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Abstract: In the present work, a novel stochastic method has been developed and investigated in
order to face the time-reduced inverse scattering problem, governed by the Helmholtz equation,
outside connected or disconnected obstacles supporting boundary conditions of Dirichlet type. On
the basis of the stochastic analysis, a series of efficient and alternative stochastic representations
of the scattering field have been constructed. These novel representations constitute conceptually
the probabilistic analogue of the well known deterministic integral representations involving the
famous Green’s functions, and so merit special importance. Their advantage lies in their intrinsic
probabilistic nature, allowing to solve the direct and inverse scattering problem in the realm of
local methods, which are strongly preferable in comparison with the traditional global ones. The
aforementioned locality reflects the ability to handle the scattering field only in small bounded
portions of the scattering medium by monitoring suitable stochastic processes, confined in narrow
sub-regions where data are available. Especially in the realm of the inverse scattering problem,
two different schemes are proposed facing reconstruction from the far field and near field data,
respectively. The crucial characteristic of the inversion is that the reconstruction is fulfilled through
stochastic experiments, taking place in the interior of conical regions whose base belong to the data
region, while their vertices detect appropriately the supporting surfaces of the sought scatterers.

Keywords: wave scattering; Helmholtz equation; inverse problems; stochastic differential equations

MSC: 35J05; 35J25; 60H10; 78A46

1. Introduction

In contrast to the traditional global methods, local methods give the solution of a par-
tial differential equation at an arbitrary point of its domain directly, instead of extracting the
response value at this point from the whole field solution. These methods are based on prob-
abilistic interpretations of certain partial differential equations. The relationship between
stochastic processes and parabolic and elliptic differential equations was demonstrated
a long time ago by Lord Rayleigh [1] and Courant [2], respectively. The development of
the probabilistic methods is based on the Itô calculus, properties of Itô diffusion processes,
and Monte Carlo simulations. The theoretical considerations supporting the probabilistic
methods involve random processes and stochastic integrals. An elaborate presentation of
this framework can be found in [3–6] and the references cited therein. The main idea of
these approaches concerns boundary value problems in bounded domains: A probabilistic
manner to interpret the value of the solution of the boundary value problem at a specific
point x is to consider a plethora of stochastic trajectories, emanating from x and driven by
a drift and diffused by a Wiener process connected both directly with the coefficients of
the differential operator under investigation. These trajectories travel inside the bounded
domain and cross the boundary in finite time. Averaging the values of the field at the
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boundary hitting points (thus evoking the boundary condition of the problem) gives a very
good estimation of the sought solution of the boundary value problem. In exterior domains,
the situation changes drastically since the unboundedness of the domain does not provide
any reason justifying the aforementioned boundary hitting in finite time. This is the main
reason why no systematic probabilistic attempts had been made to face boundary value
problems in unbounded domains.

Recently, the probabilistic interpretation of boundary value problems in exterior
domains has been reestablished appropriately in [7]. The main effort in that work was
to force the trajectories emanating from the point x and travelling inside the infinite
domain D to hit the boundary ∂D in finite time. Without special treatment, the generated
trajectories have a strong probability to travel to infinity without hitting the boundary of
the domain. Actually, even if some paths cross the boundary, their travel time could be
very large, creating strong difficulties to the application of the Monte Carlo simulation. The
monitoring of the trajectories is accomplished by selecting appropriately a set of attracting
or repulsive points ξ, which constitute irregular points for the stochastic process. This
actually is not enough since the orientation of the trajectories towards or away from these
singular points is simultaneously guaranteed by the repulsive lateral surfaces of several
cones K having as vertexes the singular points. These cones are repulsive since on the
lateral surfaces the driving terms of the stochastic processes obtain infinite values. The
process of the directivity of the stochastic paths inside the cones under discussion has been
presented extensively in [7] but we focus here on the fact that the monitoring of the curves
is mainly accomplished via suitable stochastic differential equations with driving terms
generated by the eigen-solutions of the Laplace operator in local (associated to the cones)
spherical coordinates. The point is that under this directionality, the generated trajectories
hit (for the first time) the boundary ∂D in finite time. All these paths are gathered and
exploited as follows: The points of the boundary on which the first exit occurs—the traces
of the trajectories on the boundary—are selected and offer a set of points on which the
average of the values of the boundary data of the boundary value problem is calculated thus
formatting a first accumulation term. In addition, on every trajectory a stochastic integral
is calculated where the integrand is the inhomogeneous term of the underlying differential
equation. The mean value of these integrals over the large number of trajectories forms a
second accumulator which is superposed to the first one, (this second term is absent in the
case of a homogeneous differential equation) leading to the construction of an extended
mean value term. When the number of the trajectories increases, the aforementioned
total mean value converges to the corresponding probabilistic expectation value of the
underlying fields, which in turn coincides with the value sought from the beginning of
the solution of the boundary value problem at the starting point x. The description above
refers rather to the Dirichlet problem, which is the main subject of investigation in the
present work but similar arguments are encountered in the Neumann boundary value
problem [8,9]. One of the main advantages of the probabilistic approach is that it is based on
very stable and accurate Monte Carlo simulations. In [7], the above methodology has been
developed and applied mainly in the exterior Laplace boundary value problem, referring
so to potential functions.

In the present work, a probabilistic framework handling the acoustic scattering prob-
lem is developed. More precisely, we consider the exterior Dirichlet boundary value prob-
lem involving the Helmholtz operator, without restriction on the wavenumber. It worth
mentioning that working with stochastic trajectories that stemmed from the Helmholtz
equation itself diversifies qualitatively the stochastic framework by offering two alternative
stochastic differential regimes, referring to preselected outgoing or ingoing wave propaga-
tion. In brief terms, this deviation is due to the nature of the driving terms which govern, in
conjunction with the Wiener process, the topology of the stochastic curves. These driving
terms are built in the form ∇h

h —where h belongs to the kernel of the Helmholtz operator—
and are responsible for the probabilistic conditioning. They are expressed in terms of
spherical local coordinates inside the cones K. The crucial remark is that two alternatives
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emerge: When the generating function is selected to be equal to h = hm = ym(kr)Pm(cos θ),
where ym stands for the spherical Bessel function of second kind and order m, the trajecto-
ries are forced to move inwardly, from the observation point towards the scatterer’s region.
This behavior is reminiscent of the stochastic design encountered in [7]. In contrast to
that, when the selection is set to hm = jm(kr)Pm(cos θ), involving now the spherical Bessel
functions of first kind jm(kr), the stochastic curves present an opposite behavior. More
precisely, most of the trajectories emanating from x move fast away outwards, hitting the
exterior cup of the cone, which represents a portion of the measurement region located
at the near field or far field regime, depending on the measurement status and the sub-
sequent narrowness (the angle of the cone is just the first positive root of the Legendre
polynomial Pm(cos θ)) of the cone. The two situations above can be melted by selecting the
radial part of the driving function hm to be a combination of the spherical Bessel functions:
Cm jm(kr)− ym(kr). Choosing suitably the coefficient Cm, it is feasible to settle a stochastic
framework assuring equipartition of stochastic experiments in two directions: The outgo-
ing trajectories hitting the measurement region and revealing the contribution of the data
and the ingoing trajectories hitting the scatterer and activating the boundary condition.
This is an efficient manner to acquire a stochastic representation for the acoustic field u
at the observation point x, which constitutes simultaneously the emanation point of the
stochastic experiments. Actually, the description above settles the framework of the direct
scattering problem.

In the realm of the inverse scattering problem, which is the cornerstone of the current
work, the common issue with the settlement above is the invocation of the radial func-
tion Cm jm(kr) − ym(kr), establishing the aforementioned equipartition of the stochastic
experiments. The essential structural difference stems from the simple argument that a
representation scheme involving three separate terms (the value of the acoustic field u at
the starting point x and the expectation values of the field on both detached portions of the
cone with the scatterer and the data region) is an underdetermined scheme. To diminish the
unknowns of the problem, we do not apply the stochastic analysis to the acoustic field u(X)
itself, but to the solenoidal vector Helmholtz equation solution M(X; x) = (X− x)×∇u(X)
and potentially to the scalar Helmholtz equation solution (X − x) · ∇ ×M(X; x). These
functions merit the principal property of vanishing at the starting point x, leaving alone
among the terms of the aforementioned triple, the tag of war between the expectation
values over the data region and the scatterer’s surface, where the boundary condition
prevails. Following a sampling process, in the case that the vertex of the cone detects the
scatterer’s surface points, a functional measuring the balance between the abovementioned
measurement term and the boundary condition attains minimum values and quantifies
the inversion.

The structure of the work is developed as follows: In Section 2, the mathematical
principles of the scattering problem are briefly presented. In Section 3, the stochastic
differential equations that stemmed from the boundary value problem under discussion are
constructed and the suitably layered conical regions serving as the domains of the stochastic
processes are confined. The probabilistic analysis of the subsequent stochastic differential
system is also developed. This analysis focuses on the analytical investigation of a priori
estimates concerning all the involved probabilities of hitting the several surface portions of
the conical structures. Especially in Section 3.2, three separate stochastic representations of
the scattered field are provided based on outgoing, ingoing and mixed-type propagating
stochastic trajectories. Special attention has been paid to the third case constituting a
stochastic representation, embodying, in an equipartitioned manner, the contribution of the
data region as well as of the scatterer’s surface. These representations and mainly the third
one constitute alternative probabilistic representations of the scattered field and could be
considered as the stochastic analogue of the well known classical integral representations,
produced on the basis of Green’s theorem. In Section 4, some crucial parameters of the
stochastic implementation are investigated as far as their numerical implementation is
concerned. The solution of the inverse scattering problem from convex scatterers on the
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basis of exploiting stochastically far field data and the stochastic process of transferring
data from the far field to the near field region are presented in Section 5. The analytic as
well as numerical investigation are extensively provided and testified to via interesting
special cases. In Section 6, the inverse reconstruction algorithm in the case of exploitation
of near data is implemented and applied in connected and disconnected scatterers.

2. Helmholtz Equation and Scattering Processes

Let us consider an open bounded region D in R3, confined by a smooth (with continu-
ous curvature to support the classical version of the probabilistic calculus, though there
exist improvements allowing Lipschitz domains [10]) surface ∂D, standing for a hosted
inclusion inside the surrounding medium De = R3\D̄.

The elliptic boundary value problem representing acoustic scattering of time har-
monic stationary waves by obstacles is the one involving the Helmholtz equation, which is
produced after imposing time harmonic dependence in wave equation. So, the acoustic
scattering field u(x) exp(−iωt) emanated from the interference of an incident time har-
monic wave uin(x, t) = exp(i(kk̂ · x − ωt)) with the soft scatterer D̄ ⊂ Rn satisfying the
following boundary value problem

(∆ + k2)u(x) = 0, x ∈ De (1)

u(x) = − exp(ikk̂ · x), x ∈ ∂D (2)

limr→∞r−1
(

∂u(x)
∂r
− iku(x)

)
= 0, (3)

where we recognize the wave number k 6= 0, the unit vector k̂, indicating the direction of the
incident wave, and the angular frequency ω of the scattering process. Sommerfeld radiation
Condition (3), which holds uniformly over all possible directions x̂ = x

r , assures that the
scattered field is an outgoing field. Indeed, this condition not only gives information
about the asymptotic behavior of the scattered wave but also incorporates the physical
property according to which the whole energy of the scattered wave travels outwards,
leaving behind the scatterer from which it emanates. In the case of a hard scatterer, Dirichlet
boundary Condition (2) should be replaced by the Neumann boundary condition. In that
case, we have knowledge about the normal derivative of the field ∂u

∂n on the surface ∂D. In
any case, it is well known that asymptotically it holds that

u(x) =
eik|x|

|x| u∞(x̂; k̂, k) + u1(x), |x|u1(x)→ 0, as |x| → ∞ (4)

where we recognize the far field pattern, or, alternatively stated, scattering amplitude
u∞(x̂; k̂, k), totally characterizing the behavior of the wave field u(x) several wave-lengths
away from the scatterer D. Actually, Equation (4) offers the first term of the asymptotic
expansion of u(x) via the famous Atkinson–Wilcox expansion theorem [11]. This theorem
establishes a recurrence relation between the participants of this expansion. All but the first
term are incorporated in the remaining field u1(x). A more systematic treatment of this
expansion is sometimes needed and the current work offers such an opportunity as the
implication of this stuff is needed in Remark 2 of Section 5.

In all cases, the direct exterior boundary value problem consists in the determination of
the field u(x) outside D when boundary data (i.e., the function f (x) = − exp(ikk̂ · x)) and
geometry (i.e., the shape of ∂D) are given. In fact, in most applications, we are interested
in determining the remote pattern of this field far away from the bounded domain D. For
example, in the case of the Dirichlet BVP (1)–(3), it would be sufficient to determine the far
field pattern u∞(x̂; k̂) participating in the representation (4) if we deal with an application
in which we do not have access near the domain D.

The inverse exterior boundary value problem aims at determining the shape of the
surface ∂D when the boundary data is known and the remote pattern is measured. Equiv-
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alently, instead of considering as data the measured remote field, it is usual to have at
hand the Dirichlet to Neumann (DtN) operator on a sphere—or part of it—surrounding
the domain D and the scattered field on it. Generally, a large class of interesting inverse
boundary value problems are based on data incorporating both the measured field along
with its normal derivative on a given surface belonging to the near field region (Pertaining
to the Helmholtz operator, we refer to [12] (Section 3.2) as an excellent reference relevant to
the construction of the DtN mapping). It is known [13] that a specific scattering amplitude
(far field pattern) leads to a unique DtN oparator, providing parallel pace to those ap-
proaches. On the other hand, the involvement of the Dirichlet to Neumann (DtN) operator
is valuable but generally intricate, given that in principle this operator is not local. The
present work aims as a supplementary to offer, as a byproduct, a localization concept to
the reduction of the DtN operator from the far field pattern. This localization is in the
core of the nature of locality supported by the implication of probabilistic methods in the
solvability of boundary value problems.

3. The Stochastic Differential Equations in Connection with the Scattering Problem

In the core of the present work lie the stochastic differential equations of the type

dXt = b(Xt)dt + σ(Xt)dBt, 0 ≤ t ≤ T, X0 = x. (5)

In the equation above, T > 0, while b(.) : Rn → Rn and σ(.) : Rn → Rn×n are
measurable functions. The Brownian motion Bt is n-dimensional while the initial state x is
fixed. It is proved in [4] that, under certain conditions on b and σ, the stochastic differential
Equation (5) has a unique t-continuous solution Xt (Itô diffusion) which is adapted to the
filtration (increasing family) Ft generated by Bs; s ≤ t. In addition E[

∫ T
0 |Xt|2dt < ∞]. We

may integrate obtaining

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBs, 0 ≤ t ≤ T, (6)

where we recognize [4] the Itô integral
∫ T

0 σ(Xt)dBt. The specific conditions mentioned
above impose at most linear growth and Lipschitz behavior of the coefficients, uniformly
over time.

The unique solution Xt, generated by the arguments above, is called the strong solution,
because the version Bt of the Brownian motion is given in advance and the solution con-
structed from it is Ft-adapted. The price we pay to obtain such a good and unique solution
is the restriction on the coefficients b and σ. In general terms, the linear growth excludes
the appearance of explosive solutions while the Lipschitz condition establishes uniqueness.

The coefficient b(Xt) is known as the drift of the process. In the absence of the random
term, the drift is exclusively responsible for the evolution of the dynamical system Xt
and so “drives” the vector Xt. It clearly retains this basic property in the case of small
randomness, induced by small σ(Xt), and the trajectory of the process keeps its orientation,
while obtaining a fluctuating morphology due of course to the randomness. It is an
issue of great importance to investigate the behavior of composite functions of the form
F(t, ω) = f (t, Xt) = f (t, X(t)), where f (t, x) = ( f1(t, x), f2(t, x), ..., fp(t, x)) is a C2 map
from [0, ∞)×Rn into Rp and ω here denotes an arbitrary element of the probability set
Ω participating in the triple (Ω,F , P) defining the probability space. The method for this
effort is provided by the well known multi-dimensional Itô formula, according to which
F(t, ω) is again an Itô process with components Fk, k = 1, 2, ..., p, satisfying

dF =
∂F
∂t

(t, X)dt + ∑
i

∂F
∂xi

(t, X)dXi +
1
2 ∑

i,j

∂2F
∂xi∂xj

(t, X)dXidXj, (7)

where the relations dBidBj = δijdt, dBidt = dtdBi = 0 span the calculus of products
between infinitesimals. We evoke here Ex(Yt), the well known [4] expectation of a stochastic
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process Yt where the superscript is necessary to indicate the starting point of the involved
stochastic processes.

For every Itô diffusion Xt in Rn, the infinitesimal generator A is defined by A f (x) =
limt↓0

Ex [ f (Xt)]− f (x)
t , x ∈ Rn. This limit is considered in the point-wise classical sense. For

every x, the set DA(x) is defined as the set of all the functions f , guaranteeing the existence
of the limit. In addition DA denotes the set of functions assuring the existence of the limit
for all x ∈ Rn. The domain DA incorporates C2

0(Rn). More precisely, every f ∈ C2
0(Rn)

belongs to DA and satisfies

A f (x) = ∑
i

bi(x)
∂ f
∂xi

+
1
2 ∑

i,j
(σσT)i,j(x)

∂2 f
∂xi∂xj

. (8)

The infinitesimal generator offers the link between the stochastic processes and the
partial differential equations.

The well known Dynkin’s formula [4] connects the infinitesimal operator A with
expectation values of suitable stochastic processes. Indeed, let f ∈ C2

0(Rn) and suppose
that τ is a stopping time (i.e., {ω : τ(ω) ≤ t} ∈ Ft, for all t ≥ 0) with Ex[τ] < ∞. Then

Ex[ f (Xτ)] = f (x) + Ex
[∫ τ

0
A f (Xs)ds

]
. (9)

The existence of a compact support for the functions f is not necessary if τ is the
first exit time of a bounded set. Dynkin’s formula is very helpful in obtaining stochastic
representations of boundary value problem solutions in bounded domains. As for example,
the C2− solution of the harmonic Dirichlet boundary value problem (with surface data φ)
inside a bounded domain D in Rn:

∆u(x) = 0, x ∈ D

u(x) = φ(x), x ∈ ∂D,

has the stochastic representation

u(x) = Ex[φ(BτD )], (10)

as an immediate consequence of Equation (9) with b = 0, σi,j = δi,j (and so Xt = Bt and
A = 1

2 ∆). In the stochastic framework under discussion, the first exit time τD from the
open set D is a particular type of stopping times and plays a special role. At that time,
the stochastic process Xt, obeying Equation (5) with X0 = x and very large T, “hits” the
boundary ∂D. This particular exit process brings into light the boundary itself and a crucial
connection is established between the solution of the differential equation and the points
of the boundary on which data are given. Generally the process Bt represents points in
Rn, but more precisely, the multidimensional stochastic field BτD represents points on the
surface ∂D.

It is clear that the situation changes drastically when we are treating the corresponding
exterior harmonic boundary value problem defined on the unbounded open domain
De := Rn\D̄. We focus on the Helmholtz equation (∆ + k2)u = 0, governing the behavior
of the scattered field u. According to the aforementioned discussion, the first idea to
represent stochastically the problem might be to adopt the genuine Brownian motion again,
with infinitesimal generator A = 1

2 ∆ helping in adapting Dynkin’s formula as follows:

Ex[u(Xτ)] = Ex[u(Bτ)] = u(x) + Ex
[∫ τ

0
Au(Bs)ds

]
⇒

u(x) = Ex[u(Bτ)] +
k2

2
Ex
[∫ τ

0
u(Bs)ds

]
, (11)
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where τ now is the first time of exit from the set De. Unfortunately, this representation is
not adequate any more. Indeed, the Brownian motion in R3 is transient, which means that
Px(τ < ∞) < 1 and then the prerequisite (for the validity of Dynkin’s formula) of almost
surely finite flying time (before hitting for first time the boundary of De) of the process Bt is
not guaranteed. The violation of the finite life time could be avoided if a more general form
of Dynkin’s rule was used (XA stands for the characteristic function of the set A) :

u(x) = Ex[u(Bτ)X{τ<∞}] +
k2

2
Ex
[∫ τ

0
u(Bs)ds

]
. (12)

However, the validity of this formula requires that Ex[∫ τ
0 |u(Bs)|ds

]
< ∞, which

is strongly ambiguous since u has no compact support and the life time variable is not
controllable. In addition, the Monte Carlo simulation would be very slow since a part of
trajectories could ramble for a long time before hitting the boundary or just making eternal
loops inside the exterior space De. Even if these drawbacks were bypassed, the implication
of the integral term is not desirable since it involves the values of the field along several
paths and actually necessitates the enrichment of data over a large part of the exterior space,
a fact which is unrealizable. The information is restricted on the surface of the scatterer
(boundary condition) and on the data surface where measurements are gathered.

As discussed in the Introduction, for theoretical and application reasons, it is necessary
to impose a driving mechanism forcing the trajectories to have finite life time and to obtain
exploitable directivity towards the regions of given information. The initiative concept is
to select a point ξ inside the bounded component D. Placing this auxiliary point inside or
outside D depends on two different states of probabilistic conditioning as presented in [7].
In the present work focusing on the inverse problem, the first choice is adopted. This point
could be the coordinate origin O or could be selected according to the specific features of
the problem. Let x ∈ De be once again the initial point of the stochastic process under
construction. We consider the unit vector n̂x,ξ := x−ξ

|x−ξ| =
y
|y| . For simplicity we denote n̂x,ξ

as n̂ since the points x, ξ are assumed as fixed parameters, though the same procedure might
be profitable to be applied for several pairs (x, ξ). We introduce now two sets of functions
belonging to the kernel of the Helmholtz operator. More precisely, evoking the well
known Legendre polynomial functions (It is essential to select the normalization condition
Pm(1) = 1) Pm(cos θ), θ ∈ [0, π] and the spherical Bessel (jm) and Neumann (ym) functions,
we introduce two families (l = 1, 2) of eigensolutions: hm,l(y; k) = Pm(n̂ · y/|y|)Qm,l(k|y|),
m = 0, 1, 2, ..., where Qm,1(k|y|) = jm(k|y|) and Qm,2(k|y|) = ym(k|y|). For simplicity, we
suppress the dependence on the wavenumber, denoting hm,l(y) = hm,l(y; k).

Every member hm,l(y), m = 0, 1, 2, ... of the l-family gives birth to a different stochastic
process Xt, Yt where Xt = Yt + ξ, which obeys the stochastic rule

dYt =
∇hm,l(Yt)

hm,l(Yt)
dt + dBt, 0 ≤ t ≤ T, Y0 = x− ξ (13)

or equivalently

dXt(= dYt) =
∇hm,l(Xt − ξ)

hm,l(Xt − ξ)
dt + dBt, 0 ≤ t ≤ T, X0 = x. (14)

Both processes Xt, Yt depend on the adopted member hm,l but this dependence is
ignored in the symbolism of them, for simplicity. The Helmholtz equation’s solution hm,l
is expressed in local spherical coordinates adapted to the cone Km = ξ + Km = ξ + {y ∈
R3 : θ ∈ [0, θm,1)} with vertex located at ξ and axis parallel to n̂. The pair (ξ, x) defines
the z-axis of this local coordinate system. In y-terminology, the origin of the coordinates
coincides with the point ξ. Finally, χm,1 = cos(θm,1) is the closest root of Pm(χ) to the right
endpoint of its domain [−1, 1] and is indicative of the narrowness of the cone.
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We will gather here some information whose justification is postponed: Working with
a particular hm,l , the process Xt has a specific driving term ∇hm,l

hm,l
, which defines drastically

the orientation of the trajectories. We will see in following sections that depending on
the kind of the involved spherical Bessel’s function, the vertex ξ is a strong attractor or
repellent for the process. Furthermore, the paths are also repelled from the lateral surface
of the cone Km and in any case the trajectories are forbidden to cross this lateral surface. So,
the process Xt is generated in Km ∩ De—at the point x—and is attracted or repelled by the
singularity ξ at the same time that it is repelled by the boundary ∂Km ∩De. The trajectories
cannot escape the cones Km, which become narrower as the parameter m increases.

Before investigating the above-presented stochastic processes, it is necessary to make
a concrete construction of the domain confining the mobility of the paths.

This emanates from the strict conditions required to assure the existence and unique-
ness of the solution of the stochastic differential equation under examination. The co-
efficients of the s.d.e. (5) must be regular functions and share Lipschitz behavior, uni-
formly over time [4]. In our case this is accomplished only if we insert into the conical
structures interior protective surfaces, thus avoiding the sets on which the driving terms
become irregular. In Figure 1, we give the generic slightly modified conical region sup-
ported by a large cup and a small spherical shell deteriorating the singular point ξ as
well as a specification of this region by selecting the protective interior conical surface
to coincide with Km+γ. The regions under discussion are defined as follows: D̃e

m,ε(ξ) =

De ∩ {ξ + y : y ∈ R3 with arccos
(

n̂x,ξ ·
y
|y|

)
∈ [0, θm,1 − ε)} ∩ {z ∈ Rn : η < |z− ξ| < L}

and D̃e,γ
m (ξ) = De ∩ Km+γ ∩ {z ∈ Rn : η < |z− ξ| < L} (with small positive parameters

ε, γ << 1 ). The first case is the most general selection while the second one is going to be
the most profitable for the application of the methodology.

Figure 1. Inserting cups and interior conical “cushioning” to guarantee regular driving terms.

3.1. The Probabilistic Analysis of the Stochastic Differential Equations Related to the
Scattering Problem

Applying Equation (13) with hm,1(Yt) = Pm(n̂ ·Yt/|Yt|)Qm,1(k|Yt|) = Pm(cos(Θt))jm
(k|Yt|) and exploiting the recurrence relation of spherical Bessel functions, we find that

dYt = Hm(k|Yt|)
Yt

|Yt|2
dt− sin(Θt)P′m(cos(Θt))

|Yt|Pm(cos(Θt))
Θ̂tdt + dBt, (15)

with

Hm(λ) :=
λjm−1(λ)

jm(λ)
− (m + 1), λ > 0. (16)
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This function takes the value m at λ = 0, as a simple asymptotic analysis reveals.
In addition, it decreases until the first root, while positivity above a lower bound level
δ > 0 is guaranteed when λ < em, where the values em(δ) are uniquely determined due
the monotonicity ofHm (see Figure 2). It is noticeable that the sequence em, m = 0, 1, 2, ...
increases (em+1 > em, m = 0, 1, 2, ...), while their specific values are very useful in the
numerical treatment of the problem, as will be clarified in forthcoming sections.

Figure 2. The decreasing positive functionHm(λ).

The parameter L, defining the height of the detached exterior space D̃e
m,ε(ξ), is usually

selected equal to the value em
k .

The following result concerns the duration of the stochastic process traveling inside D̃e
m,ε(ξ).

Proposition 1. Let the starting point x belong to D̃e
m,ε(ξ). Then the expectation of the first exit

time τ (from the detached exterior space D̃e
m,ε(ξ)) is estimated as follows:

(2δ + 3)Ex(τ) ≤ (Ex(|Yτ |2)− |x− ξ|2) ≤ (2m + 3)Ex(τ). (17)

As a consequence,

Ex(τ) ≤ 1
2δ + 3

(
e2

m
k2 − |x− ξ|2

)
. (18)

Proof. We apply the Itô formula (see [4]) to the function F(t, ω) = f (Yt(ω)) = |Yt(ω)|2
and obtain in tensor form

d|Yt|2 = ∇|Yt|2 · dYt +
1
2
∇∇|Yt|2 : dYtdYt. (19)

We find that ∇|Yt|2 = 2Yt and ∇∇|Yt|2 = 2I, where I is the 3× 3 identity tensor.
Consequently, Equation (19) becomes

d|Yt|2 = 2(Yt · dYt) + (dYt · dYt). (20)

The products (Yt · dYt) and (dYt · dYt) must be determined via the stochastic differential
Equation (15) and the usual infinitesimal product relations of Itô calculus. Indeed, we obtain

Yt · dYt = Yt ·
(
Hm(k|Yt|)

Yt

|Yt|2
dt− sin(Θt)P′m(cos(Θt))

|Yt|Pm(cos(Θt))
Θ̂tdt + dBt

)
= Hm(k|Yt|)dt + Yt · dBt,

dYt · dYt = 3dt
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Consequently,

d|Yt|2 = (2Hm(k|Yt|) + 3)dt + 2Yt · dBt. (21)

Integrating, taking the expectation value and exploiting the independence of Yt, dBt,
we obtain

Ex(|Yt|2)− |x− ξ|2 = Ex
{∫ τ

0
(2Hm(k|Ys|) + 3)ds

}
. (22)

Given that

δ ≤ Hm(k|Ys|) ≤ m, for k|Ys| < em,

we obtain Relation (17). On the basis of the restriction |Yt| < em
k , Relation (17) easily

provides (18).

One immediate consequence of the above result is that Ex(|Yτ |2) > |x− ξ|2. So, as
expected on the basis of the repellent role of the auxiliary point ξ, the paths are mostly
forced to move outwards.
One important issue concerns the probability of the trajectories approaching the lateral
surface. We recall that the interior conical protective surface serving at avoiding singular
behavior of the driving term is no longer impenetrable, although it retains a repelling role.

Proposition 2. If the domain of the stochastic process (15) is D̃e
m,ε(ξ) and τ is the first exit time

from this domain, then the probability of escaping from the lateral surface, instead of the cups,
converges to zero as the parameter ε tends to zero:

lim
ε→0

Px({Xτ ∈ ∂D̃e
m,ε(ξ)

}
∩ {Θτ = θm,1 − ε}

)
= 0. (23)

Proof. We apply the Itô formula to the function 1
hζ

m,1(Yt)
(ζ ∈ R), where hm,1 satisfies the

Helmholtz equation, and obtain straightforwardly that

d

(
1

hζ
m,1(Yt)

)
= −ζ

∇hm,1(Yt)

hζ+1
m,1 (Yt)

· dYt +
1
2

[
ζ(ζ + 1)

∇hm,1(Yt)∇hm,1(Yt)

hζ+2
m,1 (Yt)

− ζ
∇∇hm,1(Yt)

hζ+1
m,1 (Yt)

]
: dYtdYt ⇒

d

(
1

hζ
m,1(Yt)

)
= −ζ

|∇hm,1(Yt)|2

hζ+2
m,1 (Yt)

dt +
1
2

ζ(ζ + 1)
|∇hm,1(Yt)|2

hζ+2
m,1 (Yt)

dt− ζ

2
∆hm,1(Yt)

hζ+1
m,1 (Yt)

dt− ζ

hζ+1
m,1 (Yt)

∇hm,1(Yt) · dBt ⇒

d

(
1

hζ
m,1(Yt)

)
=

1
2

ζ(ζ − 1)
|∇hm,1(Yt)|2

hζ+2
m,1 (Yt)

dt +
ζ

2
k2 1

hζ
m,1(Yt)

dt− ζ

hζ+1
m,1 (Yt)

∇hm,1(Yt) · dBt. (24)

Equation (24) will be repeatedly exploited in the sequel. In the meanwhile, we select
ζ = 1, obtaining

d
(

1
hm,1(Yt)

)
e−

k2
2 t − k2

2
1

hm,1(Yt)
e−

k2
2 tdt = −e−

k2
2 t 1

h2
m,1(Yt)

∇hm,1(Yt) · dBt ⇒ d
(

1
hm,1(Yt)

e−
k2
2 t
)

= −e−
k2
2 t 1

h2
m,1(Yt)

∇hm,1(Yt) · dBt ⇒
1

hm,1(Yτ)
e−

k2
2 τ =

1
hm,1(x− ξ)

−
∫ τ

0
e−

k2
2 s 1

h2
m,1(Ys)

∇hm,1(Ys) · dBs

⇒ Ex
(

1
hm,1(Yτ)

e−
k2
2 τ

)
=

1
jm(k|x− ξ|) ⇒ Ex

(
1

jm(k|Yτ |)Pm(cos Θτ)
e−

k2
2 τ

)
=

1
jm(k|x− ξ|) , (25)

where the independence of Yt, dBt is again exploited. Let Wλ′ denote the subset of the
σ-algebra F representing the status of escaping from the lateral surface via points satisfying
|Yτ | < λ′|x− ξ|. More clearly, we set

Wλ′ =
{

ω ∈ Ω : Θτ(ω) = θm,1 − ε and |Yτ(ω)| < λ′|x− ξ|
}

. (26)



Mathematics 2022, 10, 1383 11 of 39

Then the set
[{

Xτ ∈ ∂D̃e
m,ε(ξ)

}
and {Θτ = θm,1 − ε}

]
appearing in the statement of

the current proposition represents the subset of Ω supporting escaping from the lateral
surface independently of the distance from the auxiliary point ξ; it is identified clearly with
the setW em

k|x−ξ|
, simply denoted byW .

Similarly, it holds that
[{

Xτ ∈ ∂D̃e
m,ε(ξ)

}
and {Θτ = θm,1 − ε} and {|Yτ | < λ′|x− ξ|}

]
=Wλ′ . The argument in expectation term of Equation (25) is positive and so by restriction
over specific probability subsets, Expression (25) gives

1
jm(kλ′|x− ξ|)Pm(cos(θm,1 − ε))

Ex(e−
k2
2 τ |Wλ′)P(Wλ′) ≤

1
jm(k|x− ξ|) . (27)

Applying Jensen’s inequality for conditional expectations [14] to the convex function

e−
k2
2 τ , we find that

e−
k2
2 Ex(τ|Wλ′ )P(Wλ′) ≤

jm(kλ′|x− ξ|)
jm(k|x− ξ|) Pm(cos(θm,1 − ε)). (28)

Given that Ex(τ|Wλ′) =
Ex(τ∩{Wλ′})

P(Wλ′ )
≤ Ex(τ)

P(Wλ′ )
, Equation (28) becomes

Px(Wλ′)

e
k2Ex(τ)
2P(W

λ′ )

≤ jm(kλ′|x− ξ|)
jm(k|x− ξ|) Pm(cos(θm,1 − ε)). (29)

On the basis of Relation (18), the direct estimate k2

2 Ex(τ) ≤ 1
2(2δ+3)

(
e2

m − k2|x− ξ|2
)

:=
νm(k|x− ξ|) helps in modifying Equation (29) as follows

Ψ
(

Px(Wλ′)

νm(k|x− ξ|)

)
≤ 1

νm(k|x− ξ|)
jm(kλ′|x− ξ|)
jm(k|x− ξ|) Pm(cos(θm,1 − ε)),

where Ψ(x) = xe−
1
x , x > 0 is a well known increasing function with zero limiting value as

x → 0. Evoking the increasing inverse function Ψ(−1) (which also vanishes as its argument
goes to zero), we find that

Px(Wλ′) ≤ νm(k|x− ξ|)Ψ(−1)
(

1
νm(k|x− ξ|)

jm(kλ′|x− ξ|)
jm(k|x− ξ|) Pm(cos(θm,1 − ε))

)
. (30)

Clearly,

Px(W) = Px({Xτ ∈ ∂D̃e
m,ε(ξ)

}
∩ {Θτ = θm,1 − ε}

)
≤ νm(k|x− ξ|)Ψ(−1)

(
1

νm(k|x− ξ|)
jm(em)

jm(k|x− ξ|)Pm(cos(θm,1 − ε))

)
. (31)

Thanks to limε→0 Pm(cos(θm,1 − ε)) = 0 and the aforementioned properties of Ψ(−1),
it holds that

lim
ε→0

Px({Xτ ∈ ∂D̃e
m,ε(ξ)

}
∩ {Θτ = θm,1 − ε}

)
= 0. (32)

The Estimates (30) and (31) are rigorous and ensure the convergence regime established
in the above proposition but their intrinsic form is not directly exploitable when a rate of
convergence is explored. To facilitate the analysis, we introduce a time threshold T and
investigate its influence in cases where we consider the stochastic process with a life time
less than T. In practice, the numerical experiments revealed that the driving term is strong
enough to force a short finite time travel inside ∂D̃e

m,ε(ξ). Paying attention to this situation
we state and prove the next proposition.
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Proposition 3. If the domain of the stochastic process (15) is D̃e
m,ε(ξ) and τ is the first exit time

from this domain, then the probability of escaping from the lateral surface, instead of the cups, in
finite time T has the estimate

Px({Xτ ∈ ∂D̃e
m,ε(ξ)

}
∩ {Θτ = θm,1 − ε} ∩ {τ < T}

)
≤ e

k2
2 T jm(em)

jm(k|x− ξ|)Pm(cos(θm,1 − ε)). (33)

In addition,

Px({Xτ ∈ ∂D̃e
m,ε(ξ)

}
∩
{
|Yτ | < λ′|x− ξ|

}
∩ {Θτ = θm,1 − ε} ∩ {τ < T}

)
≤ e

k2
2 T jm(kλ′|x− ξ|)

jm(k|x− ξ|) Pm(cos(θm,1 − ε)).

Proof. Equation (25) gives that

Ex
(

1
jm(k|Yτ |)Pm(cos Θτ)

e−
k2
2 τ |Wλ′ ∩ {τ < T}

)
Px(Wλ′ ∩ {τ < T}) ≤ 1

jm(k|x− ξ|) ⇒

e−
k2
2 T

jm(kλ′|x− ξ|)Pm(cos(θm,1 − ε))
Px(Wλ′ ∩ {τ < T}) ≤ 1

jm(k|x− ξ|) ⇒

Px(Wλ′ ∩ {τ < T}) ≤ e
k2
2 T jm(kλ′|x− ξ|)

jm(k|x− ξ|) Pm(cos(θm,1 − ε)), (34)

which coincides with the second result of the proposition. Equation (33) is a direct conse-
quence of the result (34) if the selection λ′ = em

k|x−ξ| is adopted.

The estimate (33) is useful only when the modification of the original cone is very

small. Actually, the term e
k2
2 T jm(em)

jm(k|x−ξ|) is always greater than unity and so only when ε is
appropriately small does this probability estimate acquires a fruitful asymptotic content.
Moreover, the result (34) merits its own attention since it assigns the appropriate probability
to lateral escapes confined in the region |Yτ | < λ′|x− ξ|. In particular, when λ′ < 1 the
term jm(kλ′ |x−ξ|)

jm(k|x−ξ|) becomes significantly less than unity and contributes essentially to the
determination of the probability estimate, verifying the small likelihood of trajectories
orientated inwards concerning the vertex of the cone.

The next issue is to estimate the probabilities of escaping from the possible exit surfaces
in the case of the domain D̃e,γ

m (ξ) = De ∩Km+γ ∩ {z ∈ Rn : η < |z− ξ| < L}. In fact, it is
now possible to give strict values to the probabilities of hitting the spherical cups of the
structure D̃e,γ

m (ξ).

Proposition 4. Let the height of D̃e,γ
m (ξ) be selected as L = em

k and select a small variable
0 < a << 1. Furthermore, let the surface of the inner spherical cup Sη belong to De. Referring to
the stochastic process Yt generated from a point x of the axis of the cone and evolving in D̃e,γ

m (ξ), it
holds that

Px
[
|Yτ | =

em

k

]
≥ jm(em)

jm(k|x− ξ|)
[jm+γ(k|x− ξ|)ym+γ(kη)− jm+γ(kη)ym+γ(k|x− ξ|)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]
(35)

Px[{|Yτ | = η} ∩ {Θτ < ϑm+γ(a)}] ≤ 1
(1− a)

jm(kη)

jm(k|x− ξ|)
jm+γ(em)|ym+γ(k|x− ξ|)|

[jm+γ(em)|ym+γ(kη)| − jm+γ(kη)|ym+γ(em)|]
, (36)

where the angle ϑm+γ(a) is slightly smaller than the angle θm+γ,1 defining the lateral surface of
D̃e,γ

m (ξ).

Proof. We consider the auxiliary function v(y) = jm+γ(k|y|)Pm+γ(cos(θ)), where again
we use the spherical coordinates of the local coordinate system attached to the cone Km.
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Clearly, v belongs to ker(∆+ k2) inside D̃e,γ
m (ξ) and vanishes on the lateral surface of region

D̃e,γ
m (ξ). We apply once again Dynkin’s formula for the field v

hm,1
, obtaining

Ex
[

v(Yτ)

hm,1(Yτ)

]
=

v(x− ξ)

hm,1(x− ξ)
+ Ex

[∫ τ

0
A
(

v(Yτ)

hm,1(Ys)

)
ds
]

. (37)

Denoting h = hm,1, we find that

A
(v

h

)
=
∇h
h
· ∇
(v

h

)
+

1
2

∆
(v

h

)
=

h∆
( v

h
)
+ 2∇h · ∇

( v
h
)
+
( v

h
)
∆h−

( v
h
)
∆h

2h
=

∆v + k2v
2h

= 0.

So Equation (37) becomes

jm+γ(k|x− ξ|)
jm(k|x− ξ|) = Ex

[
v(Yτ)

hm,1(Yτ)

]
. (38)

Exploiting that Pm+γ vanishes on the lateral surface, we split the equation above
as follows

jm+γ(k|x− ξ|)
jm(k|x− ξ|) =

jm+γ(kL)
jm(kL)

Ex
ext

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
+

jm+γ(kη)

jm(kη)
Ex

int

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
(39)

where the subscripts in expectations denote the two cups of the region D̃e
m(ξ). Work-

ing similarly with the auxiliary field ṽ(y) = ym+γ(k|y|)Pm+γ(cos(θ)) (instead of v), we
infer that

ym+γ(k|x− ξ|)
jm(k|x− ξ|) =

ym+γ(kL)
jm(kL)

Ex
ext

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
+

ym+γ(kη)

jm(kη)
Ex

int

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
. (40)

So far we have selected the height of the cone L equal to em
k . In fact, the parameter

em defines a range of radial distance, inside which the crucial part of the driving termHm
remains strictly positive. In addition, inside the interval (0, em), the spherical Legendre
functions jm, ym are permanently opposite and free of zeros. Actually the same situation
holds for the pair jm+γ, ym+γ of the Bessel functions of order m + γ since as mentioned
above the sequence em increases. Substituting then again L = em

k and solving the algebraic
Systems (39) and (40), we find the unique solution

Ex
ext

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
= Am(x, ξ, η) :=

jm(em)

jm(k|x− ξ|)
[jm+γ(k|x− ξ|)ym+γ(kη)− jm+γ(kη)ym+γ(k|x− ξ|)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]
, (41)

Ex
int

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
= Bm(x, ξ, η) :=

jm(kη)

jm(k|x− ξ|)
[jm+γ(em)ym+γ(k|x− ξ|)− jm+γ(k|x− ξ|)ym+γ(em)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]
. (42)

The denominator D := jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em) in these expressions
cannot be zero due to the monotonicity properties of the involved functions. In most cases
D ≈ jm+γ(em)ym+γ(kη).

We notice that the function Pm+γ(χ)
Pm(χ)

increases in [χm+γ,1, 1], taking values from 0 to
1. More precisely, it rapidly increases in the vicinity of χm+γ,1 and then approaches unity

almost horizontally. These qualitative results concerning the monotonicity of Pm+γ(χ)
Pm(χ)

guarantee that there always exists a threshold ζm+γ = cos(ϑm+γ) greater but very close

(the angle ϑm+γ is slightly less than θm+γ,1 ) to χm+γ,1, such that Pm+γ(χ)
Pm(χ)

> 1− a when
χ ∈ [ϑm+γ, 1] and 0 < a << 1. These remarks help first in exploiting Equation (42)
as follows

(1− a)Ex
int[{Θτ < ϑm+γ(a)}] ≤ jm(kη)

jm(k|x− ξ|)
[jm+γ(em)ym+γ(k|x− ξ|)− jm+γ(k|x− ξ|)ym+γ(em)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]
⇒

Px[{|Yτ | = η} ∩ {Θτ < ϑm+γ(a)}] ≤ 1
(1− a)

jm(kη)

jm(k|x− ξ|)
jm+γ(em)|ym+γ(k|x− ξ|)|

[jm+γ(em)|ym+γ(kη)| − jm+γ(kη)|ym+γ(em)|]
, (43)
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coinciding with Equation (36). On the other hand, Equation (41) provides easily

Ex
ext[1] ≥ Am(x, ξ, η)⇒

Px
[
|Yτ | =

em

k

]
≥ jm(em)

jm(k|x− ξ|)
[jm+γ(k|x− ξ|)ym+γ(kη)− jm+γ(kη)ym+γ(k|x− ξ|)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]
,

as stated in Equation (35).

Remark 1. It is worthwhile to notice that Equation (43) predicts, in most cases, negligible values
for the probability of hitting on the interior spherical small cup. Indeed, having in mind that
kη < k|x − ξ| < em and thus adopting the reasonable simplification jm+γ(em)|ym+γ(kη)| −
jm+γ(kη)|ym+γ(em)| ≈ jm+γ(em)|ym+γ(kη)|, we obtain that

Px[{|Yτ | = η} ∩ {Θτ < ϑm+γ(a)}] ≤ 1
1− a

jm(kη)

jm(k|x− ξ|)
|ym+γ(k|x− ξ|)|
|ym+γ(kη)| .

In the case that the arguments kη and k|x− ξ| belong to the realm of validity of asymptotic
formulae for the involved special functions, we find that

Px[{|Yτ | = η} ∩ {Θτ < ϑm+γ(a)}] ≤ 1
1− a

(
η

|x− ξ|

)2m+γ+1
,

which avoids being negligible only when the starting point is forced to be located closely above
the inner cup. The situation remains unaltered even if the arguments kη and k|x− ξ| escape the
asymptotic realm as the investigation of special functions imposes.

Furthermore, Equation (35) can be easily weakened to offer a simpler (though underestimated)
lower bound:

Px
[
|Yτ | =

em

k

]
≥ jm(em)

jm(k|x− ξ|)
jm+γ(k|x− ξ|)

jm+γ(em)

[
1−

jm+γ(kη)

jm+γ(k|x− ξ|)
ym+γ(k|x− ξ|)

ym+γ(kη)

]
. (44)

When the point x is even slightly detached from the inner cup it holds that jm+γ(kη)
jm+γ(k|x−ξ|)

ym+γ(k|x−ξ|)
ym+γ(kη)

<< 1. Then the lower bound of the probability Px
ext obtains the form jm(em)

jm(k|x−ξ|)
jm+γ(k|x−ξ|)

jm+γ(em)
. It is

remarkable that this ratio involves the starting point and the height of the exterior cup alone. It is
obvious that limγ→0

jm(em)
jm(k|x−ξ|)

jm+γ(k|x−ξ|)
jm+γ(em)

= 1, a fact assuring the total accumulation of hitting
points on the exterior cup when γ converges to zero.

For completeness reasons, we state the following result.

Proposition 5. Let the assumptions of Proposition 4 be valid except that the initial point x of the
process is not located necessarily on the z-axis but potentially forms a polar angle θ0 with it. Then
the probability of escaping from the lateral surface obeys the rule

Px[Θτ = θm+γ,1
]
≤ 1−

Pm+γ(cos(θ0))

Pm(cos(θ0))
(Am(x, ξ, η) + Bm(x, ξ, η)). (45)

Proof. Imitating the arguments presented in Proposition 4, we easily see that the detaching
of x from the cone axis has the consequence of changing Formula (38) as follows:

jm+γ(k|x− ξ|)
jm(k|x− ξ|)

Pm+γ(cos(θ0))

Pm(cos(θ0))
= Ex

[
v(Yτ)

hm,1(Yτ)

]
(46)
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Proceeding similarly, we find that Equations (41) and (42) are replaced by relations

Ex
ext

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
=

Pm+γ(cos(θ0))

Pm(cos(θ0))
Am(x, ξ, η)

Ex
int

[
Pm+γ(cos(Θτ))

Pm(cos(Θτ))

]
=

Pm+1(cos(θ0))

Pm(cos(θ0))
Bm(x, ξ, η),

from which we deduce that

Px
[
|Yτ | =

em

k

]
≥

Pm+γ(cos(θ0))

Pm(cos(θ0))
Am(x, ξ, η) and Px[|Yτ | = η] ≥

Pm+γ(cos(θ0))

Pm(cos(θ0))
Bm(x, ξ, η).

Consequently

Px[Θτ = θm+γ,1
]
= 1− Px

[
|Yτ | =

em

k

]
− Px[|Yτ | = η] ≤ 1−

Pm+γ(cos(θ0))

Pm(cos(θ0))
(Am(x, ξ, η) + Bm(x, ξ, η)).

The closer the angle θ0 is laid to the zero value, the more Px[Θτ = θm+γ,1
]

is sup-
pressed to zero, under the validity of the relation Am(x, ξ, η) + Bm(x, ξ, η) ≈ 1, induced by

Remark 1. In contrast to that, when θ0 approaches θm+γ,1, the factor Pm+γ(cos(θ0))
Pm(cos(θ0))

goes to

zero, taking down with it the probabilities Px[|Yτ | = em
k
]

and Px[|Yτ | = η] and amplifying
drastically the appearance of lateral crossings. This is the reason we insist on locating the
starting point of the stochastic process on the cone axis and then eventually eliminate the
probability of lateral surface hitting.

So far, we have studied some basic qualitative properties of the trajectories representing
the solutions of the underlying stochastic differential equations and derived estimations
for some crucial probabilities concerning the hitting points of these trajectories on the
components of the boundaries. Two cases have preoccupied our interest: The general
case D̃e

m,ε(ξ) as well as the more special conical region D̃e,γ
m (ξ). It will be clear during the

implementation of the method that a result of the type (31) pertaining to the first case
would be useful—actually in a stronger form—even for the second case as well. In this
direction, we state and prove the following lemmata.

Lemma 1. It holds that

ln
(

hm,1(Yτ)

jm(k|x− ξ|)

)
=

1
2

∫ τ

0

|∇hm,1(Yt)|2

h2
m,1(Yt)

dt− k2

2
τ +

∫ τ

0

∇hm,1(Yt)

hm,1(Yt)
· dBt (47)

Proof. The Itô formula gives

d(ln hm,1(Yt)) =
∇hm,1(Yt)

hm,1(Yt)
· dYt +

1
2

(
∇∇hm,1(Yt)

hm,1(Yt)
− ∇hm,1(Yt)∇hm,1(Yt)

h2
m,1(Yt)

)
: dYtdYt =

1
2
|∇hm,1(Yt)|2

h2
m,1(Yt)

dt +
1
2

∆hm,1(Yt)

hm,1(Yt)
dt +

∇hm,1(Yt)

hm,1(Yt)
· dBt =

1
2
|∇hm,1(Yt)|2

h2
m,1(Yt)

dt− k2

2
dt +

∇hm,1(Yt)

hm,1(Yt)
· dBt,

from where we obtain the sought result via time integration.

Lemma 2. For every ζ ∈ R, it holds that

Ex

 1

hζ2

m,1(Yτ)
e

[
ζ(ζ−1)

2
∫ τ

0
∇hm,1(Yt)
hm,1(Yt)

·dBt− k2ζ2
2 τ

] =
1

jζ2
m (k|x− ξ|)

(48)
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Proof. Equation (24) is equivalent to

d

 1

hζ
m,1(Yt)

e
− ζ

2
∫ t

0

[
k2+(ζ−1)

|∇hm,1(Ys)|2

h2
m,1(Ys)

]
ds

 = − ζ

hζ+1
m,1

∇hm,1 · dBt e
− ζ

2
∫ t

0

[
k2+(ζ−1)

|∇hm,1(Ys)|2

h2
m,1(Ys)

]
ds

Integrating over time until the first exit time and taking the expectation value as usual,
we obtain

Ex

 1

hζ
m,1(Yτ)

e
− ζ

2
∫ τ

0

[
k2+(ζ−1)

|∇hm,1(Yt)|2

h2
m,1(Yt)

]
dt

 =
1

jζ
m(k|x− ξ|)

(49)

The argument inside the expectation of the last expression can be handled via the
previous lemma as follows

1

hζ
m,1(Yτ)

e
− ζ

2
∫ τ

0

[
k2+(ζ−1)

|∇hm,1(Yt)|2

h2
m,1(Yt)

]
dt
=

jζ(ζ−1)
m,1 (k|x− ξ|)

hζ2

m,1(Yτ)
e

ζ(ζ−1)
2

∫ τ
0
∇hm,1(Yt)
hm,1(Yt)

·dBt− k2ζ2
2 τ

(50)

Combining Equations (49) and (50), we find that

Ex

 1

hζ2

m,1(Yτ)
e

[
ζ(ζ−1)

2
∫ τ

0
∇hm,1(Yt)
hm,1(Yt)

·dBt− k2ζ2
2 τ

] =
1

jζ2
m (k|x− ξ|)

.

The next proposition extends the main result of Proposition 3 not only for referring
to the alternative conical structure but mainly for ameliorating the rate of convergence as
γ diminishes:

Proposition 6. If the domain of the stochastic process (15) is D̃e,γ
m (ξ) and τ is the first exit time

from this domain, then the probability of escaping from the lateral surface, instead of the cups, in
finite time T has the estimate

Px({Xτ ∈ ∂D̃e,γ
m (ξ)

}
∩
{

Θτ = θm+γ,1
}
∩ {τ < T}

)
≤ e

k2ζ
2 T
(

jm(em)

jm(k|x− ξ|)

)ζ

Pζ
m(cos(θm+γ,1)), (51)

for any real ζ > 1.

Proof. We consider the set

VT =
{

ω ∈ Ω :
{

Xτ(ω) ∈ ∂D̃e,γ
m (ξ)

}
∩
{

Θτ(ω) = θm+γ,1
}
∩ {τ(ω) < T}

}
.

Thanks to the monotonicity of the spherical Bessel function, Jensen’s inequality for
conditional expectations and the independence of Yt, dBt, Equation (48) is transformed
as follows

e−
k2ζ2

2 T

jζ
2

m (em)Pζ2
m (cos(θm+γ,1))

Ex(e

[
ζ(ζ−1)

2
∫ τ

0
∇hm,1(Yt)
hm,1(Yt)

·dBt

]
|VT)Px(VT) ≤

1

jζ
2

m (k|x− ξ|)
⇒

e−
k2ζ2

2 Te
ζ(ζ−1)

2 Ex
[∫ τ

0
∇hm,1(Yt)
hm,1(Yt)

·dBt |VT

]
Px(VT) ≤

jζ2

m (em)

jζ
2

m (k|x− ξ|)
Pζ2

m (cos(θm+γ,1))⇒

Px(VT) ≤ e
k2ζ2

2 T jζ2

m (em)

jζ2
m (k|x− ξ|)

Pζ2

m (cos(θm+γ,1)) (52)
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Renaming ζ2 to ζ we have what the proposition states.

We mention here that we restrict ourselves to the interesting case ζ > 1. Actually,
the result with ζ < 1 is an immediate consequence of Proposition 3 with ε = θm,1 −
θm+γ,1 sufficiently small so that the right hand side of Equation (33) is less than unity.
The selection of ζ is related with the total travel time T. The exponential term remains
small when the term 2π2ζ T

λ2 does, where the wave-length λ of the process appears. The
quantity T

λ2 commonly emerges in stochastic processes involving appropriately the space
and time dimensions.

3.2. On Deriving Stochastic Representations for the Scattered Field

At this point, the involvement of the physical field representing the scattered wave
u presented in Section 2 takes place. We recall that this field belongs to the kernel of the
Helmholtz operator. Our aim is to embed appropriately this field in Dynkin’s calculus,
which has already profited throughout the treatment of the stochastic process under consid-
eration. More precisely, considering the field w(x) = u(x)

hm,1(x−ξ)
, j = 1, 2, we are in a position

to apply once more Dynkin’s formula leading to the stochastic representation

Ex
[

u(Xτ)

hm,1(Yτ)

]
=

u(x)
hm,1(x− ξ)

+ Ex
[∫ τ

0
A
(

u(Xs)

hm,1(Ys)

)
ds
]

, j = 1, 2. (53)

Denoting h = hm,1, we find that

A
(u

h

)
=
∇h
h
· ∇
(u

h

)
+

1
2

∆
(u

h

)
=

h∆
( u

h
)
+ 2∇h · ∇

( u
h
)
+
( u

h
)
∆h−

( u
h
)
∆h

2h
=

∆u + k2u
2h

= 0.

So Equation (53) becomes

u(x)
jm(k|x− ξ|) = Ex

[
u(Xτ)

hm,1(Yτ)

]
⇒ u(x) = jm(k|x− ξ|)Ex

[
u(Xτ)

hm,1(Yτ)

]
. (54)

Working in D̃e,γ
m (ξ), the last relation obtains the form

u(x) =
jm(k|x− ξ|)

jm(em)
Ex

ext

[
u(Xτ)

Pm(cos(Θτ))

]
+

jm(k|x− ξ|)
jm(kη)

Ex
int

[
u(Xτ)

Pm(cos(Θτ))

]
+

jm(k|x− ξ|)
Pm(cos(θm+γ,1))

Ex
lat

[
u(Xτ)

jm(k|Yτ |)

]
, x ∈ D̃e,γ

m (ξ) (55)

where we have taken into account the less probable but still possible event of stochastic
escaping via the lateral surface of D̃e,γ

m (ξ).
The Representation (55) constitutes one of the fundamental results of this work and will

be a subject of investigation during the examination of the inverse scattering problem. It has
a local character since it is valid in a conical region D̃e,γ

m (ξ) surrounding point x and defines
a specific portion of the exterior space. It constitutes a stochastic representation of the
value of physical field in the point x, involving three terms corresponding to stochastically
first time escaping events from the two spherical cups and the lateral surface of the cone.
The severe or mild implication of every portion of the manifolds, where escaping takes
place, has been revealed previously in this section. In brief terms, the Representation (55)
favors the information offered in the exterior cup at the same time that it suppresses the
importance of information that has taken place on the inner cup and eventually eliminates
the involvement of the lateral surface. So this representation seems to be more adequate
when we are interested in deriving a continuation of the remote field to the near field.

The immediate question arising on the basis of this discussion is whether there exists
another stochastic representation giving priority to information on the interior cup and sup-
pressing the involvement of data on the exterior spherical shell. This representation would
have the character of a near to remote field transformation. This is actually accomplished
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by giving a primitive role to the auxiliary function hm,2(Yt) = Pm(n̂ ·Yt/|Yt|)Qm,2(k|Yt|) =
Pm(cos(Θt))ym(k|Yt|) instead of hm,1(Yt), which has been exploited so far. Taking advan-
tage of the recurrence relation of spherical Bessel functions, we can transform Equation (13)
in the following form

dỸt = H̃m(k|Yt|)
Ỹt

|Ỹt|2
dt− sin(Θ̃t)P′m(cos(Θ̃t))

|Ỹt|Pm(cos(Θ̃t))

ˆ̃Θtdt + dBt, (56)

with

H̃m(λ) :=
λym−1(λ)

ym(λ)
− (m + 1), λ > 0. (57)

This radial driving term is now negative (Figure 3) and has opposite behavior com-
pared to Hm. It is not the goal of this work to repeat all the theoretical investigation for
this new stochastic differential System (56) but it is now recognizable to follow the main
characteristics of the stochastic trajectories ruled by the negative driving term (57).

Figure 3. The increasing negative function H̃m(λ) for m = 26.

We remark easily, imitating the arguments presented in Proposition 1, that Ex(|Yτ |2) <
|x− ξ|2 and so we expect an inward directivity of the new set of trajectories. Actually, in
the new situation, the point ξ is not a repellent point but an attractor for the stochastic paths.
Indeed, a straightforward application once again of the concepts presented in Proposition 4
leads to the estimations

Px
[{
|Yτ | =

em

k

}
∩ {Θτ < θm+γ(a)}

]
≤ 1

(1− a)
Ãm(x, ξ, η) and Px[{|Yτ | = η}] ≥ B̃m(x, ξ, η) (58)

with

Ãm(x, ξ, η) =
ym(em)

ym(k|x− ξ|)
[jm+γ(k|x− ξ|)ym+γ(kη)− jm+γ(kη)ym+γ(k|x− ξ|)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]

B̃m(x, ξ, η) =
ym(kη)

ym(k|x− ξ|)
[jm+γ(em)ym+γ(k|x− ξ|)− jm+γ(k|x− ξ|)ym+γ(em)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]
.

As special function properties reveal, B̃m(x, ξ, η) is, for most of the parameter cases,
close to unity, while Ãm(x, ξ, η) lies in the vicinity of zero. Actually, we meet here the
mirror situation, in which the trajectories starting from the axial point x converge inwards,
attracted by the vertex ξ.
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Working in D̃e,γ
m (ξ), we are in a position to present, in a way analogous with Equation (55),

the representation of the scattered field in terms of the inward directed stochastic process:

u(x) =
ym(k|x− ξ|)

ym(em)
Ex

ext

[
u(X̃τ)

Pm(cos(Θ̃τ))

]
+

ym(k|x− ξ|)
ym(kη)

Ex
int

[
u(X̃τ)

Pm(cos(Θ̃τ))

]

+
ym(k|x− ξ|)

Pm(cos(θm+γ,1))
Ex

lat

[
u(X̃τ)

ym(k|Ỹτ |)

]
, x ∈ D̃e,γ

m (ξ) (59)

The fundamental Expressions (55) and (59) give the essential basis to design the geo-
metric characteristics of the conical structure. A common feature in these expressions is
the presence of the ratios of spherical Bessel functions defined on the point x as well as on
the external and internal surface of the cone. These fractions can obtain very unbalanced
values in the case that the position arguments are chosen arbitrarily. This is expected since
these coefficients multiply expectation values of different orders due to the imposed condi-
tional stochastic laws. So the selection of the geometrical characteristics of the detached
conical region should obey the necessity to allow high sensitivity on revealing all types of
data. In addition, the third terms in both representations incorporate a ratio between two
controversial terms: The expectation value over the very few lateral escaping points and
the very small value of the Legendre term Pm(cos(θm+γ,1)). This is a very interesting tag
of war, whose investigation has caused the probabilistic analysis leading to Proposition 6.
Actually, apart from the possibly large period of time T, the mentioned ratio is proportional
to Pζ−1

m (cos(θm+γ,1)), ζ > 1, which converges to 0 as γ → 0. These and relevant matters
merit special treatment when application of the method takes place in the next section.

The Representations (55) and (59) have been built on the basis of, respectively, strongly
outward and inward moving stochastic trajectories. They develop by nature a strong
preference to represent the field at x by data confined in the far field domain or the near
field region, respectively. What remains is to explore the possibility of constructing a
representation giving an equivalent role to the spherical cups and still deteriorating the
role of the lateral surface. This can be realized via the implication of a modified driving
term that stemmed from a linear combination of the spherical Bessel functions jm and ym.
In fact, we start with the modified auxiliary function gm(λ) = Cm jm(λ)− ym(λ), where the
mixture coefficient will be determined methodologically later on. This radial function gives
birth to the Helmholtz equation solution hm,3(Y̆t) = gm(k|Y̆t|)Pm(cos Θ̆t), which as usual
generates the set of stochastic differential equations

dY̆t = H̆m(k|Y̆t|)
Y̆t

|Y̆t|2
dt− sin(Θ̆t)P′m(cos(Θ̆t))

|Y̆t|Pm(cos(Θ̆t))
̂̆Θtdt + dBt, (60)

where

H̆m(λ) :=
λg′m(λ)
gm(λ)

=
λ[Cm jm−1(λ)− ym−1(λ)]

gm(λ)
− (m + 1), λ > 0. (61)

The stochastic representation obtains now the form

u(x) =
gm(k|x− ξ|)

gm(em)
Ex

ext

[
u(X̆τ)

Pm(cos(Θ̆τ))

]
+

gm(k|x− ξ|)
gm(kη)

Ex
int

[
u(X̆τ)

Pm(cos(Θ̆τ))

]
+

gm(k|x− ξ|)
Pm(cos(θm+γ,1))

Ex
lat

[
u(X̆τ)

gm(k|Y̆τ |)

]
, x ∈ D̃e,γ

m (ξ) (62)

To reveal the special features of this representation, we need to explain its particular
building. The selection of the parameters has a hierarchical structure. The cone D̃e,γ

m (ξ)
defines the crucial dimensions η and L = em

k . Then the coefficient Cm in the definition
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formula of gm is chosen such that the function gm obtains the same values at the end points
of its domain, i.e., gm(kη) = gm(em). This means that

Cm =
ym(em)− ym(kη)

jm(em)− jm(kη)
(63)

Then the coefficients gm(k|x−ξ|)
gm(em)

and gm(k|x−ξ|)
gm(kη)

of the first two terms of the Represen-
tation (62) are equal and the equipartition has arisen as a possibility. What remains is to
ascertain that the probabilities of hitting the two cups are comparable. This can be realized
if the point x is appropriately selected. To show the selection criterion for the observation
point, let us examine the example pictured in Figure 4.

Figure 4. The driving terms of the three stochastic representations for m = 29. The geometrical
parameters were selected as kη = π and e29 = 10π. Then, according to the rule (63), the radial
function g29 has the form g29(λ) = 1.41× 1025 j29(λ)− y29(λ).

We remark that the modified driving term H̆m(λ) is separated into two branches—
each one coinciding with one of the driving terms of the older stochastic processes—plus
an abrupt transition region from the one situation to the other. The function H̆m(λ)
vanishes when g′m(λ) becomes zero, as implied by Equation (61). The imposed condition
gm(kη) = gm(em) and the specific monotonicity behavior of gm in the interval [kη, em]
guarantee the existence of only one point λm where g′m vanishes and simultaneously gm
takes its minimal value.

As a simple analysis reveals and Figure 5 demonstrates, the constituents Cm jm and
(−ym) of gm take the same value near the minimum point λm, i.e.,

Cm jm(k|x− ξ|) = −ym(k|x− ξ|) = 1
2

gm(k|x− ξ|). (64)

The unique point x, satisfying Equation (64), is selected to define the initial point x
of the stochastic process. Every trajectory emanating from x is subjected, in the beginning
of its travel, to a pure Brownian boost since the driving term is locally zero. So its initial
directivity obeys the Brownian law, but once it finds an orientation, the driving term obtains
abruptly one of the already studied inward or outward behaviors, pushing the trajectory
to cross the corresponding cup. Intuitively, one half of the trajectories meets the exterior
cup, while the other half escapes from the smaller inner spherical shell. This indication
can be verified rigorously. Indeed, the above encountered probabilistic analysis applies
again to define estimates of the hitting probabilities. Following the argumentation met
in Proposition 4, using Equation (64) and the asymptotic analysis of the involved special
functions, we find that
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Px
[{
|Yτ | =

em

k

}]
≥ Ăm(x, ξ, η) :=

gm(em)

gm(k|x− ξ|)
[jm+γ(k|x− ξ|)ym+γ(kη)− jm+γ(kη)ym+γ(k|x− ξ|)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]

≈ Cm jm(em)

2Cm jm(k|x− ξ|)
jm+γ(k|x− ξ|)

jm+γ(em)
→

γ→0

1
2

(65)

Px[{|Yτ | = η}] ≥ B̆m(x, ξ, η) :=
gm(kη)

gm(k|x− ξ|)
[jm+γ(em)ym+γ(k|x− ξ|)− jm+γ(k|x− ξ|)ym+γ(em)]

[jm+γ(em)ym+γ(kη)− jm+γ(kη)ym+γ(em)]

≈ (−ym(kη))

2(−ym(k|x− ξ|))
ym+γ(k|x− ξ|)

ym+γ(kη)
→

γ→0

1
2

(66)

Figure 5. The function g29 and its constituent terms near the minimum point λ29.

The design of the geometrical parameters involved in the third representation has
been applied in a specific sequence, which will be proved useful in the framework of the
inverse problem. As far as the direct problem is concerned, the reasonable hierarchy is
a little bit different: The first concern is the selection of the observation point x and the
next step is the determination of the coefficient Cm appearing in gm by demanding the
validity of relation Cm jm(k|x− ξ|) = −ym(k|x− ξ|) (see Equation (64)). Then what remains
is the determination of the interior and exterior radii η, em

k . These parameters could be
selected arbitrarily but in that case the probabilities of escaping through the shells would be
of different order and then the coefficients gm(k|x−ξ|)

gm(em)
and gm(k|x−ξ|)

gm(kη)
of Representation (62)

would be unbalanced in order to compensate this unfitness. If equipartition of escaping
is desired then the one parameter is selected freely and the other one must chosen (the
selection is unique) so that gm(kη) = gm(em). Additional criteria concerning the choice of
the free parameters have numerical origin and will be presented in the next section.

Summarizing, the Representation (62) gives an equivalent role to the exterior and
interior spherical shells since the involved coefficients are balanced to keep the same order
while the probabilistic status favors the equipartition of the produced trajectories. The third
lateral term is again predominated by the term Pζ−1

m (cos(θm+γ,1)), ζ > 1 and fades away
when γ→ 0. The Representation (62) is the conditionally probabilistic analogue of Green’s
integral representation in the direct scattering problem with the advantage of validity on
cropped conical portions of the exterior space having as spherical cups subsets of the far
field region and the scatterer’s surface.

4. The Application Features of the Stochastic Implementation

The stochastic differential Equations (15) can be slightly modified on the basis of
recurrent relations valid for spherical Bessel and Legendre functions, thus providing the
discretized Euler scheme [15]
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Y0 = (Y(1)
0 , Y(2)

0 , Y(3)
0 ) = x

Y(i)
n+1 = Y(i)

n −
[
(2m + 1)

|Yn|2
Y(i)

n −
kY(i)

n jm−1(k|Yn|)
|Yn|jm(k|Yn|)

]
∆tn −

P′m−1(cos θn)

Pm(cos θn)

1

|Yn|2
Y(i)

n ∆tn + ∆B(i)
n , i = 1, 2

Y(3)
n+1 = Y(3)

n −
[
(2m + 1)

|Yn|2
Y(3)

n − kY(3)
n jm−1(k|Yn|)
|Yn|jm(k|Yn|)

]
∆tn +

mPm−1(cos θn)

cos θnPm(cos θn)

1

|Yn|2
Y(3)

n ∆tn + ∆B(3)
n . (67)

Similarly, the dual stochastic differential System (56) leads to the discretized scheme

Ỹ0 = (Ỹ(1)
0 , Ỹ(2)

0 , Ỹ(3)
0 ) = x

Ỹ(i)
n+1 = Ỹ(i)

n −
[
(2m + 1)

|Ỹn|
2 Ỹ(i)

n −
kỸ(i)

n ym−1(k|Ỹn|)
|Ỹn|ym(k|Ỹn|)

]
∆tn −

P′m−1(cos θn)

Pm(cos θn)

1

|Ỹn|
2 Ỹ(i)

n ∆tn + ∆B(i)
n , i = 1, 2

Ỹ(3)
n+1 = Ỹ(3)

n −
[
(2m + 1)

|Ỹn|
2 Ỹ(3)

n − kỸ(3)
n ym−1(k|Ỹn|)
|Ỹn|ym(k|Ỹn|)

]
∆tn +

mPm−1(cos θn)

cos θnPm(cos θn)

1

|Ỹn|
2 Ỹ(3)

n ∆tn + ∆B(3)
n . (68)

Both Euler schemes (in [7], we presented an approach of higher accuracy leading
to a stronger Taylor scheme inspired by [15], but this is not necessary in the framework
developed herein) are sufficient in the case of relatively spacious cones and their comparison
with the static case [7] reveals the influence of the wave number k. Examining first the
Scheme (68), we see that when k→ 0, we take the stochastic framework encountered in [7].
Consequently, in the absence of k, the term − (2m+1)

|Yn |2
Y(i)

n has the main contribution to radial

driving of the stochastic process, representing mainly the attraction of the conical vertex ξ.
However, the situation changes drastically when handling the stochastic law (67).

This can be easily conceived when k|Yn| → 0 and the asymptotic regime for the spherical

Bessel functions is evoked. Then the term (2m+1)
|Yn |2

Y(i)
n − kY(i)

n jm−1(k|Yn |)
|Yn |jm(k|Yn |) tends to zero and

the dominating factor in drift is mPm−1(cos θn)
cos θnPm(cos θn)

1
|Yn |2

Y(3)
n ∆tn, forcing the trajectory to move

upwards, as already predicted analytically in previous paragraphs. In addition, the terms

− P′m−1(cos θn)

Pm(cos θn)
1
|Yn |2

Y(i)
n ∆tn, i = 1, 2 do not allow the paths to move far away from the

local z-axis.
The combined Scheme (60) merits its own attention, but, as already explained, the

initial direction of the trajectory activates one of the possible branches (the outward or
inward scheme) that have been described above. Actually, every numerical experiment is
evolved with probability one half via the rule (67) or (68) exclusively, since going back in
the opposite direction has a tremendously small likelihood.

Having in mind the remarks above, we focus on the first stochastic System (67) and
investigate the geometric ingredients of the conical region D̃e,γ

m (ξ) where the Representation
(55) applies. As far as the crucial parameter em, defining the height of the cone, is concerned,
it is necessary that em is slightly less than the first local maximum point of jm. To clarify
this criterion, we present for example the case (m = 8) in Figure 6.

It is clear that only when e8 is chosen to be less than the first maximum point
λ8,1 = 10.01 of j8, the driving termH8 remains positive in the whole interval [0, e8). To take
advantage of all the available space, it is preferable to choose the parameter em to be less
and close to the first maximum point λm,1 of jm. In Table 1 we see some important cases
which will emerge in the applications. It is noticed that the appeared height of the cones is
the maximal possible for every particular m. Nevertheless, we have the flexibility to select
smaller heights if this is useful.
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Figure 6. The decreasing positive functionH8(λ) and the subsequent spherical Bessel function j8(λ).

Table 1. Some characteristic cones for several values of the parameter m.

Parameter m Defining the Spherical Bessel jm The Maximal Height of the Cone em
k = em

2π λ

3 λ
2

4 3λ
4

5 λ

8 3λ
2

11 2λ

29 5λ

When m augments then the parameter em (the height of the cone) increases while the
cone becomes narrower as the interior protective cone is defined by the angle θm+γ,1 =
arccos(χm+γ,1), which is a decreasing sequence. The selection of the parameter η is based
on the remark that in the beginning of the process, the driving term offers an axial boost

mPm−1(cos θn)
cos θnPm(cos θn)

1
|Yn |2

Y(3)
n ∆tn|n=0 = m(x−ξ)

|x−ξ|2 ∆t0, which becomes extremely large when x ap-

proaches ξ. Then if we are interesting in assigning rapid directivity to the outward orienta-
tion of the process, we are obliged to design a small distance |x− ξ|, a fact rendering even
smaller the distance η. In most of the numerical experiments of the outwards orientated
stochastic cluster, the reference selection kη < 0.005π was adopted in connection with the
choice k|x− ξ| < 0.01π. What remains is defining the parameter γ for every particular m.
Referring to Equation (55), the second term jm(k|x−ξ|)

jm(kη)
Ex

int

[
u(Xτ)

Pm(cos(Θτ))

]
has a coefficient of

order one thanks to the proximity of the arguments x, ξ and so this term is governed by
the very small probability of first exit from the interior shell, being so suppressed. The first
term jm(k|x−ξ|)

jm(em)
Ex

ext

[
u(Xτ)

Pm(cos(Θτ))

]
is strongly favored by the probabilistic law since the major-

ity of the trajectories hit this cup. This term has apparently a generally small coefficient
jm(k|x−ξ|)

jm(em)
—due to the monotonicity of the Bessel function—but this just implies that the

main contribution of the expectation is produced from strikes near the angle θm+γ,1 where
the denominator takes small values. It is important to determine γ in a normalization
sense in order for the leading term of the representation to be implemented numerically
efficiently. There are several good choices, as numerical experiments revealed, but the
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optimized one has an exponential structure. One convenient choice leading to a balanced
representation, as will be verified later, consists in taking γ = γν such that

Pm(cos θm+γν ,1) = e−
1

e(ζ−1)

(
jm(em)

jm(k|x−ξ|)

)ν+2

, ν > ζ − 2, (69)

where we meet the parameter ζ introduced in Proposition 6. This is always possible since
Pm(cos θm+γ,1)→ 0 monotonically as γ goes to zero. Then, the first leading term of Represen-
tation (55) is an expectation involving the field u(x)—over the exterior cup—with a multiplica-
tive function

(
jm(k|x−ξ|)

jm(em)

)
1

Pm(cos(Θτ))
, which (as we move to the circular boundary of the cup)

approaches the value
(

jm(k|x−ξ|)
jm(em)

)
1

Pm(cos θm+γν ,1)
that equals

(
jm(k|x−ξ|)

jm(em)

)
e

1
e(ζ−1)

(
jm(em)

jm(k|x−ξ|)

)ν+2

,

which is greater (it holds that xe
a
x ≥ ea, ∀x > 0, when a > 0) than 1

(ζ−1)

(
jm(em)

jm(k|x−ξ|)

)ν+1
.

Consequently, the greater the parameter ν, the stronger the weighting of the involvement of
the marginal hitting points near the peripheral circle of the exterior cup. This has a parallel
pace with the diminishing of the estimate expressing the contribution of the whole lateral
conical surface. Indeed, evoking Proposition 6 (applied with γ = γν), the lateral term is
bounded as follows:

jm(k|x− ξ|)
Pm(cos(θm+γ,1))

∣∣∣∣Ex
lat

[
u(Xτ)

jm(k|Yτ |)

]∣∣∣∣ ≤ C
jm(k|x− ξ|)

jm(kη)
e

k2ζ
2 T
(

jm(em)

jm(k|x− ξ|)

)ζ

Pζ−1
m (cos(θm+γ,1))

≤ C′e
k2ζ

2 T
(

jm(em)

jm(k|x− ξ|)

)ζ

e−
1
e

(
jm(em)

jm(k|x−ξ|)

)ν+2

(70)

<< C′e
k2ζ

2 T
(

jm(k|x− ξ|)
jm(em)

)ν+2−ζ

, ν > ζ − 2. (71)

The discussion above offers some a priori analytical origin to the selection criteria of the
several involved parameters, whose final choice obeys of course the specific characteristics
of the separate particular cases encountered in next sections.

5. On Exploiting the Remote Field via Stochastic Analysis in the Service of the Inverse
Scattering Problem

In this section it will be demonstrated how the far field information is transferred
on the surface of a sphere CR enclosing the space that is occupied by the scatterer and
belonging to the regime of the near field. This sphere is centered at the coordinate origin O,
has radius R and could be the circumscribing sphere of the scatterer. If the scatterer is a
convex structure then the sphere could be replaced by the surface ∂D of the scatterer itself
and this is a special and interesting case that merits separate treatment and is presented in
the forthcoming subsection.

The goal is to transfer the data given in the far field region on the surface of the sphere
CR. What is offered as data is the far field pattern or equivalently the Dirichlet to Neumann
operator (for some possible selections of the directivity k̂ of the incident wave) in a large
sphere with radius RL equal to a few wavelengths. Focusing on a specific orientation x̂1,
the distance RL − R has to be interpreted as the height L of a cone K1, having as axis this
orientation and as vertex the uniquely determined point ξ1 of the sphere CR (see Figure 7).
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Figure 7. Transferring data from the far field to the near field region.

This selection gives birth to the dimensionless quantity kL, which must be fitted
with the appropriate parameter em discussed earlier. In other words, we have to select
the appropriate order m such that kL is slightly smaller than the first maximum point
of jm. The interior cup of the cone is selected via the choice of the parameter η, which
as discussed in the previous section is assigned a considerably small value for several
reasons. Then we construct the appropriate combination gm = Cm jm − ym, by selecting
Cm via the rule (63), assuring that gm obtains the same values at the upper and lower cups
of the cone (gm(kη) = gm(em)). Given the parameter m, the angle of the cone is defined
uniquely and equals θm+γν ,1. Then the starting point x1 of the stochastic process is selected
according to the Formula (64). We recall that this choice establishes the equipartition of
spreading of trajectories towards the cups of the conical structure. We proceed then to
the solution of the stochastic differential System (60) in combination with Equation (61)
and the starting condition Y̆0 = x1 − ξ1. As discussed above, every numerical experiment
obeying to the aforementioned stochastic law, splits with probability 1

2 to one of the dual
numerical Schemes (67) and (68) presented in Section 4. The crucial point though is
that Formula (62) is adequate to apply not to the physical field u but to the vector field
M(X̆t) = (X̆t − x1) ×∇u(X̆t). First, this is legitimate since the field M belongs to the
kernel of the Helmholtz operator. It is actually reminiscent of one of the three respectively
perpendicular Navier eigenvectors constructed on the basis of a scalar solution of the
Helmholtz equation, via repeated suitable application of the curl operator. Secondly, it is
an efficient choice since M constitutes a null field at the point x1. This annihilation leaves
active in the stochastic representation only the contributions of the field on the spherical
walls of the conical structure. On the basis of the equipartition property gm(kη) = gm(em)
and Relation (70), the Equation (62) becomes

0 = M(x1) =
gm(k|x1 − ξ1|)

gm(em)
Ex1

ext

[
M(X̆τ)

Pm(cos(Θ̆τ))

]
+

gm(k|x1 − ξ1|)
gm(kη)

Ex1
int

[
M(X̆τ)

Pm(cos(Θ̆τ))

]
+

gm(k|x1 − ξ1|)
Pm(cos(θm+γ,1))

Ex1
lat

[
M(X̆τ)

gm(k|Y̆τ |)

]
⇒

0 =
gm(k|x1 − ξ1|)

gm(em)

[
Ex1

ext

[
M(X̆τ)

Pm(cos(Θ̆τ))

]
+ Ex1

int

[
M(X̆τ)

Pm(cos(Θ̆τ))

]]
+

O

(
e

k2ζ
2 T
(

jm(em)

jm(k|x− ξ|)

)ζ

e−
1
e

(
jm(em)

jm(k|x−ξ|)

)ν+2
)

, ν > ζ − 2.⇒
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Ex1
ext

[
M(X̆τ)

Pm(cos(Θ̆τ))

]
+ Ex1

int

[
M(X̆τ)

Pm(cos(Θ̆τ))

]
= O

(
e

k2ζ
2 T
(

jm(em)

jm(k|x− ξ|)

)ζ+1

e
− 1

e

(
jm(em)

jm(k|x1−ξ1 |)

)ν+2
)

, ν > ζ − 2.

For large ν (which affects slightly but effectively γν and the cone via its angle) the right
hand side of the last equation fades away exponentially. In addition, given that kη << 1,

the interior cup is shrunk and the expectation value over it behaves as Ex
int

[
M(X̆τ)

Pm(cos(Θ̆τ))

]
≈

−y1 ×∇u(ξ1)Ex
int

[
1

Pm(cos(Θ̆τ))

]
, where y1 = x1 − ξ1. So we obtain what is a simple but one

of the fundamental results of this work:

ŷ1 ×∇u(ξ1) =
1

|x1 − ξ1|Ex1
int

[
1

Pm(cos(Θ̆τ))

]Ex1
ext

[
(X̆τ − x1)×∇u(X̆τ)

Pm(cos(Θ̆τ))

]
, (72)

expressing the tangential derivative ∇Su over the the sphere CR at the point ξ1. Then
knowing ∇u (this is not identical to the information offered by the far field pattern but
strongly related to that. It is of course reminiscent of the gathered information offered by
the Dirichlet to Neumann operator for a specific wave number and a concrete direction
of incidence. See Remark 2) on the suitable portion of the far field region leads to the
determination of the tangential derivative of the field on the—potentially–circumscribing
sphere of the scatterer. If we are interested in determining fully the gradient of u in ξ1, we
need to repeat the process above via the implication of a cone K′1 with the same vertex ξ1,
vertical axis normal to the axis of K1 and identical geometrical parameters. This process
incorporates a new set of numerical stochastic experiments concerning now the stochastic
process X̆′t involves data on a different portion of the remote region (see Figure 7) and
provides that

ŷ′1 ×∇u(ξ1) =
1

|x′1 − ξ1|E
x′1
int

[
1

Pm(cos(Θ̆′τ))

]Ex′1
ext

[
(X̆′τ − x′1)×∇u(X̆′τ)

Pm(cos(Θ̆′τ))

]
, (73)

where ŷ′1 is normal to ŷ1 and |x′1 − ξ1| = |x1 − ξ1|. Determining thus ŷ1 ×∇u(ξ1) and
ŷ′1 ×∇u(ξ1) implies reconstruction of the full vector field ∇u(ξ1). The last assertion holds
even in the case that the surrounding surface is not spherical and so the vector ŷ1 is not
necessarily the normal vector on the surface. The same situation can be repeated for every
arbitrary point ξ2 located on CR. The selection of the secondary perpendicular cone is
arbitrary and depends on the availability of data (see Figure 7).

Combining Equations (72) and (73), suppressing indices, setting ŷ′′ = ŷ × ŷ′ and
exploiting the identical geometric characteristics of the cones, we easily prove that

∇u(ξ) =
1

|x− ξ|Ex
int

[
1

Pm(cos(Θ̆τ))

][(ŷ′ŷ′′ − ŷ′′ŷ′) · Ex
Sext,x

[
(X̆′τ − x)×∇u(X̆τ)

Pm(cos(Θ̆τ))

]

−ŷŷ′′ · Ex′
Sext,x′

[
(X̆′τ − x′)×∇u(X̆′τ)

Pm(cos(Θ̆′τ))

]]
. (74)

In fact, it is not always necessary to use a different set of cones (and far field subregions)
for every particular point ξ of the surrounding near field surface. This remark can be
explained in a converse manner introducing the well known case of the restricted far field
data. The question is to determine the range of influence of this restricted set. Indeed, let
us assume that the vector ∇u is measured on a portion S0 of the remote field regime. As
depicted in Figure 8, the surface element S0 defines a truncated cone Str which divides the
surface CR into two parts, the shadowed one and its complement C+

R , on which a grid of
points ξi can be distributed.
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Figure 8. The region of influence of the data confined on S0.

Every such point constitutes the vertex of a cone whose base is the sub-surface S0.
These cones do not have—in their majority—upper spherical cups orientated with their axis
ŷi, but this geometrical slight declination does not affect the probabilistic setting developed
so far given that the influence of the bases to the evolution of the trajectories applies only
to the final steps of their travel. In summary, if only ŷi ×∇u(ξi) are to be determined
(for a plethora of points ξi, i = 1, 2, ..., N on C+

R ), then the information on S0 is enough.
Moreover, if we are interested in determining the vectors ∇u(ξi) themselves, we evoke
the dual perpendicular cones (as demonstrated in Figure 7) whose base assembly forms a
supplementary far field data region of indispensable utility.

The method will be accomplished after the determination of u itself on CR is ful-
filled. We consider the—perpendicular to M—vector solution of the Helmholtz equation
N(x; α) = ∇ × M(x)|xi=α. It is easily proved that the scalar field v(x; α) := (x − α) ·
N(x; α) = 2(x − α) · ∇u(x) + (x − α)(x − α) : ∇∇u(x) + k2|x − α|2u(x) belongs also to
the kernel of the Helmholtz operator and is annihilated clearly at the point α. Let us,
for example, pay attention to the stochastic Representation (62) in connection with the
conical structures with vertex point ξ2 of Figure 7. We take into account three mutually
vertical cones K2, K′2, K′′2 (geometrically identical) and apply Equation (62) to the Helmholtz
equation solutions v(x; x2), v(x; x′2) and v(x; x′′2 ), respectively. We obtain then

v(ξ2; α) = − 1

Eα
int

[
1

Pm(cos(Θ̆(α)
τ ))

]Eα
ext

[
v(X̆(α)

τ ; α)

Pm(cos(Θ̆(α)
τ ))

]
, for α = x2, x′2 and x′′2 (75)

In the far field regime |x| → ∞ and especially on the three surface portions Sext,2, S′ext,2,
S′′ext,2, the field v(x; α) has the asymptotic behavior v(x; α) ≈ 2x · ∇u(x) + xx : ∇∇u(x) +
k2|x|2u(x) = −Bu(x), where we meet the well known Beltrami operator B. In Remark 2,
we investigate the characteristics of the function F1(x) = Bu(x) and its mining mechanism
from the offered data.

We proceed by adding the Relations (75) for α = x2, x′2 and x′′2 . The left hand side of
the produced equation is proved to be equal to −2|x2 − ξ2|(ŷ2 + ŷ′2 + ŷ′′2 ) · ∇u(ξ2) + |x2 −
ξ2|2∆u(ξ2) + 3k2|x2− ξ2|2u(ξ2)= −2|x2− ξ2|(ŷ2 + ŷ′2 + ŷ′′2 ) · ∇u(ξ2) + 2k2|x2− ξ2|2u(ξ2),
if we take into account that u satisfies the Helmholtz equation. Taking the interior expecta-
tions to be identical and suppressing subscripts (referring to a generic point ξ), we obtain
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−2|x− ξ|(ŷ + ŷ′ + ŷ′′) · ∇u(ξ) + 2k2|x− ξ|2u(ξ) =
∑α∈{x,x′ ,x′′} Eα

Sext,α

[
F1(X̆(α)

τ )

Pm(cos(Θ̆(α)
τ ))

]
Ex

int

[
1

Pm(cos(Θ̆(x)
τ ))

] .

Exploiting Equation (74), we find

u(ξ) = 1

2k2|x−ξ|2Ex
int

[
1

Pm(cos(Θ̆(x)
τ ))

]{∑α∈{x,x′ ,x′′} Eα
Sext,α

[
F1(X̆(α)

τ )

Pm(cos(Θ̆(α)
τ ))

]

+ (ŷ′′ − ŷ′) · Ex
Sext,x

[
(X̆(x)

τ −x)×∇u(X̆(x)
τ )

Pm(cos(Θ̆(x)
τ ))

]
− ŷ′′ · Ex′

Sext,x′

[
(X̆(x′)

τ −x′)×∇u(X̆(x′)
τ )

Pm(cos(Θ̆(x′)
τ ))

]} (76)

which constitutes one of the basic results of this work.

Remark 2. The scattered field u(X) = u(X; k̂, k), obeys the Atkinson–Wilcox expansion [11]

u(X) =
eik|X|

|X|
∞

∑
n=0

fn(X̂; k̂, k)
|X|n (77)

outside the circumscribing sphere (|X| > R), where we encounter the radiation pattern f0(X̂; k̂, k) =
u∞(X̂; k̂, k), which appeared in Equation (4). In second order approximation, we have the following
asymptotic form for the remote field:

u(X) =
eik|X|

|X|

[
f0(X̂; k̂, k) +

1
|X| f1(X̂; k̂, k)

]
+ u2(X), |X|2u2(X)→ 0, as |X| → ∞ (78)

The coefficients fn are related via the well known [11] recursion scheme 2ikn fn = n(n −
1) fn−1 + B fn−1, n = 1, 2, .... So the field F1(X) = Bu(X) that appeared in the Representation
(76) is expressed as

F1(X) = Bu(X) =
eik|X|

|X| B f0(X̂; k̂, k) + O(
1
|X|2 ) =

eik|X|

|X| 2ik f1(X̂; k̂, k) + O(
1
|X|2 ) as |X| → ∞, (79)

involving thus the second order approximation f1 of the remote field expansion. The direct detection
of f1 in measurements via (78) is complicated and demanding since it requires high sensitivity
analysis and suffers from the implication of measurement errors. However, its determination via a
posteriori analysis of data is straightforward: The far field pattern always has expansion in terms of
the spherical harmonics Ym

n

f0 =
∞

∑
n=0

n

∑
m=−n

bm
n Ym

n , with coefficients bm
n =

∫
Ω

f0(X̂)Ym
n (X̂)dX̂. (80)

(Ω stands for the unit sphere). Theoretically, in the absence of noise, the coefficients bm
n rapidly

decay, satisfying [16] the growth condition ∑∞
n=0

( 2n
keR
)2n

∑n
m=−n |bm

n |2 < ∞. In practice, the
coefficients bm

n are calculated via the integrals that appeared in (80) on the basis of the measured
far field and then an expansion of the possibly polluted pattern f0 in terms of spherical harmonics
(see again (80)) can be constructed. Due to noise, the expansion coefficients of f0 could violate the
aforementioned growth condition but generally maintain a rapidly decreasing behavior.

Thus, the field 2ik f1 = B f0 is represented as the expansion 2ik f1 = −∑∞
n=0 n(n + 1)

∑n
m=−n bm

n Ym
n , taking into consideration the fact that the spherical harmonics Ym

n are the eigen-
functions of the Beltrami operator B (BYm

n = −n(n + 1)Ym
n ). The last expansion represents a

stable estimation of f1 in the case that the noise corruption does not alter the before-mentioned
growth behavior to such an extent that the reasonable and much weaker summability condition
∑∞

n=0 n2(n + 1)2 ∑n
m=−n |bm

n |2 < ∞ is violated.
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The same process is followed to construct numerical implementations of the remote vector wave
field (X− x)×∇u(X), participating in the expectations that appeared in representations (74) and
(76). Indeed, in the case that the starting point x of the stochastic process is designed to belong to
the near field region and especially close to the vertex ξ, the function (X − x)×∇u(X) behaves
like eik|X|

|X| X̂ ×D f0(X̂) as |X| → ∞, where we recognize the spherical surface tangential gradient

D = θ̂ ∂
∂θ +

1
sin θ

∂
∂φ . Evoking the spherical harmonic expansion of the far field pattern, we find that

(X− x)×∇u(X) ≈ eik|X|

|X| X̂×D f0(X̂) =
eik|X|

|X| X̂×
∞

∑
n=0

n

∑
m=−n

bm
n DYm

n (X̂)

= − eik|X|

|X|
∞

∑
n=0

n

∑
m=−n

√
n(n + 1)bm

n Cm
n (X̂), |X| → ∞, (81)

where there emerges, for every pair (n, m), one of the Hansen mutually orthogonal vector spherical
harmonics (i.e., the eigenvectors Pm

n (X̂) = X̂Ym
n (X̂), Bm

n (X̂) = 1√
n(n+1)

DYm
n (X̂) and Cm

n (X̂) =

1√
n(n+1)

DYm
n (X̂)× X̂ ).

The final step of the method is to implement the Representations (74) and(76) by
evoking Monte Carlo simulations of the emerged expectation values over the spherical
cups. Thus, for every cone under consideration we perform N repetitions of independent
stochastic experiments, providing trajectories obeying the stochastic differential System (60).
These trajectories are gathered and special attention is paid to their traces over the exterior
and interior surfaces of the cones. On these exit points, we calculate the contribution of
the involved fields, which are present in the expectation arguments and take appropriately
the mean values of the accumulated terms. Consequently, Representation (76) acquires the
numerical implementation

u(ξ) = 1

2k2|x−ξ|2 ∑
N(x)

int
j=1

 1

Pm(cos(Θ̆(x)
j ))


{

∑α∈{x,x′ ,x′′} ∑
N(α)

ext
i=1

[
F1(X̆(α)

i )

Pm(cos(Θ̆(α)
i ))

]

+ (ŷ′′ − ŷ′) ·∑N(x)
ext

i=1

[
(X̆(x)

i −x)×∇u(X̆(x)
i )

Pm(cos(Θ̆(x)
i ))

]
− ŷ′′ ·∑N(x′)

ext
i=1

[
(X̆(x′)

i −x′)×∇u(X̆(x′)
i )

Pm(cos(Θ̆(x′)
i ))

]}
,

(82)

where N(α)
ext represents the number of exits of the trajectories through the exterior surface

of the cone Kα. Given that the involved cones in Representation (76) are identical, then

N(x)
ext = N(x′)

ext = N(x′′)
ext . In addition, the theoretically established equipartition of the

trajectories, pertaining to their orientation, implies that N(x)
ext ≈ N(x)

int ≈
N
2 , a fact which is

approved by the experiments.

On Reconstructing Convex Scatterers

We consider in this section the pilot case of convex scatterers. As discussed above,
the developed analysis of transferring data from the remote region to the near field region
can take place up to the surface of the scatterer given that it is feasible to exploit a system
of cones which do not intersect portions of the scattering bodies. Then, the surface ∂D is
an assembly of all the points ξi, i = 1, 2, .. on which the right hand side of Equation (76)
equals −eikk̂·ξi , satisfying thus the boundary condition (2). The motif is to reveal that only
one direction of excitation is sufficient to provide adequate inversions, and so the case
k̂ = − 1√

3
(1, 1, 1) will be examined uniformly for all the case studies.

In the beginning, we consider the primitive case of a spherical scatterer of radius a,
centered at the coordinate origin. Being more specific, we consider the simple case of a = 1
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and k = 2 (λ = π length units). The needed synthetic data are produced via the well
known representations [16] of the scattering field and the far field pattern:

u(x) =
∞

∑
n=0

n

∑
m=−n

am
n h(1)n (k|x|)Ym

n (x̂) and f0(x̂) =
1
k

∞

∑
n=0

1
in+1

n

∑
m=−n

am
n Ym

n (x̂) with am
n = −4πin jn(ka)

h(1)n (ka)
Ym

n (k̂).

So, the terms bm
n , representing the spherical harmonic expansion coefficients of the

far field pattern are equal to bm
n = 4πi jn(ka)

h(1)n (ka)
Ym

n (k̂) and play an important role to the

construction of the arguments of the forthcoming numerically simulated expectation terms
involved in the functions ũ(ξi), i = 1, 2, ...M, denoting the right hand side of Equation (76)
for several points ξi, sampled uniformly inside a cube Q centered at the coordinate origin
and having edges of length 2λ = 4π

k = 2π. This cube hosts the determinable scatterer. We
consider a remote distance |X| of order of 5λ = 10π

k = 5π where the synthetic data are
collected. We focus on the portion of data that is confined on a spherical subregion of the
sphere k|X| = 10π around the radial direction r̂0 = −k̂ = 1√

3
(1, 1, 1). The aforementioned

choices define the crucial geometric parameter k|X| = em = 10π, defining the range of
the remote scattering field and the typical size of the involved cones. So, according to
the parametric analysis described in previous sections, the integer m takes the optimal
value m = 29. The abovementioned range of used data S0 (on the sphere k|X| = 10π
and in the vicinity of r̂0 ) has a spherical polar aperture confined by the angle θ29,1. (We
recall that the supplementary data introduced by the dual perpendicular cones of type
K′ and K′′ play also a crucial role). The vertex of every involved cone Ki is one of the
sampling points ξi; its interior cup is very close to the vertex via the selection kη = 0.01π,
which leads to a concrete Helmholtz kernel g29 = C29 j29 − y29= 1.29× 1085 j29 − y29 so
that the equilibrium g29(kη) = g29(e29) is established. This description defines the typical
geometrical characteristics of the involved cones so that the interrelation between the
remote and near field region is exploitable. Using again the parametric analysis exposed
previously, the starting point xi of every individual stochastic process taking place inside Ki
should belong to the axis of the cone and distances from the vertex of a specific length so that
the equipartition of the directivity of the trajectories is ensured (see Relation (64)). Then, the
geometrical feature k|xi − ξi| for the involved cones, is determined to have the exact value
0.2524π. The hitting probabilities are theoretically foreseen by Equations (65) and (66) to be
Px[{|Yτ | = em

k
}]
≥ 0.500039 and Px[{|Yτ | = η}] ≥ 0.499774 and the simulations verified

this prediction.
Prescribing further the performed numerical experiments, it is noticed that inside the

cube Q, a set of M = 203 uniformly distributed potentially candidate surface points ξi has
been sampled and for every i ∈ {1, 2, ..., M}, stochastic experiments have been performed
pertaining to the solution of the underlying stochastic differential equations in the cones Ki,
K′i and K′′i . If additional a priori information was given about the possible location of the
interface ∂D, the distribution of the sampling points ξi would have selective characteristics.
In any case, the Monte Carlo realization of the involved expectation terms required at most
N = 102 experiments—repetitions with a typical life time of traveling inside the cones
expressed via the rule k2T = 10−2. This result is in conjunction with the uniform selection
of the parameters ζ = 2 and ν = 1, defining in detail the angle of the cones according to
the results of Section 4. This stochastic implementation led to the determination of the
stochastic terms ũ(ξi), i ∈ {1, 2, ..., M}, expressing, as mentioned before, the right hand
side of Expression (76).

The inversion algorithm consists in constructing and investigating the objective func-
tion G(ξ) = |ũ(ξ) + eikk̂·ξ |. The points ξi assigning small values to the functional G(ξi) are
the supporting points of the surface ∂D. In Figure 9, we plot the level set of the interpo-
lating function G(ξ), representing the set of points satisfying the criterion G(ξ) = ε with
ε ≤ 10−2.
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Figure 9. The reconstruction of the sphere of radius a = 1, in the framework of the backscattering
case r̂0 = −k̂ = 1√

3
(1, 1, 1). The principal data are distributed over a surface element of measure

2π(5π)2(1− cos θ29,1) and are supplemented with additional information over the dual cones of type
K′ and K′′.

We verify the high level of accuracy in the reconstruction as far as the region of
influence of S0 is concerned (Figure 8). It is reasonable that the points ξi belonging to
the shadowed region cannot be reconstructed appropriately, since they pertain to cones
intersecting the scatterer and occupying regions, part of which do not belong to the real
scattering region. Actually this is the drawback when non-convex scatterers are investi-
gated since the stochastic representation has been formulated on the assumption that the
trajectories are free to move in subregions where the underlying Helmholtz differential
equation is valid. (In this case, we reach similarly the circumscribing sphere and proceed
further differently as will be clarified in the next section)

The presented methodology has been applied also in the case of the inverse acoustic

problem by the ellipsoidal surface x2

a2
1
+ y2

a2
2
+ z2

a2
3

with considerably unequal semi-axes

a1 = 4, a2 = 3, a3 = 2. In order to avoid the complexity of the ellipsoidal harmonics [17]
and to open up the rich and simple arsenal of data of the direct problem in the realm of the
low-frequency region, we consider the indicative case k = 1

5 and evoke the stable results
encountered in [18] and the developed methodology in [19]. More precisely, the far field
pattern acquires the form

f0(x̂; k̂, k) = − 1
I0 + ik

(
1
I0

)2
+ k2

(
1
I0

)3
{

1− (I0)
2

3 ∑3
i=1 a2

n +
I0

3 ∑3
i=1 a4

n I1
n −

(I0)
3

3 ∑3
i=1

x̂n k̂n
I1
n

+ (I0)
2

6 ∑3
i=1(x̂2

n + k̂2
n)a2

n

}
− ik3

(
1
I0

)4
{

1− 5
9 (I0)

2
∑3

i=1 a2
n +

2
3 I0 ∑3

i=1 a4
n I1

n +
(I0)

2

6 ∑3
i=1(x̂2

n + k̂2
n)a2

n

}
+O(k4),

(83)

where the well known [18] elliptic integrals I0 and I1
n, n = 1, 2, 3 are involved.

Insisting on the back scattering setting r̂0 = −k̂ = 1√
3
(1, 1, 1), we use (83) to furnish

the necessary data appeared in the mean-value terms of Formula (82) exactly as we did in
the spherical case. The 3D contour plot of the objective function G(ξ) = ε with ε ≤ 10−2

gives the very accurate reconstruction depicted in Figure 10. The only difference in the
parametric setting is that we have adopted a denser grid of sampling points (M = 106) to
reveal the strong anisotropy of the scatterer.
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Figure 10. The reconstruction of the ellipsoidal surface x2

16 +
y2

9 + z2

4 = 1, for one specific incidence
k̂ = − 1√

3
(1, 1, 1) and wave number k = 1

5 .

6. The Development and Implementation of the Inversion Method on the Basis of
Near Field Measurements
6.1. Testing the Validity of the Stochastic Representation in Point-Source Radiation Processes

Focusing on developing a stochastic treatment of the near scattered field, we first
present a very indicative case concerning the determination of radiating fields generated
from point sources. So let us refer instantly to a radiating process not obeying the boundary
value problem (1)–(3), but referring to the emanation of an outgoing acoustic from a
multipole located at a point source. For example, we consider the azimuthally uniform
radiating field um(x; ξ) = h(1)m (k|x− ξ|)Pm(cos θ) = (jm(k|x− ξ|)+ iym(k|x− ξ|))Pm(cos θ)

generated (we recognize, [20], the spherical Hankel function h(1)m (k|x− ξ|)) by a point source
located at the point ξ. Adopting as the suitably adapted hosting conical region the one
pertaining to the parameter m and having as vertex the point source ξ, we are in a position
to verify analytically the Representation (55) or equivalently the equipartitioned stochastic
Formula (62). Indeed, on the basis of the right hand side of Equation (55), we obtain easily
the following result:

u(x; ξ) = uext(x; ξ) + uint(x; ξ) :=
jm(k|x− ξ|)

jm(em)
h(1)m (em)Px

[
|Yτ | =

em

k

]
+

jm(k|x− ξ|)
jm(kη)

h(1)m (kη)Px[|Yτ | = η].

This is an exact result since the lateral term is equal to zero due to the elimination of
the Legendre polynomial in the denominator of this term. Evoking the asymptotic results
of Proposition 4, we find that the right hand side of last equation provides

h(1)m (em)
jm+γ(k|x− ξ|)

jm+γ(em)
+ h(1)m (kη)

ym+γ(k|x− ξ|)
ym+γ(kη)

→
γ→0

jm(k|x− ξ|) + i ym(k|x− ξ|) = h(1)m (k|x− ξ|),

which in fact ascertains that the left hand side of (55) coincides with the value of the
multipole radiating field at the point x. These remarks are verified also numerically: We
select, for example, the cone corresponding to m = 11 with vertex ξ and e11 = 4π (see
Table 1). Our intention is to apply the stochastic Scheme (15) (and its numerical replica (67))
pertaining to the outwards orientated process, in the realm of which the correlation between
the parameters x, η and ξ is not so restrictive any more (only the combined equi-partitioned
stochastic process used in the far field regime is demanding for the relative selection
of the geometric parameters). However, given that we are interested in examining the
combined equipartitioned stochastic scheme as well making a fruitful comparison, we keep
a common treatment concerning the criteria of selection of the geometrical characteristics
and we choose methodological kη = 5π × 10−6 and k|x− ξ| = 0.002676. The expectations
over the spherical cups are facilitated by the polar independence of the arguments leading to
multiples of the pure probabilities that can be estimated analytically as before or calculated
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numerically via stochastic experiments. Taking advantage of this simple framework and
exploiting the tabulated very accurate values of special functions, we reach to the very
extreme but exact values uext = (1.59344− i 1.10278)× 10−40 and uint ≈ 0− i 1.01964× 1041.
Consequently, the sum uext + uint is in complete agreement with the value of h(1)m (k|x−
ξ|) = 1.59345× 10−40 − i 1.01964× 1041 representing the assignment of the field at the
point x. This result is presented along with similar cases pertaining to different cones
presented in Table 2 that were adopted. The situation was repeated in cases where the
stochastic Scheme (60) was with the stochastic Representation (62) for all the cases depicted
in Table 2. The results are identical but the process was simplified due to the theoretically
predicted equipartition of hitting probabilities and the stabilizing factor of the equipartition
of the coefficients gm(k|x−ξ|)

gm(em)
and gm(k|x−ξ|)

gm(kη)
, a fact that prevents from introducing different

scale contributions of the participants of the stochastic representation. The aim of this
presentation is to reveal the efficiency of the method in extreme cases, not being necessarily
indicative of the scattering problem under investigation but enclosing special features of
“tough” wave radiation, where strongly singular and regular terms coexist. In obstacle
scattering processes the scattered field has of course a smoother behavior.

The situation becomes more demanding when the hosting cone and the involved
multipole-type radiating solution correspond to different parameters m. Then the ex-
pectation values are θ dependent and the stochastic numerical experiments are indis-
pensable. Working, for example, with the cone K11 and considering the outgoing radi-

ating solution u9(x; ξ) = h(1)9 (k|x − ξ|)P9(cos θ), the probabilistic terms Ex
Q

[
P9(cos(Θ̆τ))

P11(cos(Θ̆τ))

]
,

Q ∈ {ext, int} emerge, whose determination requires the stochastic implementation by
performing Monte Carlo experiments. For completeness reasons, we mention that in
this particular case, it turns out that uext = 1.07551 × 10−32 + i 7.64773 × 10−33 and
uint = 4.3198× 10−94 − i 1.83044× 1033 and the produced sum is indeed equal to the
outgoing field h(1)9 (k|x− ξ|) for k|x− ξ| = 0.002676.

Table 2. Validation of the Representation (55) in the case of radiating fields emanating from ξ. In all
cases, kη = π × 10−6, while em take the prescribed values presented in Table 1.

m k|x− ξ| h(1)
m (k|x− ξ|) uext uint

3 0.000705 3.337× 10−12 − i 6.072× 1013 (3.337− i 9.155)× 10−12 9.097× 10−31 − i 6.072× 1013

4 0.003775 2.149× 10−13 − i 1.3696× 1014 (2.149− i 2.9552)× 10−13 8.036× 10−35 − i 1.3696× 1014

5 0.001346 4.25× 10−19 − i 1.589× 1020 (4.25− i 3.19)× 10−19 2.324× 10−51 − i 1.589× 1020

11 0.002676 1.593× 10−40 − i 1.0196× 1041 (1.593− i 1.103)× 10−40 7.6× 10−115 − i 1.0196× 1041

6.2. On Reconstructing Stochastically Star Shaped or Disconnected Scatterers via near Field Data

The aim of this section is the application of the aforementioned stochastic algorithm
to the reconstruction of the scatterer on the basis of exploiting data offered on a spherical
surface Sc which might coincide with or be broader than the circumscribing sphere of the
scatterer. The concept is to take advantage of the data provided on Sc and reconstruct
suitably the scattered field inside the ball Bc confined by Sc and hosting the scatterer. In
fact, the portion S̃ of the spherical surface Sc, whose information is instantly utilized,
constitutes the base of a cone K̃, whose vertex is orientated inside the ball Bc and consists in
one of the domains—frequently encountered in this work—of the stochastic experiments.
The broadness of the cone depends on its pervasiveness inside the ball Bc. The narrower
the cone, the larger its potential maximal height and consequently its depth inside the
matrix enclosing the scatterer. There is an intrinsic behavior reminiscent of the uncertainty
principle between the width and height of the emerged cones. All this description refers
to the parameters em and θm,1 that are oppositely monotone with respect to the integer m,
nominating the class of every particular cone. To clarify theses remarks, let us refer for
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simplicity to a particular case, where the sphere Sc is centered at the coordinate origin, has
radius R = 2λ and surrounds a scatterer with surface ∂D, as depicted in Figure 11.

Figure 11. Every cone has a height that cannot exceed em
k = em

2π λ. For several parameters m, the taller
versions of the corresponding cones are presented.

Some favorable cases are demonstrated, which have already be mentioned and tabu-
lated in Table 1. For example, to explore detection to a depth of order 3λ

4 , the parameter m
must be selected as equal or greater to the critical value M 3λ

4
= 4. The intersection S̃m of

every cone with the data surface Sc is slightly deformed compared with the original spheri-
cal upper cup of the cone, but, in every case, lies inside the genuinely constructed cone,
accelerating thus the escape of the driven trajectories via the exterior cup. In Section 6.1,
we tested the outgoing and equipartitioned stochastic models, on the basis of establishing
reconstructions of the field values at the point x in relation with the traces of the stochastic
trajectories on the exit cups. This has to be rescheduled when the reconstruction of the
scatterer itself is sought. In fact, the intermediate point x is useful to be considered as a
“blind” point similar to the far field pattern treatment. More precisely, we select the function
(X− x)×∇u(X) to be subjected to stochastic analysis having in mind that it vanishes at
the auxiliary point x. Applying the modified two-directional stochastic law (61), we take
again Formula (72), which is rewritten slightly differently, taking into account a stricter
treatment of the interior cup contribution and paying attention to the explicit reference to
the incidence direction:

ŷ×∇u(ξ̃; k̂) =
1

|x− ξ|Ex
int

[
1

Pm(cos(Θ̆τ))

]Ex
S̃m

[
(X̆τ − x)×∇u(X̆τ ; k̂)

Pm(cos(Θ̆τ))

]
:= kMm(ξ̃; k̂), (84)

with y = yξ = x− ξ and ξ̃ = ξ + ηŷ. It is worthwhile to notice here that the incidence k̂ is
taken perpendicular to the axis ŷ of the cone.

The point ξ̃ will be tested as a candidate scatterer’s surface point and then the decom-
position ∇u(ξ̃) = n̂ ∂u

∂n (ξ̃) + (I− n̂n̂) · ∇u(ξ̃) will be used, where the normal vector n̂ on
the scatterer is unknown. In cases where ξ̃ lies on the surface ∂D, the boundary condition
can be evoked, leading to

ŷ×∇u(ξ̃; k̂) = ŷ× n̂
(

∂u
∂n

(ξ̃; k̂) + in̂ · (kk̂)eikk̂·ξ̃
)
− iŷ× kk̂eikk̂·ξ̃ (85)

Taking the complex conjugate of this equation, we obtain

ŷ×∇u (ξ̃; k̂) = ŷ× n̂

(
∂u
∂n

(ξ̃; k̂)− in̂ · (kk̂)e−ikk̂·ξ̃
)
+ iŷ× kk̂e−ikk̂·ξ̃ (86)
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Clearly the function u is an ingoing wave that cannot satisfy the Sommerfeld radiation
Condition (3). We consider now the boundary value Problem (1)–(3) corresponding to the
opposite incidence (−k̂) having the outgoing solution u(x;−k̂). Clearly, it holds that

ŷ×∇u(ξ̃;−k̂) = ŷ× n̂
(

∂u
∂n

(ξ̃;−k̂)− in̂ · (kk̂)e−ikk̂·ξ̃
)
+ iŷ× kk̂e−ikk̂·ξ̃ (87)

Substracting the last two equations we find that

ŷ×∇u(ξ̃; k̂)− ŷ×∇u(ξ̃;−k̂) = ŷ× n̂

(
∂u
∂n

(ξ̃; k̂)− ∂u
∂n

(ξ̃;−k̂)

)
. (88)

The left hand side of this relation (in the most probable case that it is not vanishing (We
will examine separately the vanishing case)) can be constructed on the basis of Formula (84)
applied twice for incidences k̂ and (−k̂). Consequently, the direction t̂ = t̂ξ = ŷ×n̂

|ŷ×n̂| can
be reconstructed, even if t = |ŷ× n̂| is unknown. Projecting Equation (85) onto the vector
ŷ× t̂, we obtain

1
k
(ŷ× t̂) ·

(
ŷ×∇u(ξ̃; k̂)

)
= t̂ · ∇u(ξ̃; k̂) = −it̂ · k̂eikk̂·ξ̃ . (89)

What remains to be discussed is what happens when the left hand side of Equation (88)
vanishes. Actually, the difference

(
∂u
∂n (ξ̃; k̂)− ∂u

∂n (ξ̃;−k̂)
)

cannot be zero on a portion
of the scatterer’s surface ∂D0 with a non-zero measure. Indeed, in that case, the field
w(X) := u(X; k̂)− u(X;−k̂) would satisfy the Helmholtz equation, asymptotic decaying
behavior for large distances and zero Cauchy data on the portion ∂D0 of the surface. This
would imply that the field w(x) is globally zero and this is a contradiction since an outgoing
field cannot be identically equal to an ingoing acoustic field. Then, vanishing of the sides of
Equation (88) implies that the normal unit vector n̂ is parallel to the axis of the cone ŷ, which
is a very accidental but well accepted result, offering information about the curvature of the
scatterer at the point ξ. Returning to Equation (85), we see that it obtains the simplified form

1
k
(ŷ× k̂) · (ŷ×∇u(ξ̃; k̂)) =

1
k

k̂ · ∇u(ξ̃; k̂) = −ieikk̂·ξ̃ . (90)

We define

âξ =

{
t̂ξ ifMm(ξ̃; k̂) 6=Mm(ξ̃;−k̂)
k̂ ifMm(ξ̃; k̂) =Mm(ξ̃;−k̂)

(91)

and so we are in a position to group the Results (89) and (90) by constructing the target function

Lm(ξ) =

∣∣∣∣∣∣ 1

k|x− ξ|Ex
int

[
1

Pm(cos(Θ̆τ))

]Ex
S̃m

[
[(ŷξ · (X̆τ − x))âξ − (âξ · (X̆τ − x))ŷξ ] · ∇u(X̆τ ; k̂)

Pm(cos(Θ̆τ))

]
+ iâξ · k̂eikk̂·ξ̃

∣∣∣∣∣∣. (92)

The function Lm(ξ) theoretically vanishes when the point ξ̃, located very close to the
vertex ξ, belongs to the surface ∂D. So imposing the constraint L(ξ) = ε, with ε << 1 and
sampling over a grid of candidate surface points ξi, i = 1, 2, ..., M leads to the construction
of level sets describing the surface of the scatterer.

The sampling process depends on a priori information concerning generic geometric
characteristics of the inclusions under reconstruction. For example, if we are given a
star shaped scatterer ∂D, described by the polar representation (S2 stands for the unit
sphere) rr̂ = f (r̂)r̂, r̂ ∈ S2 then the structure of the sampling grid has a radial architecture.
More precisely, the vertex ξ of the conical region moves with a preselected step length
towards the coordinate origin O over the half line connecting O with the employed portion
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of the spherical surface Sc, defining thus a concrete direction r̂. Using different surface
patches involves separate radial semi-axes and directions r̂. Every position of the slipping
down sampling point ξ defines a critical parameter m, characterizing the wider possible
conical surface that can be employed to apply the method, and corresponds to one specific
implementation of the stochastic algorithm, leading to the determination of the value of the
function Lm(ξ). The first time this value coincides with a small threshold ε = .01 terminates
the descent on the line r̂ and provides the unique point f (r̂)r̂ of the scatterer. The situation
is visualized in Figure 12, where the reconstruction of a cubic scatterer of semi-edges
2,
√

3,
√

2 length units (in x, y, z direction, respectively) is performed. The synthetic data
are provided in the realm of low-frequency regime and are borrowed by the methodology
described in [21] (and the references cited therein [22,23]), where the implication of data
noise is intrinsically investigated. The exploited data belong to the depicted circumscribing
sphere of radius 5 length units. The wave number λ is equal to 2.5 units so that a complete
geometric correspondence with Figure 11 is guaranteed.

Figure 12. The reconstruction of the surface of the cubic scatterer with semi-edges 2,
√

3,
√

2 length
units in cartesian coordinates. To reveal transparently the structure of the inversion, the region
x > −1.8 has been illustrated.

The disconnected case (multiple scattering problem) requires a uniform sampling of
vertices ξi, i = 1, 2, ..., M inside the orthogonal parallelepiped with axes of lengths 4, 2, 2
along the cartesian axes x, y, z, respectively, enclosing the scattering objects, in the same
manner as in the far field inversion regime encountered in previous section. For the sake of
simplicity, we expose just the inversion of two spheres with centers located on the x-axis
(positions x1 = −1 and x2 = 2) and radii a1 =

√
0.5 and a2 = 1, respectively. The synthetic

data are produced via the implication of the bispherical coordinate system and the analysis
presented in [24] similarly to the treatment implemented in the introductory work [7].
Two separate cases are considered as far as the richness of the data is concerned. In the
first case, the data are limited and offered on two spherical portions of the circumscribing
sphere, as shown in Figure 13, while the second case refers to complete set of data on Sc.
In real situations, the targets are unknown and so the selection of these spherical shells
cannot be prescheduled. However, this concrete selection has been adopted intentionally
since it represents the less informative scenario (the poorest data pool) given that the gap
between the spheres is totally shadowed by the scatterers. The reconstruction in both cases
presented in Figure 13 is well indicative as far as the potential of the stochastic inversion
is concerned.
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Figure 13. Reconstruction for the disconnected scatterer case: Detecting two spheres with radii equal
to 1 and 1√

2
centered at the points x = 2 and x = −1 of the x-axis, respectively.

The algorithm described in this section could be used as well in the realm of far field
measurements in the case of convex star-shaped scatterers. Indeed, the alternative to detour
the implication of additional measurement sets on the dual conical surfaces presented in
Section 5 emerges via the current implementation. Comparing the approaches, their partic-
ular ingredients are revealed. The dual cones approach is based on one specific excitation
k̂ and three perpendicular cones providing data on three separate conical spherical cups
in the far field regime. In addition, special treatment of the data is required to construct
the field F1(X̆(α)

τ ) that appeared in Representation (76). In contrast, the methodology of
this section involves measurements generated by two opposite incidence directions k̂ and
(−k̂) every time but restricted on the exterior cup of a single cone for every particular
group of Monte Carlo stochastic experiments. Moreover, there is no need to interfere
with the spherical harmonic expansion of the acoustic field any more in order to construct
the auxiliary field F1. Phenomenically, the second method seems privileged but a more
attentive examination reveals some intrinsic special properties. First the incidence direction
k̂ must be perpendicular to the direction x− ξ, which could be demanding in a far field
experimental setting, at the same time that the first approach does not impose such kinds of
limitations. Secondly, in every realization of the second approach, the quantitative criterion
(91) has to be examined, defining every time the very next choice (92). While this repeated
“if” structure of the second algorithm does not impose some essential numerical burden,
the first approach is totally free of any intrinsic geometric constraint.

7. Conclusions

The direct and inverse acoustic scattering problems, in the time-reduced form, are
investigated in this work, in the realm of a novel probabilistic approach. The general
methodological framework is the construction of stochastic processes emanating from the
observation point and hitting efficiently the boundaries hosting surface conditions and
measurements. These stochastic processes carry hidden information for the geometrical
and physical characteristics of the scattering problem. Three alternative stochastic repre-
sentations for the scattering field are constructed and investigated throughout the work,
involving stochastic process with outgoing, ingoing and equipartitioned orientation. The
domain of mobility of the trajectories is designed to be minimal and confined strictly by
the scatterer, the data region and narrow lateral repellent conical surfaces, influencing
drastically the directivity of the stochastic experiments.

The great advantage of this design is that only cropped sub-regions of the exterior
space are used to settle connections between restricted data and narrow portions of the
unknown scatterer. Thus, the reconstruction acquires an effective locality, reminiscent of
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the privileges, encountered in high frequency regime or geometric optics. However, this
locality gain, developed herein, is not due to the measure of the stimulating frequency
but owes its appearance to the multiple conditions applied to the probabilistic law, gov-
erning the underlying stochastic processes. In brief terms, selecting the singular points
(attractive or repellent) of the cones and the subsequent repellent conical surfaces is a
multi-parametric geometric design, simulating a conical wave-guide forcing the trajectories
to evolve, mimicking acoustic rays.

Special attention has been paid to the inverse scattering problem with separate treat-
ment of the far field and near field data cases. The reconstruction of the surface of the
scatterer (either connected or disconnected) has been proved exact and optimal even in
the case of restricted data. In the authors’ opinion, the theoretical design and numerical
fulfilment of the stochastic investigation pertaining to the inverse acoustic scattering prob-
lem, and developed in the current work, has a primitive novelty among techniques with
similar purposes. That is why there exists the belief that this work initiates the perspective
of handling more general exterior elliptic boundary value problems in unbounded domains
via the conditioned probabilistic approach, proposed herein.
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