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Abstract: The reverse space-time nonlocal complex modified Kortewewg–de Vries (mKdV) equation
is investigated by using the consistent tanh expansion (CTE) method. According to the CTE method,
a nonauto-Bäcklund transformation theorem of nonlocal complex mKdV is obtained. The interactions
between one kink soliton and other different nonlinear excitations are constructed via the nonauto-
Bäcklund transformation theorem. By selecting cnoidal periodic waves, the interaction between one
kink soliton and the cnoidal periodic waves is derived. The specific Jacobi function-type solution and
graphs of its analysis are provided in this paper.
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1. Introduction

Physical systems exhibiting parity-time (PT )-symmetries have received increasing
attention since a family of non-Hermitian PT -symmetric Hamiltonians with a real constant
was first shown by Bender and Boettcher to admit entirely real spectra [1,2]. The study
of PT symmetry in mathematics and physics can offer great research value and strong
prospects for dynamical systems. PT -symmetric nonlinear systems have become a major
focus of nonlinear science, such as soliton theory, fluid mechanics, hydrodynamics and
optical theory. Some effective methods have been developed to derive exact solutions of
nonlinear integrable systems, such as the inverse scattering transform method [3,4], the
dressing method [5], the Hirota direct method [6,7], the Darboux transformations [8–10]
and the Bäcklund transformations [11–13], etc.

The modified Kortewewg–de Vries (mKdV) equation, which describes the evolutions
of weakly dispersive wavelets in shallow water, is widely studied. The integrable nonlocal
nonlinear Schrödinger equation proposed by Ablowitz and Musslimani [14] attracted many
researchers because of its special property. Ablowitz and Musslimani proposed some new
nonlocal nonlinear integrable equations, including the reverse space-time nonlocal complex
mKdV equation [15]. In these new types of nonlocal equations; in addition to the terms at
space-time point (x, t), there are terms at mirror image point (−x,−t). The self-induced
potential of the nonlocal complex mKdV equation is V(x, t) = u(x, t)u∗(−x,−t) [15]. The
PT-symmetry for the nonlocal complex mKdV equation amounts to the invariance of the
self-induced potential in the case of classical optics, i.e., V(x, t) = V∗(−x,−t), under the
combined effect of parity and time reversal symmetry. A family of traveling solitary wave
solutions including soliton, kink, periodic and singular solutions of the nonlocal mKdV
equation is discussed [16].
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The interaction between solitons and a periodic cnoidal wave of the Korteweg–de Vries
equation and the cubic Schrödinger equation is discussed by using the inverse scattering
technique [17,18]. Rogue waves on a periodic background and the nonlinear superposition
of the two periodic solutions of mKdV equation are obtained by using the Darboux trans-
formation [19,20]. The soliton excitation of the circular vortex motion can be constructed
based on localized-induction approximation equations [21,22]. Recently, the consistent tanh
expansion (CTE) method has been proposed to identify CTE-solvable systems [23,24]. The
interaction between one soliton and other different nonlinear excitations such as cnoidal
periodic waves can be obtained by using the CTE method. The method has been valid for
classical integrable nonlinear systems, including the nonlinear Schrödinger system [25],
the Broer–Kaup system [26], the higher-order KdV equation [27], etc. [28–30]. The appli-
cation of the CTE method to nonlocal integrable systems with PT -symmetric is deficient.
Applying the CTE method to nonlocal PT -symmetric integrable systems is innovative
and convenient. In this paper, the CTE method is used to investigate the PT -symmetric
nonlocal complex mKdV equation and can construct the interaction solution of the soliton
and cnoidal periodic waves.

This paper is organized as follows. In Section 2, a nonauto-Bäcklund transformation
theorem is obtained by using the CTE method. The interactions between one kink soliton
and other different nonlinear excitations are constructed by the nonauto-Bäcklund trans-
formation theorem. Section 3 discusses the interaction between one kink soliton, and the
Jacobi-elliptic function types are explicitly discussed both with analytical and graphical
methods. Sections 4 and 5 include simple discussions and provide conclusions.

2. CTE Method for the Nonlocal Complex mKdV System

The reverse space-time nonlocal complex mKdV equation reads as follows [15]:

ut(x, t)− 6αu(x, t)u∗(−x,−t)ux(x, t) + uxxx(x, t) = 0, (1)

where u = u(x, t) is a complex function of real variables x and t, α is an arbitrary constant
and ∗ denotes complex conjugation. The self-induced potential V(x, t) = u(x, t)u∗(−x,−t)
of (1) satisfies the PT -symmetry condition V(x, t) = V∗(−x,−t). The nonauto-Bäcklund
transformations and the soliton phenomenology of the standard mKdV equation are
systematically studied [31].

For the nonlocal complex mKdV system, one can take the generalized truncated tanh
expansion form by using leading order analysis:

u = u0 + u1 tanh( f ), (2)

where u0 and u1 are arbitrary functions of (x, t). f satisfies constraint f (x, t) = f ∗(−x,−t).
By substituting (2) into the nonlocal complex mKdV system (1), a complicated poly-

nomial with respect to tanh( f ) is obtained. Collecting coefficients of the powers of tanh4( f )
and tanh3( f ), we derive the following.

αu1(x, t)u∗1(−x,−t)− f 2
x = 0, (3)

αu2
1(x, t)u∗0(−x,−t) fx + αu0(x, t)u∗1(−x,−t)u1(x, t) fx − αu1(x, t)u∗1(−x,−t)u1,x(x, t) + u1(x, t) fx fxx + u1,x(x, t) f 2

x = 0. (4)

Substituting u1 obtained by solving (3) into (4) and further solving for u0, a set of
solutions for u1 and u0 is derived as follows.

u1 =
1√
−α

fx, u0 = − 1
2
√
−α

fxx

fx
. (5)

Substituting (5) into the complicated polynomial obtained before and collecting the
coefficients of tanh2( f ), tanh1( f ) and tanh0( f ) via symbolic computation with the help of
Maple, we obtain the following three over-determined systems.
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3
2

f 2
xx + 2 f 4

x − fx fxxx − fx ft = 0, (6)

3
2

f 3
xx
f 2
x
− 3

fxx fxxx

fx
− 6 f 2

x fxx + fxt + fxxxx = 0, (7)

− 3
2

f 2
xx − 2 f 4

x −
21
4

f 2
xx fxxx

f 3
x

+
9
4

f 4
xx
f 4
x
+ fx ft + 4 fx fxxx + 3 f 2

xx −
1
2

fxxt

fx
+

1
2

fxx fxt

f 2
x
− 1

2
fxxxxx

fx
+

2 fxxxx fxx

f 2
x

+
3
2

f 2
xxx
f 2
x

= 0. (8)

Moreover, the above three Equations (6)–(8) are consistent each other, meaning that if
f satisfies one of the equations, it will be a solution for other two equations. According to
above analysis, we derive the following nonauto-Bäcklund transformation theorem.

Nonauto-Bäcklund transformation theorem. If one finds that solution f satisfies (6),
then u is obtained with the following:

u(x, t) = − 1
2
√
−α

fxx

fx
+

1√
−α

fx tanh( f ), (9)

which is a solution of the reverse space-time nonlocal complex mKdV system (1).
The Miura transform is known as the transformation connection the solutions between

KdV equation and mKdV equation. This nonauto-Bäcklund transformation can be treated
as a form of Miura transformation. According to the above theorem, the exact solutions
of the nonlocal complex mKdV system (1) are obtained by solving (6). Here are some
interesting examples.

A quite trivial solution of (6) has the following form:

f = i(k0x + w0t), w0 = −2k3
0, (10)

where k0 is a free constant, and w0 is determined by dispersion relations. Substituting
the trivial solution (10) into (9), one kink soliton solution of the nonlocal complex mKdV
system yields the following.

u = − 1√
−α

k0 tan(k0x− 2k3
0t). (11)

Some nontrivial solutions of the mKdV equation can be derived from a quite trivial
solution of (10). To find interaction solutions between one kink soliton and other nonlinear
excitations, we assume the interaction solution form as follows:

f = i(k0x + w0t) + F(X), X = kx + wt, (12)

where k0, w0, k and w are all free constants. Substituting expression (12) into (6), (6) becomes
the following.

F4
X +

4ik
k0

F3
X −

12kk2
0 + w

2k3 F2
X −

i(8k3
0k + kw0 + k0w)

2k4 FX −
1
2

FX FXXX +
3
4

F2
XX −

ik0

2k
FXXX +

2k4
0 + k0w0

2k4 = 0. (13)

Then, the following equation is obtained by using transformation FX = F1.

F4
1 +

4ik0

k
F3

1 −
12kk2

0 + w
2k3 F2

1 −
i(8kk3

0 + kw0 + k0w)

2k4 F1 +
3
4

F2
1,X −

1
2
(F1 +

ik0

k
)F1,XX +

k0(2k3
0 + w0)

2k4 = 0. (14)

The CTE method is valid in many classical integrable systems. For the interaction
between soliton and Jacobi periodic waves in classical integrable systems, one can obtain
the standard Jacobi-elliptic function equation [32]. One only obtains Equation (14) rather
than the standard Jacobi-elliptic function equation. In order to obtain the Jacobi periodic
wave solution of (14), we assume that Equation (14) has a Jacobian elliptic function solution
as F1(X) = c1Sn(c2X, m) [33]. Hence, the solution expressed by (9) is just the explicit exact
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interaction between one kink soliton and cnoidal periodic waves. To show more clearly
this form of solution, we offer one special case for solving (14).

3. Interaction between Soliton and Cnoidal Periodic Waves

According to above analysis, the solution of (13) has the following form:

F(X) =
∫

c1Sn(c2X, m)dX =
c1 ln[Dn(c2X, m)−mCn(c2X, m)]

c2m
, (15)

where Sn, Cn and Dn are the Jacobian-elliptic functions with modulus m. Verified by
Maple’s symbolic calculation, (15) satisfies constraint f (x, t) = f ∗(−x,−t) and is a real
even function. By substituting the undetermined parameter solution (15) into (13) and
using symbolic computation with the help of Maple, the parameters satisfy the following.

c1 = − c2m
2

, c2 = 2
ik0

k
, w0 = −2k3

0(3m2 + 1), w = 2k2
0k(m2 − 5). (16)

The interaction between one kink soliton and the cnoidal wave of the nonlocal complex
mKdV system (1) has the the following form.

u =
2√

−α(c1Sn + ik0)

[
tanh(

c1 ln(Dn −mCn) + ic2m(k0x + w0t)
c2m

)(
c2

1k2

2
S2

n + ic1kk0Sn −
k2

0
2
)− c1c2k2

4
CnDn

]
. (17)

The parameters c1, c2, w0 and w have been given in (16).
We select the parameters as α = −1, k0 = 0.4i, m = 0.4 in Figures 1–3. Figures 1 and 2

plot the interaction solution between one kink soliton and the cnoidal wave in the patterns
of three-dimensional and wave along x-axis. Field u exhibits one kink soliton propagating
on the cnoidal wave’s background. Figure 3 plots the status-only soliton or cnoidal wave at
t = 0. The superpose status is just the interaction between one kink soliton and the cnoidal
waves, which are depicted in Figure 2. The changes before and after superposition are
displayed visually. There are some nonlinear waves including interactions between solitary
waves and the cnoidal periodic waves, which can be described in certain ocean phenomena.

Figure 1. Plot of one kink soliton on the cnoidal wave background expressed by (17) of the nonlocal
mKdV equation in three dimensions.
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Figure 2. One dimensional image followed by t = −25, 0, 25.

Figure 3. Plot of separate state for one kink soliton or the cnoidal wave expressed by (10) and (15) of
the nonlocal mKdV equation at t = 0.

4. Discussion

Kuznetsov and Mikhailov discussed the interaction between solitons and a periodic
cnoidal wave of the Korteweg–de Vries equation [17]. Gorshkov and Ostrovsky investigated
the interaction between soliton and a periodic wave via the direct perturbation method [34].
The interaction between the Jacobi elliptic periodic wave and kink soliton for the complex
mKdV equation is directly obtained by the CTE method in this paper. Compared with the
previous two methods, the CTE method can obtain this type solution more directly and
conveniently. Other reverse space-time nonlocal system is worthy of study by using the
CTE method.

5. Conclusions

The reverse space-time nonlocal complex mKdV equation is investigated by using
the CTE method. A nonauto-Bäcklund transformation theorem is constructed by using
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the CTE method. The interactions between one kink soliton and the cnoidal waves are
derived by means of the nonauto-Bäcklund transformation theorem. The dynamics of
the interactions are studied both with analytical and graphical methods. These types
of interaction solutions can describe certain oceanic phenomena. The method is valid
and promising for the PT -symmetry models. The interactions between solitons and the
cnoidal waves can be obtained by symmetry reductions related by nonlocal symmetry [27].
Symmetry reductions related by the nonlocal symmetry of the nonlocal complex mKdV
equation will be studied in the future.
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