To solve this problem,
the dependency tree [10] is proposed to capture remote semantic information. To better
obtain the semantic information from the dependency tree, the SDP-LSTM model [11]
applies long short-term memory (LSTM) to obtain the shortest dependency path between
entities. Zhang et al. [12] propose an extended graph convolutional network (GCN) to
train a dependency tree with a pruning strategy to obtain important words in the shortest
path. Compared with CNN and LSTM, GCN [12] can parallelly process non-Euclidean data
and align trees for efficient batch training, which is used widely in image recognition [13],
visual reasoning [14], and biological graph generation [15].

Although the previous results are obtained using GCN-based models, they treat
textual contexts and entities equally with the graph convolutional operation. Entity repre-
sentations cannot obtain semantic-guided contextual information from sentences, and the
ambiguity of the entity mentions affect the relation extraction results. Therefore, the impact
of semantic-guided contextual information on entity mentions in a sentence is still worth in-
vestigating. For example, in the following sentence (S1), “Donald Trump is the 45th president
of the United States”, the relation between entities is “president_of ”. However, in the foll-
woing sentence (S2), “Donald Trump was born in the United States”, the relation between
entities is “born_in”. We can observe that the entity mentions (Donald Trump and United
States) have ambiguity in different sentences. The textual context can guide the semantic
information of entity mentions in a sentence, such as “the president of” in S1 and “was born
in” in S2; these phrases are strongly semantic-guided. Focusing the semantic information
of textual contexts on entity mentions can improve the precision of the relation extraction.

To address these problems, our paper proposes a novel GCN model for relation
extraction. Firstly, we propose a self-attention enhanced neural network that consists
of extended LSTM with a gate mechanism and a multi-head self-attention mechanism.
Both mechanisms are arranged in a parallel manner. This model can capture the long-
distance dependency and concentrate on the relevance and importance of different words
in a sentence to highlight the semantic information of crucial words. By combing the output
of both parallel modules, we can obtain semantic-guided contextual information. The latest
GCN model based on a sentence dependency tree enables global nodes to aggregate the
semantic information of all nodes. Therefore, we build a dependency tree with entities
as global nodes and add virtual edges to construct an entity-centric logical adjacency
matrix (ELAM). This matrix enables entities to aggregate semantic-guided contextual
information. Finally, we model the association between the subject and object entities, and
use a difference vector as a part of the relation extraction constraint.

We evaluated the performance of the model on two popular datasets: the Semeval-
2010 Task 8 dataset [16] and the TACRED dataset [17]. Our model achieves satisfactory
performance on both datasets.

The main contributions of this paper are summarized as follows:

• We propose a self-attention enhanced neural network that captures long-distance
dependency and concentrates on the importance and relevance of different words
in a sentence to obtain semantic-guided contextual information;

• We propose a novel entity-centric logical adjacency matrix that enables entities to
aggregate contextual semantic information with a one-layer GCN calculation.

• Finally, we analyze the complementary semantic-feature-capturing effect of the ex-
tended LSTM, GCN, and multi-head self-attention mechanisms.

2. Materials and Methods

In this section, we will introduce our novel relation extraction model (CEGCN).
This model proposes a self-attention enhanced neural network and an entity-centric logical
adjacency matrix to focus semantic-guided contextual information on entity representations
in relation extraction to produce more accurate results. Figure 1 illustrates the overview of
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the model. The model consists of four modules, including (1) a sequence encoding module,
(2) a self-attention enhanced neural network module, (3) a semantic aggregation module,
and (4) a relation extraction module.
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Figure 1. Model architecture diagram. The right side of the figure is the overall architecture of
the model’s algorithm. The left half describes the extended LSTM with a gate mechanism and
an entity-centric logical adjacency matrix (ELAM). In the gate mechanism, Si and hi represent
the output of the i-th gating interaction, S−1 represents the input sentence S, and h0 represents an
initialized hidden state. In the ELAM, the nodes of xO and xS represent the subject entity and object
entity, respectively, and xr represents the root node.

2.1. Sequence Encoding Module

We define a sentence as S = [x1, x2, x3, . . . , xn] with subject entity esubj and object entity
eobj, where xi is the i-th word and n is the length of the sentence.

First, we use GloVe [18] to map each word of the sentence to low-dimensional word
vectors. The word embedding of the i-th word in S is denoted by ew

i ∈ Rdw
, where

dw is the size of the word embeddings. Considering that the part of speech and the
named entity recognition are the important features of each word or phrase in a sentence,
we concatenate the word embedding, NER label embedding, and POS tag embedding of
each word in a sentence. This approach can enrich the semantic features of each word or
phrase in relation extraction models. Then, the representation of the i-th word is as follows:

ei =
[
ew

i , epos
i , ener

i

]
, (1)

where ei ∈ Rdw+dp+dn
, dw, dp, and dn denote the dimensions of the word, POS, and

NER embeddings.

2.2. Self-Attention Enhanced Neural Network Module

This section introduces a self-attention enhanced neural network consisting of ex-
tended LSTM with a gate mechanism and a multi-head self-attention mechanism. Both
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mechanisms are arranged in a parallel manner. We employ an extended LSTM to capture
the long-distance dependency and the multi-head self-attention mechanism to concentrate
on the importance and relevance of different words in a sentence. Finally, we combine
the output of both modules to obtain semantic-guided contextual information as the input
of the following layer.

Extended LSTM: we concatenate forward and reverse LSTM to encode the sentence
features. This can efficiently capture long-distance semantic information. However, the in-
put sentence S and previous state hprev are independent and only interact in the LSTM.
This model results in contextual information loss. Inspired by Gábor Melis et al. [19], we add
a gate mechanism before the LSTM to afford a richer space of interaction between input S
and hidden state hprev. In the gate mechanism, hprev and S interactions are regulated several
times through a sigmoid gate. This mechanism reduces information loss during encoding,

as shown in Figure 2. That is, we define the extended LSTM as L̃STM(S, cprev, hprev) =
LSTM(S ↑, cprev, h↑prev), where S ↑ and h↑prev are defined as the highest-indexed Si and hi

prev,
respectively. The formula is as follows:

Si = 2σ(Qihsi− 1prev)� Si−2 for odd i ∈ [1 . . . r], (2)

hi
prev = 2σ(RiSi−1)� hi−2

prev for even i ∈ [1 . . . r], (3)

where Qi and Ri are learnable weight matrices, hprev is the initialization vector, and the num-

ber of rounds, r ∈ N, is a hyperparameter. Then, we feed the sentence S into the L̃STM to
obtain contextual semantic representations:

ht = L̃STM(S, cprev, hprev) ∈ Rdl , (4)

where dl denotes the LSTM hidden dimension. After concatenating the forward and reverse

L̃STM, we obtain the final hidden representation, as in Equation (4), and
←→
h1 ,
←→
ht , . . . , and

←→
hn as the output of the sequence encoding module, which obtains the semantic features:

←→
ht =

[−→
ht ,
←−
ht

]
. (5)

L
S
T

M

2h
0h4h

1S −1S3S5S

Figure 2. Gate mechanism of the extended LSTM. The previous state h0 = hprev is transformed
linearly, passing through the sigmoid and S−1 gates to produce S1, where S−1 is the representation
of the input sentence S. After repeating this gating interaction five times, the final representation of
sentence S5 and the previous state h4 are fed to the LSTM.

Multi-Head Self-Attention Mechanism: in a text sentence, each word has different
importance, especially entity mentions. In semantic feature extraction processing, the rele-
vance between different words affects the semantic information of entity mentions.

In order to reflect the relevance and importance of different words in a sentence, this
paper uses a multi-head self-attention mechanism to calculate the correlations of each word.
Transformer model [20] shows that the multi-head self-attention mechanism could obtain
better results in sentence encoding by learning internal semantic features.
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Figure 3. Multi-head self-attention module. The inputs I = [a1, a2, a3, . . . , an] are multiplied by
the learnable matrices WQ, WK , and WV to obtain the novel matrices Q, K, and V. Then, Q, K,
and V are fed into a scaled dot-product attention to obtain the attention matrix bi. The multi-head
self-attention module performs this scaled dot-product attention h times parallelly, and concatenates
each output bi with linear transforming.

In this paper, we use scaled dot-product attention to calculate the attention weight.
The input of the scaled dot-product attention consists of a query (Q), key (K), and value (V).
Formally, after the encoding layer, the input representation S = [ew

1 , ew
2 , . . . , ew

n ]. We define
Q = K = V = S ∈ Rn×dw . The hidden representation of a sentence obtained by self-
attention is as follows:

H = Attention(Q, K, V) = so f tmax(
QKT
√

dw
V). (6)

In the multi-head self-attention module, we linearly transform Q, K, and V before
inputting them into the scaled dot-product attention, as shown in Figure 3. Instead of
conducting a single self-attention, we perform it h times parallelly to jointly extract semantic
features from different positions in a sentence. The i-th head is obtained from:

Hi = Attention(QWQ
i , KWK

i , VWV
i )(i = 1, ..., h), (7)

where WQ
i , WK

i , and WV
i ∈ R(d×dm) are learnable weight matrices; dm = m/h. The multi-

head attention module concatenates h outputs of each head’s self-attention operation.
The output is denoted by:

A = MultiHead(Q, K, V) = WRConcat(H1, H2, . . . , Hh), (8)

where WR ∈ Rd × d is a learnable weight matrix. The attention matrix A is the hidden
represention of the input through the multi-head self-attention module.

We add a fully connected feed-forward network (FFN) to integrate the information
extracted by the multi-head self-attention layer. The FFN consists of two linear trans-
formations with a ReLU activation function between them. The feed-forward network is
calculated as follows:

FFN(ai) = ρ(ai M1 + β1)M2 + β2, (9)

where ai is the output of the multi-head self-attention layer, M1 and M2 represent the
linear transformation matrices, β1 and β2 are bias terms, dq represents the dimension of the
hidden layers, and ρ is the activation function (e.g., RELU). Inspired by Vaswani et al. [20],
we employ layer normalization [21] and integrate the outputs of the multi-head self-
attention layer and the FFN layer through a residual connection:

C = layerNorm(A′ + FFN(A′)), (10)
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where A′ = LayerNorm(A + S) represents the residual connection around the input sen-
tence (S) embedding and the multi-head self-attention outputs (A). Finally, we employ
a max pooling layer to obtain the final representation of S. The output is denoted by:

r = Max(C) = Max{c1, c2, . . . , cn}. (11)

2.3. Semantic Aggregation Module

Firstly, we introduce the convolutional graph network (GCN) [12] in this module.
The GCN is an adaption of a convolution neural network for efficiently processing graph-
structured data. Let graph G = (V, E), where V represents a set of nodes and E represents
a set of edges. The input of the GCN is an adjacency matrix A; if there is an edge from node
i to node j, define Aij = 1. The convolution formula is as follows:

h(l)i = ρ(
n

∑
j=1

AijW(l)hl−1
j + b(l)), (12)

where h(l)i denotes the output vector of the i-th node after the l-th convolution operation
layer. W(l) is a weight matrix and b(l) is a bias vector.

In the graph convolutional network, each convolutional layer operation fuses each
node with the features of neighbor nodes. However, entities and textual contexts are
considered equally important in this process. Inspired by Guo et al. [22], this paper
proposes an entity-centric logical adjacency matrix (ELAM) to emphasize the impact
of textual context on the entities in the dependency tree. We construct a dependency
tree with entities as global nodes and add virtual edges between the entity nodes and other
nodes. Then, we parse a sentence as graph-structured data on the relation extraction task
through the dependency tree. The proposed model can fuse the semantic features of all
nodes to the entity nodes with only a one-layer GCN convolutional operation. In addition,
the information of the node itself in h(l−1) cannot be transmitted to h(l); thus, we add a
self-loop for each node. The algorithm for constructing the ELAM is shown as Algorithm 1.

Algorithm 1 Contruction of the entity-centric logical adjacency matrix (ELAM).

Input:
P: entity position in sentence; N: sentence length; S: target sequence.

Output:
Entity-centric logical adjacency matrix (ELAM);

1: Construct the sentence S as a dependency tree with entities as global nodes;
2: Initialize the entity-centric logical adjacency matrix (ELAM) with all elements set to 0;

ELAM ∈ RN×N

3: Traverse all nodes of the subtree and calculate distance d between node i and root;
4: To each node itself, add a self-citation and set d = 1;
5: Set the value of the corresponding position in the matrix to w(d) where

w(d) = Weight(d);
6: return ELAM.

The w(d) in Algorithm 1 represents the weight coefficient of the feature fusion between
the nodes, which is calculated by the Weight function. The greater the weight, the shorter
the distance between nodes and the richer the semantic information. We define the Weight
function as:

Weight(e) =
1

ed−1 , (13)

where e is the Euler’s number and d is the distance from the node to the entity. The further
the distance, the less semantic information, and the lower the weight. Figure 4 illustrates
the construction process of the entity-centric logical adjacency matrix.



Mathematics 2022, 10, 1344 7 of 16

2

Ox

Sx

rx

1x

4x

3x
2

3

3

4

Ox rx3x1x Sx4x

Ox

rx

3x

1x

Sx

4x

Entric-Centric Logical 

Adjacency MatrixAdjacency Matrix

1

1
1

1

1

1

Ox rx3x1x Sx4x

Ox

rx

3x

1x

Sx

4x

0 0 0 0 0 0

0 0 0 1 0 0

1 0 1 0 0 0

0 0 0 0 0 1

0 1 0 0 0 1

0 0 0 0 0 0

w(1) 0 0 0 0 0

w(2) w(1) w(1) w(1) w(1) w(2)

w(1) 0 w(1) 0 0 0

0 0 0 w(1) 0 w(1)

0 w(1) 0 0 w(1) w(1)

w(4) w(2) w(3) w(3) w(1) w(1)

3x

1x

w(d) is short for weight(d)

Add Connects

SxOx

rx

4x

Figure 4. Construction process of the entity-centric logical adjacency matrix. The dashed lines
represent the new connections between the entity nodes and the other established nodes, and the
dashed line represents the self-loops of the nodes themselves. The number on the line represents
the distance between the nodes. w() is short for weight() function. The nodes of xO and xS represent
the subject entity and object entity, respectively.

This model has two advantages. First, it emphasizes the impact of the textual context
on the semantic representation of the entities and uses enhanced semantic entity informa-
tion to improve the accuracy of the relation extraction. Second, the entity-centric logical
adjacency matrix can integrate k-order neighborhood information directly on a one-layer
GCN and alleviate the tendency of over-smoothing in the multi-layer GCN calculation.
Therefore, the paper modifies the convolution calculation as follows (Equation (14)):

h(l)i = ρ(
n

∑
j=1

ELAMijW(l)hl−1
j /di + b(l)) ∈ Rdw , (14)

where h0
1, h0

2, . . . , h0
n = S = [ew

1 , ew
2 , . . . , ew

n ], di represents the out-degree of the node i, and dw

denotes the GCN hidden representation size; W(l) ∈ R2dl×dw .

2.4. Relation Extraction Module

After the L-layer CEGCN calculation, the hidden representation of the sentence is
H(L) = [h(l)1 , h(l)2 , . . . , h(l)n ]. This paper employs a maxpool function to reduce the hidden
representation matrix from two dimensions to one dimension as dw. The formula is
as follows:

h = maxpool[H(L)]. (15)

Embedding the semantic-guided contextual information into the subject and object
entities can improve their association. To focus more semantic information of the textual
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context on the subject entity and the object entity, we combine hidden representations of en-
tities and the textual context in the relation extraction module. In this module, the semantic-
guided contextual information from a sentence can be concentrated on the semantic entity
representations. We feed the hidden representation into a softmax function to calculate
the attention weight α. Then, the final entity representation is given by:

hentity = maxpool(H(L)
entity), (16)

y = WH(L)hentity + b, (17)

α =
exp(yL)

∑L
j=1 exp(yj)

, (18)

h′entity = maxpool(αH(L)
entity). (19)

We believe modeling the association between the subject and object entities to be
a significant factor in determining their relation. Lin et al. [23] propose that the entity
relation r in a sentence is a subject entity to the object entity transformation (esub + r = eobj).
Their models have thoroughly employed and evaluated the difference vector of the entity
pair to represent the relation between the entity pair and achieve good results. Therefore,
we calculate the difference vector of the entity pair (r = hsub − hobj) as a part of the re-
lation extraction constraint, where hsub and hobj are the entity vectors obtained through
Equations (16)–(19). Then, we join the difference vector of the entity pair (r) and hidden
layer output of the context (htext) to obtain the final vector representation. The formula is
as follows:

hout = [htext; r]. (20)

Finally, this paper feeds the final vector representation into the feed-forward network
(FFN) and obtains the probability distribution of the relation between entity pairs through
the so f tmax function:

h f inal = FFN(hout), (21)

p(y | h f inal) = so f tmax(MLP(h f inal)) ∈ R|C|, (22)

where |C| is the number of relation categories defined in the datasets. We train the model by
back-propagation and employ the cross-entropy function as the loss function of the model.
The cross-entropy function is defined as follows:

Loss = ∑i∈[1,L]−logPθ(ci = Ci), (23)

where ci represents the predicted relation category and Ci represents the true relation category.

3. Experiment
3.1. Datesets

We evaluate the performance of our model on two popular relation extraction datasets:
TACRED and SemEval-2010 Task 8.

TACRED: The TACRED dataset is a relation extraction dataset with 106,264 instances
and 42 relation types (including 41 declared semantic relations and a “None” relation,
which indicates that an entity pair has no defined relation) [17]. In the TACRED dataset,
79.5% of instances have been labeled as “no_relation”; the main predefined relations in-
clude “per:titled”, “org:employ_of”, “per:age”, “org:founded_by”, etc. Each TACRED
instance is a sentence that contains an entity pair, 23 fine-grained types of entity men-
tions, and 1 of the 42 relation types. The type of entity mentions includes “organization”,
“time”, “person”, etc.

SemEval-2010 Task 8: The SemEval-2010 Task 8 [16] dataset consists of 10,717 examples,
9 relation types, and a specific “other” type, which has been widely used in relation extrac-
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tion tasks. In the SemEval-2010 Task 8 dataset, 17.6% of instances are labeled as “Other”;
the main predefined relations include “Cause–Effect”, “Instrument–Agency”, “Entity–
Destination”, etc. Each instance of this dataset contains two marked entities and the relation
between the entity pair. The training set has 8000 instances, whereas the test set contains
2717 instances.

Based on these two datasets, we use a pre-trained 300-dimensional GloVe [18] vector
to map each word of the sentence to word embeddings and initialize POS and NER
label embeddings with a 30-dimension vector. The number of interactive computations
in the gate mechanism is set to 5. The hidden GCN size is set to 200, the dropout rate is
0.5, and the prune k = 1 [12]. For the TACRED dataset, we set a learning rate of CEGCN
0.1 with a decay rate 0.95. For the SemEval-2010 Task 8 dataset, we set a learning rate of
CEGCN 0.5 with a decay rate 0.9. We trained our model for 120 epochs on both datasets.
We list the details of the hyperparameters of our model for both datasets in Table 1.

Table 1. Hyperparameters of the model for both datasets.

Parameters Description Value

dw word embedding 300
dp POS embedding 30
dn NER embedding 30
hl LSTM hidden size 100
hg GCN hidden size 200
dl CEGCN layers 3
h attention heads 6
r interaction rounds 5

batch batch size 50

3.2. Performance Comparison

We use precision (P), recall (R), and F1 score (F1) to evaluate our model on the TA-
CRED dataset and F1 score on the SemEval-2010 Task 8 dataset. For both datasets, we com-
pare our model (CEGCN) against several competitive baselines, which contain logical
regression models [24], sequence-based feature extraction models [8,25], the LSTM-based
models [10,26], and graph-based models [27,28]. These baselines include the relation ex-
traction model with a dependency tree as the input and the latest improved GCN models.
To avoid effects from external enhancements, we do not employ BERT-based [29] models
as the baseline.

The performance metrics of our model and all comparison models on the TACRED
dataset are shown in Table 1. Four types of models are compared. (1) The logical regression
(LR) models [24]: a traditional relation extraction model based on dependency trees combined
with lexical information. (2) The CNN-based models [30]: these models use multi-window
filters to capture the semantic features of sentences for relational extraction automatically.
(3) The LSTM-based relation extraction models: these include the position-aware LSTM (PA-
LSTM) [17] model, the tree-LSTM model [26], and the SDP-LSTM model [11]. The PA-LSTM
model employs the position-aware attention mechanism combined with LSTM sequence
encoder models. The SDP-LSTM model uses the shortest dependency path between the entity
pair and the LSTM encoder. The tree-LSTM model encodes the entire tree structure to acquire
the semantic information of words. (4) GCN-based relation extraction models: Zhang et al. [12]
proposed the C-GCN model to apply a pruned dependency tree. The AGGCN model was
proposed by Guo et al. [22] as a soft-pruning strategy based on the attention mechanism with
the whole dependency tree as the GCN input. Chen et al. [27] proposed the DAGCN model,
which automatically learned the neighbor importance of different points using multiple
attentional components.

As shown in Table 2, we can observe that the F1 score of our model is significantly
improved. Compared with other models, the precision of the CNN model achieves 75.6,
but the lowest recall results in the lowest F1 score. We argue that the low recall score of
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the CNN-based model is because the CNN tends to classify pre-defined relations precisely,
producing the wrong prediction of undefined relation types. Moreover, compared with
GCN-based models, the F1 score of our model improved by at least 0.4. In particular,
compared with AGGCN, our model has a specific improvement in all three evaluation
standards. The AGGCN takes the whole dependency tree as the input and employs
an attention mechanism to guide the GCN. In contrast, our model concentrates on the
important context rather than the whole text, improving the semantic-guided relation
between entity pairs. We believe this is because our model focuses the contextual semantic
information on the entity mentions in a sentence, enriching the semantic features of the
entities and reducing the ambiguity of the entity mentions. The experimental results show
the effectiveness of the model.

Table 2. Results on the TACRED dataset.

Model P R F1

LR [24] 73.5 49.9 59.4
CNN [30] 75.6 47.5 58.3

SDP-LSTM [11] 66.3 52.7 58.7
PA-LSTM [17] 66.0 59.2 62.4
C-GCN [12] 65.7 63.3 66.4
AGGCN [22] 69.9 60.9 65.1
DAGCN [27] 70.1 63.5 66.8

CEGCN (our model) 73.4 61.8 67.2

In addition, we conducted validation experiments on the SemEval-2010 Task 8 dataset
to assess the versatility of our model. As indicated in Table 3, we conducted validation
experiments on some relevant dependency models. The SDP-LSTM model calculates
the shortest path to the common ancestor in the dependency tree, but this only focuses
on the part of the information between entities, ignoring the important words in context.
The F1 score of our model is 1.7 points higher than that of SDP-LSTM. By observing
the experimental results, we find our model improved the F1 score by at least 0.4, compared
to other GCN-based models. Compared with the latest C-MDR-GCN model, our model
could focus on essential words in context to obtain a higher F1 score. The proposed model
can achieve an 86.1 F1 score and thereby outperform other models.

Table 3. Results on the Semeval-2010 Task 8 dataset.

Model F1

LR [24] 82.2
CNN [30] 83.7

SDP-LSTM [11] 84.4
PA-LSTM (2017) [17] 84.8
C-GCN (2018) [12] 84.8

C-AGGCN (2020) [22] 85.7
C-MDR-GCN (2021) [31] 84.9

CEGCN (our model) 86.1

3.3. Ablation Study

To demonstrate the contribution of each module in the proposed framework, we per-
form ablation experiments on the TACRED dataset and adopt the F1 score as the standard.
The results of the ablation experiments are shown in Table 4. Based on the proposed model,
we introduce three different ablation models, which are described below:

• “CEGCN w/o Entity” means that we mask the entities with random tokens in the pro-
posed model;

• “CEGCN w/o Self-Attention Enhanced NN” means that the self-attention enhanced
neural network is removed;
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• “CEGCN w/o ELAM” means that the entity-centric logical adjacency matrix is re-
placed by the ordinary adjacency matrix.

Table 4. Results on the Semeval-2010 Task 8 dataset.

Model Dev F1

CEGCN (our model) 67.2
CEGCN w/o Entity 65.4

CEGCN w/o Self-Attention Enhanced NN 66.3
CEGCN w/o ELAM 66.5

Figure 5 indicates that the performance of the proposed model significantly drops
when removing different modules. We can observe that, compared with CEGCN, the perfor-
mance of the CEGCN w/o Entity decreases by 1.8. This indicates that the entities are crucial
in the model. Experiments demonstrate that entity mentions obtain essential semantic
information, which is necessary for relation extraction. When we remove the self-attention
enhanced neural network, the performance of the CEGCN w/o Self-Attention Enhanced
NN decreases by 1.0. This demonstrates the effectiveness of the self-attention enhanced
neural network module. This module can obtain the semantic information of relevance
and importance between different words to enrich the contextual dependencies. When
we replace the entity-centric logical adjacency matrix with an ordinary adjacency matrix,
the F1 score of CEGCN w/o ELAM decreases from 67.2 to 66.5. This proves that the ef-
fectiveness of ELAM can focus the semantic-guided contextual information on entities to
improve the accuracy of the relation extraction. The convergence results of different models
are shown in Figure 6. The smaller the train_loss, the more accurate the prediction result.
The CEGCN model converges faster and obtains a lower train_loss than variant ablation
study models.

Effect of Mask-Entity. Figure 5 indicates that the performance of the proposed model
with masking entities is lower than without masking entities under each epoch. We can
also observe that, in Figure 6, CEGCN w/o Entity converges slowly and obtains a higher
train_loss. This demonstrates that entity mentions obtain essential semantic information.
Enhancing the semantic representations of entities is crucial for relation extraction.

Figure 5. Experimental results in terms of F1 under different epochs for variant models of the abla-
tion study.
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Figure 6. The train_loss for variant models of the ablation study.

Analysis of LSTM, Self-Attention, and GCN. Most natural language processing models
based on deep learning use LSTM to obtain semantic information. The LSTM can capture
the long-distance semantic information and enables each word to obtain the semantic
features of the context. However, the input and previous state are independent and only
interact in the LSTM, resulting in contextual information loss. In this model, we use a gate
mechanism to solve this problem. The self-attention mechanism can help concentrate more
on the relevance and importance of different words in a sentence to highlight the semantic
information of key words. By combining them, we can obtain semantic-guided contextual
information. Figure 7 indicates that the self-attention enhanced model can concentrate
more on phrases containing predicates in different sentences; these context fragments are
strong semantic-guided relations, such as “quit and later founded the hedge” in S1.

Figure 7. Self-attention weight distribution visualization. “Person/org:founded_by/Organization”
means all sentences contain the same entity types (Person, Organization) and the same relation
type (org:founded_by). The color depth expresses the degree of the attention weight distribution of
the different text sequences to demonstrate the effectiveness of the self-attention enhanced model.
The darker context fragments contain more important semantic information for relation.
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The novel GCN models allow each word to capture the information of its dependent
words directly. Focusing semantic-guided contextual information on entities can improve
the representation of the relation between entities; these are complementary effects of
LSTM, the self-attention mechanism, and GCN. Table 4 indicates that all three modules
contribute the F1 score to the proposed model. Combining LSTM, the self-attention mecha-
nism, and GCN enriches the representations of entities with semantic-guided information
to obtain a more accurate relation between entities. Moreover, the entity-centric logical
adjacency matrix enables entities to aggregate the semantic features of all nodes with
a one-layer GCN. Furthermore, considering the distance of different words to entities,
it calculates a fusion weight coefficient for each word to the entity; it can fuse the relevant
information of the words and improve the accuracy of relation extractions.

Effect of ELAM. In our research, we insist that the entity-centric logical adjacency
matrix can enrich the semantic representations of entities to improve the performance of our
model. To demonstrate the effiectiveness of ELAM in relation extraction tasks, we replace
it with an ordinary adjacency matrix in the proposed model. We compare the F1 score and
train_loss of them under different epochs. Figure 5 indicates that the CEGCN outperforms
the CEGCN w/o ELAM by at least 0.7 F1 scores and reaches a peak around the 120th epoch
in terms of the final F1 score. Figure 7 indicates that the self-attention enhanced model can
improve the weight of important phrases in feature extraction; it can improve the semantic
impact on the relation representation between entity pairs in the convolution operation.
Moreover, our model converged quicker than the CEGCN w/o ELAM, as shown in Figure 6.
The above has proved that ELAM can effectively aggregate the semantic-guided contextual
information on entities and obtain better results in relation extraction tasks.

3.4. Effect of Hyper-Parameters

This paper introduces some hypermeters to improve model performance. Compared
with the other hypermeters, the number of attention heads h and rounds r has a more
significant impact on model performance. This section discusses the influence of two
hyperparameters that affect model performance through experiments, namely, the number
of attention heads h and the number of interaction rounds r in the gate mechanism of
the extended LSTM.

The multi-head attention mechanism can reflect the relevance and importance of
different words in a sentence. It is of great significance to select the correct number of heads
for model improvement. Figure 8 shows that the model achieves its optimal performance
at six heads, and the performance degrades with each additional head when using over
six heads. Then, we study the number of interaction rounds r in the gate mechanism of
the extended LSTM. Extended LSTM with a gate mechanism can afford more space for
modeling the long-distance dependency feature, and can reduce information loss during
encoding. Choosing the different numbers of r affects the model performance. In Figure 8,
the comparison shows that the performance of the CEGCN model is relatively close when
the r is set to 4 or 5, that the model obtains the highest score when the r is set to 5, and that
the F1 score decreases when it exceeds 5.
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Figure 8. Experimental results on different numbers of attention heads h and different rounds r
in extended LSTM.

4. Related Work

Traditional relation extraction tasks are based on feature extractors and rely on se-
mantic features obtained from lexical resources. With the popularity of deep learning,
deep learning models have been widely used in many research areas, such as intelligent
Q&A systems [32], pattern recognition [33], and intelligent transportation systems [34].
In recent years, researchers mainly employed deep neural network models for relation
extraction tasks [35]. Compared with classical machine learning models, the deep-learning-
based models can automatically extract and learn from sentence features without complex
feature extractors.

Initially, scholars tended to exploit CNN, RNN, and their improved deep learning
models for relation extraction tasks. Zeng et al. [8] employed CNN to extract word-
level and sentence-level features and took all of the per-trained word tokens as the input.
Xu et al. [25] proposed a CNN model based on the dependency tree, parsing the sentence
with a dependency tree as the input. Traditional RNNs have difficulty addressing long-term
dependence; LSTM can solve this problem by adding a cell state, and gated operations
can afford a richer space of interaction for the RNN. Xu et al. [11] proposed SDP-LSTM to
obtain structure information through the shortest path between entities.

Dependency trees can convert text inputs into graph-structured data, and CNN and
RNN models cannot efficiently process these data parallelly. Kipf and Welling et al. [12]
proposed a graph convolutional network for supervised learning on graph-structured data.
Hong et al. [28] proposed a relation-aware attention GCN for end-to-end relation extraction.
Huang et al. [35] employed a GCN and knowledge graph enhanced transformer encoder
for measuring semantic similarity between sentences and relation types. Guo et al. [22]
proposed using soft attention to prune unimportant edges in the graph data dynamically.
Huang et al. [36] proposed a knowledge-aware framework to highlight the keyword and re-
lation clues and employed GCN for relation extraction. Our model exploits the advantages
of GCN and enables entities to aggregate contextual semantic information with a one-layer
GCN calculation.

5. Conclusions

This paper proposes a novel contextual semantic-guided entity-centric GCN model for
relation extraction (CEGCN). This model combines the semantic information of relevance
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and importance between different words to obtain semantic-guided contextual information.
To enable entity aggregate semantic-guided contextual information, we construct a depen-
dency tree with entities as global nodes and connect global nodes directly with other nodes.
It can aggregate information from the whole tree with only a one-layer GCN calculation.
In addition, our model can combine the semantic representations of the text sequence and
the difference vectors of entities to constrain the relation between the entity pair, improv-
ing its performance. The experimental results on the TACRED and SemEval-2010 Task 8
datasets illustrate that this model enables the entities to obtain the semantic-guided contex-
tual information to reduce the ambiguity of entity mentions in a sentence and outperform
previous models. Finally, we find that the extended LSTM with a gate mechanism can
effectively reduce information loss and complement GCN and multi-head self-attention
in capturing semantic features.
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