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Abstract: This paper focuses on reduced-order modeling for contact mechanics problems treated
by Lagrange multipliers. The high nonlinearity of the dual solutions lead to poor classical data
compression. A hyper-reduction approach based on a reduced integration domain (RID) is considered.
The dual reduced basis is the restriction to the RID of the full-order dual basis, which ensures the
hyper-reduced model to respect the non-linearity constraints. However, the verification of the
solvability condition, associated with the well-posedness of the solution, may induce an extension of
the primal reduced basis without guaranteeing accurate dual forces. We highlight the strong link
between the condition number of the projected contact rigidity matrix and the precision of the dual
reduced solutions. Two efficient strategies of enrichment of the primal POD reduced basis are then
introduced. However, for large parametric variation of the contact zone, the reachable dual precision
may remain limited. A clustering strategy on the parametric space is then proposed in order to deal
with piece-wise low-rank approximations. On each cluster, a local accurate hyper-reduced model
is built thanks to the enrichment strategies. The overall solution is then deeply improved while
preserving an interesting compression of both primal and dual bases.

Keywords: hyper-reduction; contact mechanics; Lagrange multipliers; solvability condition; condi-
tion number; clustering; local reduced order models

MSC: 74M15; 65K15; 15A18; 68Q32; 74B05; 65M60; 35J20; 35D99; 68W99

1. Introduction

Variational inequalities (VI) arising from contact mechanics problem are still nowadays
computationally expensive to solve. The size of the discrete full-order model (FOM)
becomes rapidly prohibitive when accurate solutions are required. The issue of high
computational cost has been widely studied for variational equality problems, and a
common solution consists in using reduced order modeling (ROM) techniques. However,
in case of contact VI problems, the application of such techniques is not straightforward.
Indeed the non-smoothness of the contact constraints, especially the non-negativity of the
contact pressure, remains a challenge for the adaptation of ROM methods.

A number of numerical methods, such as the penalty method or the augmented
Lagrangian (AL) formulation, consist in building unconstrained minimization problems
for solving contact. In this particular framework, as the main challenges related to ROM
adaptation are circumvented, various reduced-order methods have been successfully
applied, see [1–3] for the penalty method and [4–6] for the AL (or AL-like) formulation.
However these kinds of contact formulations require numerical parameter adjustments to
reach convergence. Concerning the penalty method, another disadvantage is that practically
this method leads to some approximation of contact conditions (cf. interpenetration).
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In counterpart, the Lagrange multipliers approach enables satisfying, precisely, surface
contact conditions. The resulting contact problem is a saddle-point problem with primal
(displacement) and dual (contact pressure) variables. The Lagrange multipliers physically
represent the contact pressures (opposite of the contact forces) and must remain non-
negative. This constraint avoids the use of the famous proper orthogonal decomposition
(POD) snapshots method for the reduction of the dual basis. Hence, very few ROM methods
have been applied to such problems. Their features mainly concern the construction of a
reliable low-rank dual basis. We can distinguish approaches related to quasi-static contact
problems to those related to dynamic contact problems.

Concerning the reduction of (quasi-)static contact problems, we can cite the extension
of the reduced basis method [7], where the dual reduced basis is obtained by snapshots
selection. This may lead to a low compressed reduced basis for a large parametric space.
In [8], a projected-based method was proposed with a non-negative matrix factorization
(NNMF) to obtain the reduced dual basis. The NNMF satisfies the positivity constraint
but does not give a high compression rate [9]. In [10], the dual reduced basis is built
through a cone-projected greedy algorithm, resulting in a better compression rate. However,
this approach has not yet been verified outside the training set. Another strategy was
proposed in [9], lying on hyper-reduction techniques. Such kinds of techniques [11–14] have
shown their efficacy in reducing high-dimensional reconstruction required by non-linearity
evaluations. Hence, in [9] a hyper-reduction method based on a reduced integration
domain (RID) [15] was adapted to contact problems. The low-rank dual basis is then simply
defined as the restriction of the full-order dual basis to the RID, naturally ensuring the
non-negativity constraint and leading to precise dual forces on the RID. Moreover, this
method ensures the verification of the full contact conditions inside the RID.

Concerning dynamic contact problems, the problem of building a reduced dual basis
respecting the non-negativity was recently bypassed [16] through the use of the reduction
of the primal variable to compute the Lagrange multipliers in an incremental way or [17]
through the use of the linear complementarity programming method where only the primal
variable is reduced.

In this work, we propose to improve the efficiency of the so-called hybrid hyper-
reduced (HHR) method, the hyper-reduced method based on the RID introduced in [9],
especially for large parametric variations of the contact zone. The consistency of the HHR
approach has been proven in [9], lying on the solvability condition. Since high primal
basis compression by POD is performed, this condition may not be initially respected. It
was proposed in [9] to enrich the primal reduced basis with primal finite element (FE)
shape functions while not respecting the solvability condition. However, the respect of the
solvability condition is generally not sufficient to obtain accurate dual forces. No guideline
was proposed in [9] for the choice of the FE shape functions to be added. Practically, for
D-dimensional problems (D > 1), it was proposed to add all primal FE shape functions
lying on the contact zone in the reduced primal basis. For high-dimensional problems with
large parametric variations, this strategy may compromise data compression.

In order to automatically and efficiently extend the reduced primal basis, we first high-
light in this contribution the strong relation between the projected contact rigidity matrix
condition number and the precision of the dual solutions obtained by the HHR method.
Taking this relation into account, we propose two primal basis enrichment strategies aimed
at improving the condition number of the projected contact rigidity matrix while respecting
the solvability condition. These enrichment strategies are both based on a greedy algorithm.
There are very few elements in the literature studying the relation between the condition
number and precision of a ROM method. To the best of our knowledge, only [13] uses the
condition number as a selection criterion for the sampling in the missing point estimation
(MPE) method.

Secondly, as the enrichment strategy may significantly increase the size of the primal
reduced basis, we propose a clustering strategy derived from [18] to treat contact problems
with large parametric spaces. The clustering enables us to build local ROMs and, hence, to
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reduce high nonlinear (and non-smooth) problems in a piece-wise low-rank manner. The
interested reader can refer to [18–22] for examples of local ROMs applied to hyper-reduction
schemes. Here, the local ROMs are obtained by applying on each cluster the HHR method
for contact problems with the condition number-based enrichment introduced in this paper.

The proposed strategies result in highly accurate dual (and primal) solutions with
reduced bases of limited sizes even for large variations of the contact zone.

The rest of the article is structured as follows. A brief presentation of the FOM for
Lagrange multiplier-based contact problems is written in Section 2. The HHR model for
contact mechanics is also recalled (and few adapted) in this section. In Section 3, we present
the correlation between condition number of the projected contact rigidity matrix and
precision of dual solutions. We then propose the two primal reduced basis enrichment
strategies. In Section 4, the clustering framework for contact mechanics is introduced.
Finally, in Section 5, numerical experiments are performed allowing to appreciate the
efficiency of the proposed strategies.

2. Contact Problem, FE, and HHR Models
2.1. Static Unilateral Contact Problem

We are interested in the solution of elastostatic frictionless unilateral contact problems.
The notations we consider are presented in Figure 1. Moreover, we classically denote by uN
the relative normal displacement on the potential contact surface ΓC, d the initial gap, and
FN the normal force component. Then, the Signorini’s law for unilateral contact is given on
ΓC by: the non-penetration condition uN ≤ d, the non-adhesion condition FN ≤ 0, and the
complementarity slackness (uN − d)FN = 0.

Under the small strain hypotheses, the strong formulation of the elastostatic frictionless
unilateral contact problem can be expressed as [23–25]:

−div σ = f in Ω,

σ =C : ε in Ω,

ε =
1
2

(
grad u + (grad u)T

)
in Ω,

u = u0 on ΓD,

σn = g on ΓN ,

σn = FNn on ΓC,

uN ≤ d, FN ≤ 0, (d− uN)FN = 0 on ΓC,

(1)

with u the displacement field, σ the stress field, ε the strain field, f the prescribed volume
density of forces, u0 the imposed displacement on ΓD, g the imposed forces (surface
density) on ΓN , and n the external unit normal. The tensor C denotes the fourth-order

elasticity tensor.
The weak formulation derived from problem (1) induces a variational inequality

(VI) [23]. This VI, equivalent to a minimization problem, can be classically treated by
Lagrange multipliers [24]. The resulting weak formulation is then a saddle-point problem,
cf. Equation (2).

Find (u, λ) ∈ V ×W such that
a(u, v) + b(v, λ) = l(v) ∀v ∈ V0,

b(u, q− λ) ≤ 〈d, q− λ〉
H

1
2 (ΓC),H−

1
2 (ΓC)

∀q ∈ W ,
(2)
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with λ the Lagrange multiplier, W = {q ∈ H−
1
2 (ΓC) | q ≥ 0}, H−

1
2 the dual of H

1
2 ,

b(v, q) = 〈vN , q〉
H

1
2 (ΓC),H−

1
2 (ΓC)

and 〈·, ·〉
H

1
2 ,H−

1
2

the dual product, V = {v = r(u0) +

ũ | ũ ∈ V0}, r(u0) the lifting of u0 over Ω, V0 = {v ∈ (H1(Ω))D | v = 0 sur ΓD} and

a(u, v) =
∫

Ω
ε(v) : C : ε(u)dΩ, l(v) =

∫
Ω

f Tv dΩ +
∫

ΓN
gTv dΓ.

Ω1

Ω2

d

t1

n1

t2

n2

ΓC
1

ΓC
2

g

ΓN

g

ΓN

u0

ΓD

u0
ΓD

Figure 1. Contact model problem.

2.2. Finite Element Discretization

The standard FE discretization [25] of the saddle-point problem (2) results in system (3).
Find (U, Λ) ∈ RN × (R+)Nλ such that

KU + BTΛ = F,

BU ≤ D,

ΛT(D− BU) = 0,

(3)

with U being the discretization of the displacement solution in the primal FE basis, Λ the
discretization of the Lagrange multipliers in the dual FE basis, N is the number of primal
DoFs, and Nλ is the number of potential contacts. The matrices or vectors K ∈ RN×N ;
B ∈ RNλ×N ; F ∈ RN , D ∈ RNλ are respectively the rigidity matrix, the contact rigidity
matrix, the source vector and the initial gap vector.

The discrete saddle-point problem (3) has to respect the classical Ladyzhenskaya–
Babuška–Brezzi (LBB) [26,27] or inf–sup condition implying stability of the solution and,
hence, solvability of the problem. For node-to-node contact with linear (or bilinear) finite
element approximations, which are of interest here, this condition is ensured [28].

2.3. Hybrid Hyper-Reduced Model
2.3.1. Reduced Integration Domain for Contact Problems

The RID [15], which will be the support of the hyper-reduced discretized problem,
is built from a set of DoFs associated to nodes located on the whole domain Ω. The DoF
selection method usually consists of a sampling method, such as the DEIM [12] or an
arbitrary selection for areas of interest.

For contact problems, the RID definition must be adapted to ensure computable gaps
on the RID. We focus here on the node-to-node contact algorithm. In [9], an extension of the
RID interface has been proposed, see Figure 2a. The unpaired DoFs on the potential contact
surface of the RID were hence removed from the set of available balance equations. In this
paper, we propose an extension of the RID to treat contact on each node of the potential
contact zone included in the RID, see Figure 2b. Denoting by L, the list of node indices
used to build the RID, the complementary contact list L′ reads

L′ = {node j on ΓC; j /∈ L | ∃i ∈ L such that (i, j) is a pair of contact nodes}. (4)
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The RID is now defined as:

ΩA =

( ⋃
i∈L

supp(ϕi)

) ⋃ ( ⋃
j∈L′

supp(ϕj)

)
, (5)

with ϕk, k = 1, . . . , N the FE shape functions.
We denote ΩB as the counterpart of ΩA such that Ω = ΩA ∪ΩB. The complementary

list L′ plays the role of a zone of interest as defined in [15]. This construction variation
allows to deal with more potential contacts, but slightly enlarges the size of the RID.

ΩA

ΩB

ΩA ∩ ΩB

ΓC
A

ΓC
I

ΓC
1ΓC

2

Ω1

Ω2

(a)

ΩA

ΩB

ΩA ∩ ΩB

ΓC
A

ΓC
1ΓC

2

Ω1

Ω2

(b)
Figure 2. Modification of the RID definition for the contact problems. (a) Extended RID interface
(ΓC

I ). (b) Extended RID (ΩA).

2.3.2. Reduced Bases

Concerning the primal basis reduction, the standard POD-snapshot method [29] is
used. The size l of this reduced basis (RB) is automatically obtained according to the
approximation error εPOD on the snapshot matrix. The primal RB is then the matrix
V ∈ RN×l containing the l first left singular vectors of the singular value decomposition
(SVD) of the snapshots matrix. The discrete displacement is then projected in this RB
U = Vγ, γ ∈ Rl being degrees of freedom (DoFs) associated to the primal RB, l � N.

In order to avoid a non efficient compression of the dual basis, we used the RID
concept to simply reduce the number of dual DoFs by restriction of the dual FOM basis
to the RID. This strategy enables precise dual forces to be obtained on the RID, as shown
in [9].

In counterpart, the reduced dual basis is of local support only. If the solution outside
the RID is of interest, a reconstruction strategy based on the solution of a non-negative least
squares (NNLS) problem using the dual snapshots, as well as the ROM primal and dual
solutions, was proposed in [9].

2.3.3. Hybrid Hyper-Reduced Formulation

Complexity reduction of hyper-reduced models accounts for the sparsity of finite
element matrices. We introduce the set A of primal DoFs not connected to ΩB:

A =

{
i ∈ [[1,N]] |

∫
ΩB

ϕT
i ϕidΩ = 0

}
, (6)

and the set I of DoFs connected to A by the rigidity matrix K (interface nodes in the
discretization scheme sense):

I =

{
j ∈ [[1,N]], j /∈ A | ∃i ∈ A s.t. (K)ij 6= 0

}
. (7)
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Concerning the reduction of the contact conditions, we define the set Ac of DoFs of A
localized on the potential contact zone and the set Aλ of dual DoFs connected to Ac by the
contact matrix B.

Ac = {j ∈ A | ∃i ∈ [[1,Nλ]] s.t. (B)ij 6= 0}, (8)

Aλ = {i ∈ [[1,Nλ]] | ∃j ∈ Ac s.t. (B)ij 6= 0}. (9)

The cardinal of Aλ, denoted NC
λ in the sequel, corresponds to the number of potential

contact points in the RID and, hence, to the size of the dual reduced basis. The hybrid
hyper-reduced (HHR) model, introduced in [9], reads:

Find (γ, Λ) ∈ Rl × (R+)NC
λ such that

V[A, :]TK[A,A∪ I ]V[A∪ I , :]γ + V[Ac, :]T B[Aλ,Ac]
TΛ[Aλ] = V[A, :]T F[A],

B[Aλ,Ac]V[Ac, :]γ ≤ D[Aλ],

Λ[Aλ]
T(D[Aλ]− B[Aλ,Ac]V[Ac, :]γ) = 0,

(10)

with γ being the primal solution and Λ[Aλ] the dual solution of the reduced model. As
shown in Equation (10), the HHR formulation respects all of Signorini’s conditions inside
the RID.

As Problem (3), Problem (10) is a saddle-point problem. It was proven in [9] that
the HHR formulation is consistent with the FE formulation if the solvability condition
of Problem (10) is respected. In the setting of (10), it leads to have B[Aλ,active,Ac]V[Ac, :]
of full row rank, Aλ,active being the set of DoFs associated to an active contact (equality
constraint), which is a priori unknown.

3. Solvability Condition and Enrichment of the Primal Reduced Basis
3.1. Extended Solvability Condition

The set of active contact Aλ,active being a priori unknown, we have to consider a
stronger solvability-like condition. We impose the projected contact rigidity matrix, includ-
ing all potential contacts, i.e., B[Aλ,Ac]V[Ac, :], to be of full row rank. Since B contains
as many lines as there are potential contact points (node-to-node contact), the extended
solvability condition on the reduced model (10) imposes

rank(B[Aλ,Ac]V[Ac, :]) = NC
λ . (11)

A necessary condition to verify Equation (11) is that NC
λ ≤ l, which is not always

respected due to the RID construction. In order to respect Condition (11) without modifying
the RID, the primal RB has to be enriched.

In [9], it was proposed to enrich the primal RB with FE shape functions related to the
nodes on the contact surface. In the case of Lagrange FE, the extended primal RB denoted
V then reads:

V =

(
V IN

[
:,LC

])
, (12)

with IN , the identity matrix of size N, LC ⊂ AC the node indices of the FE shape functions
to be added. The primal reduced basis dimension is then l = l + card(LC). This enrichment
is advantageous to accurately solve the solution on the contact surface, but the choice of
LC may be not trivial. In [9], the enrichment was either done manually with an arbitrary
selection (for one-dimensional problems) or it was proposed to add all primal FE shape
functions of the potential contact zone in order to simply ensure the full row rank condition,
good stability, and accurate solutions on the contact zone. In this latter case, LC = AC,
which may lead to a significant expansion of the primal RB.
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One of the main contributions of this paper includes strategies to automatically and
wisely obtain the set LC in order to optimize the ratio between the primal RB dimension l
and the precision of the dual-reduced solutions.

3.2. Importance of the Projected Contact Rigidity Matrix Condition Number

In the FE model, the condition number of the contact rigidity matrix B, written κ(B),
is equal to 1. According to this observation, the more the condition number of the projected
contact rigidity matrix of the HHR model, denoted κ(B[Aλ,Ac]V[Ac, :]), is close to 1, the
more precise the dual reduced solutions. On the other hand, the primal reduced solutions
are less sensitive to this condition number. An illustration of this behaviour of dual and
primal HHR solutions are reported in Figure 3, from the test case of Section 5.2. The relative
errors considered are presented in Section 5.1, Equations (17) (primal) and (18) (dual).

0.8
1

1.5
2

3

5

10

25

50

70
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1 10 100 1000 10,000 100,000

R
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at
iv

e 
er

ro
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Condition number of B[Aλ,AC] V[AC,:]

primal
dual

Figure 3. Impact of the condition number of the projected contact rigidity matrix on the dual and
primal relative errors.

3.3. FE Enrichment of the Primal RB

In order to make the condition number κ(B[Aλ,Ac]V[Ac, :]) closer to κ(B), it seems
natural to add to the primal RB V some FE shape functions located on the potential contact
zone of the RID, cf. Equation (12). When LC = AC, we then have κ(B[Aλ,Ac]V[Ac, :]) =
κ(B).

We propose to automatically obtain the set LC ⊂ AC through a greedy algorithm
based on κ(B[Aλ,Ac]V[Ac, :]), see Algorithm 1. In this algorithm, AC(p) denotes the DoF
number associated to the pth element of AC.

It is worth noting that even when the extended solvability condition is respected, the
set LC could continue to be enlarged in order to improve the dual solutions.
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Algorithm 1: Greedy algorithm based on the condition number of the projected
contact rigidity matrix to enrich the primal RB.

Data: maximum condition number κmax, matrices B and V, the set AC (primal FE
DoFs on the potential contact zone of the RID)

Result: The set of FE DoFs to activate LC ⊂ AC and the primal enriched RB V
LC = ∅ ; k = 0 ; G = [[1,card(AC)]] ;
κmin = κ(B[Aλ,Ac]V[Ac, :]) ;
V = V;
while (κmin > κmax or rank(B[Aλ,Ac]V[Ac, :]) < NC

λ ) and k < card(AC) do
k = k + 1 ;
for p ∈ G do

Vtmp =
(
V IN [:,AC(p)]

)
;

if κ(B[Aλ,Ac]Vtmp[Ac, :]) < κmin then

κmin = κ(B[Aλ,Ac]Vtmp[Ac, :]) ;

pmin = p ;
end

end
G = G \ {pmin} ;
LC = {LC,AC(pmin)} ;
V =

(
V IN [:,AC(pmin)]

)
;

end

3.4. POD Modes and FE Shape Functions Enrichment of the Primal RB

The FE shape function enrichment is a way to extend the primal RB, but it naturally
comes to mind to use an enrichment strategy that uses more POD modes (less truncated
SVD) for a given RID. In this way, more global information (from snapshots) can be included
in the extended primal RB.

Practically, this strategy is based on a second POD threshold εPOD2 < εPOD to obtain
l2 supplementary primal POD modes. The primal POD basis considered in the HHR
model (10) is now V ∈ RN×(l+l2).

The extension of the primal POD RB through the order of singular vectors does
not guarantee the extended solvability condition or a satisfying condition number of the
projected contact rigidity matrix. Hence, this strategy has to be combined with the FE shape
function enrichment (see Section 3.3 and Algorithm 1) to obtain accurate dual solutions.

The main advantage of this strategy is that it allows us to use a more precise POD
RB without impacting the size of the RID. Indeed, in most cases, the RID construction is
based on a selection method relying on the primal RB (running the DEIM algorithm on
the primal RB for example). Hence, there is a strong connection between the size of the
primal RB and the size of the RID. Using the proposed strategy, the RID construction is still
based on the POD threshold εPOD while the HHR model is based on the extended POD
threshold εPOD2. Let us underline that εPOD2 must remain large enough in order to avoid
overfitting. Hence, this strategy is mainly of interest for large parametric spaces.

Remark 1. For both enrichment strategies, one has to verify the basis property of the extended
matrix V on the RID. The verification has to be done in the offline part of the method, without
impacting the online part.

4. Clustering

In case of highly nonlinear problems, such as non-smooth contact problems, clustering
strategies may offer the possibly of treating the nonlinearity in a linear piece-wise manner
through low-rank (ROM) approximations on different clusters partitioning the parametric
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space [18]. For large parametric spaces, we then expect to improve the accuracy of the
reduced solution for a given dimension of RBs.

4.1. From Regular Snapshots

The framework of the clustering strategy is presented in Figure 4. The training set
Ptr is generated through a regular discretization of the training space P . FOM primal
snapshots are calculated on the parametric points of Ptr.

We then consider a partition of P composed of Ns elements relying on the discretiza-
tion Ptr. On each element j = 1, . . . , Ns, an orthonormal basis Vj is obtained from the POD
on the element-wise snapshot matrix. This local snapshot matrix is composed by snapshots
associated to points in Ptr belonging to element j.

Regular Snapshots

Partition of the

parametric space

POD on the partition-

based snapshots matrices

Dissimilarity matrix based

on the Grassmann distance

Clustering

Local ROMs

Figure 4. Clustering framework.

As suggested in [18,30], the Grassmann distance dGr(∞,∞) between local RBs is then
used for the clustering of the simulated data for model order reduction. The dissimilarity
matrix δ ∈ RMs×Ms writes:

∀j1, j2 ∈ [[0,Ns]]
2, (δ)j1,j2 = dGr(∞,∞)(Vj1 , Vj2), (13)

with

dGr(∞,∞)(A1, A2) =

(
π2

4
|a1 − a2|+

min(a1,a2)

∑
i=1

α2
i

) 1
2

, (14)

where a1 and a2 are the dimensions of bases A1 and A2, respectively. The angles αi are
related to the singular values Σii, 1 < i ≤ min(a1, a2), of AT

1 A2 by Equation (15)

Σii = cos(αi). (15)

The smaller (δ)j1,j2 , the closer the subspace spanned by bases Vj1 and Vj2 , separately.
A clustering algorithm based on the dissimilarity matrix δ is finally applied to build K
clusters from the initial partition of P into Ns elements. In this work, we use the k-medoids
algorithm [31], to focus on compactness.

On each cluster k, k = 1, . . . , K, the local snapshots matrix gathers the snapshots asso-
ciated to points of the training set Ptr included into the cluster. From this local snapshots
matrix, a local HHR model is built following the strategy described in Section 2.3. In
particular, a local RID is considered in each cluster k.
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As the clustering aims to reduce the range of the parameter variations, an accurate
low-rank approximation of the primal basis can be obtained. Hence, in this case, only the
enrichment strategy based on FE shape functions (see Section 3.3) has to be considered
in order to ensure both the respect of the local solvability condition as well as accurate
reduced dual forces.

Concerning the classification, a trivial strategy based on the clustering partition of the
parametric space P is used. This classification is used online for the local ROM selection
associated to given input data (generally outside the training set Ptr).

4.2. From Irregular Snapshots

The regular-based clustering strategy introduced in Section 4.1 may become pro-
hibitive for high-dimensional parametric spaces. In such cases, an irregular distribution
of snapshots in the parametric space has to be considered for the training set Ptr, gener-
ally thanks to greedy algorithms. Then, it is no more suitable to rely on an element-wise
partition of the parametric space for the clustering. A simple adaptation of the procedure
of Section 4.1 is proposed here. The dissimilarity matrix is now based on the Grassmann
distance between each normalized snapshot Sj, j = 1, . . . , Ms, with Ms = card(Ptr) the
number of snapshots. In this case, Equation (14) reduces to

dGr(∞,∞)(Sj1 , Sj2) = arccos(ST
j1 Sj2), ∀j1, j2 ∈ [[0,Ms]]

2. (16)

The clustering strategy returns in this case in labeling the snapshots.
Local ROMs are built similarly to Section 4.1 from the cluster-based local snapshots matrix.
The simplification of the clustering phase comes with adding complexity in the classi-

fication construction required for the online local ROM selection. Advanced classifiers, see
for example [18], have to be considered as no clustering partition of the parametric space
is available. In this work, we propose to build offline a supervised learning classification
method trained on the snapshots and their cluster label. In the numerical examples, the
random forest classification method [32,33] has been performed.

5. Numerical Results

In all of the following numerical experiments, the FOM solution was obtained thanks to
the Cast3M finite elements software (2020 version) [34]. Lagrange P1 or Q1 finite elements have
been used, with three or four integration points, respectively, for strain/stress calculation.

5.1. Test Case A: Half Disks of Hertz, Unidimensional Parametric Space

This test case is described in [10]. It considers two half disks in a two-dimensional
setting, each disk having the same radii R = 1 m. The two disks are separated by an
initial gap being at minimum d = 0.1 m. Both disks have the same material characteristics:
a Young modulus E = 15 Pa and a Poisson coefficient ν = 0.35. Dirichlet boundary
conditions are imposed on the horizontal edges of the disks, with ux = 0 and uy = ±µ
with an upward movement for the lower disk and a downward movement for the upper
disk. The range values of µ defines the parametric space. A representation of the initial
state of the test case can be seen in Figure 5a.

The finite element full-order model (FOM) is built on a mesh with 678 nodes. The
circular parts of both disks, constituting the potential contact zone, contains 55 nodes on
each side. The deformation obtained with the FOM for µ = 0.3 is presented in Figure 5b.
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(a) (b)
Figure 5. Half-disk test case. FOM configurations. (a) Initial state. (b) Deformation for µ = 0.3.

We consider a parametric space P = [0.15, 0.45] (m) for µ and build the training set
Ptr = {0.15 + 0.01i

∣∣0 ≤ i ≤ 30} (m). Hence card(Ptr) = 31. To assess the accuracy of the
methods on this test case, we will use three kind of errors, the primal relative error in the
2-norm Equation (17), the dual relative error in the 2-norm Equation (18), and the error on
the minimum energy Equation (19) used in [10].

eu(µ) =

(
||uROM(µ)− uFOM(µ)||22,Ω

||uFOM(µ)||22,Ω

) 1
2

, (17)

eλ(µ) =

 ||λROM(µ)− λFOM(µ)||2
2,ΓC

A

||λFOM(µ)||2
2,ΓC

A

 1
2

, (18)

eener(µ) =
1
2
|a(uROM(µ), uROM(µ))− f (uROM(µ))− a(uFOM(µ), uFOM(µ)) + f (uFOM(µ))|, (19)

with (uROM(µ), λROM(µ)) and (uFOM(µ), λFOM(µ)) denoting the ROM (here obtained
with the HHR model) and FOM solutions (primal and dual), respectively.

Let us underline that, in the case of the HHR method, the error on the Lagrange
multipliers (18) is naturally evaluated on the RID. The extension from ΓC

A to ΓC could
however be performed through the reconstruction strategy introduced in [9]. On the
counterpart, the extension to Ω of the displacement field is obvious thanks to the POD
basis. Hence, the primal error will always be evaluated on the whole domain Ω.

This test case has the particularity to present a double symmetry (horizontal and
vertical) for the dual and the primal solutions. This symmetry added to the relatively small
contact surface and the one-dimensional parametric space leads to a test case relatively
easy to treat for ROMs. Using the HHR, a small RID is enough to give very good results.

In the following results, the RID has been built from the set L obtained applying the
DEIM to the primal POD-reduced basis. This set is supplemented by two nodes on the top
and bottom surfaces to be able to treat Dirichlet boundary conditions. As the parametric
space is quite small, an accurate error threshold of εPOD = 10−8 is used, resulting in a
primal RB with 9 vectors (l = 9). The RID is reported in Figure 6a. It results in 16 nodes
on the contact surfaces (8 on each side), hence NC

λ = 8. The solvability condition (cf.
Equation (11) is in this case directly respected. Moreover, the condition number is also
initially very good κ(B[Aλ,Ac]V[Ac, :]) = 3.4. Hence, this test case does not require any
enrichment of the primal RB to obtain accurate results with the HHR method. In Figure 6b,
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the Lagrange multipliers for the FE and HHR models are reported for different values of
µ /∈ Ptr. This Figure confirms the very good local accuracy on the Lagrange multipliers.
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Figure 6. Half-disks test case. HHR model: RID and Lagrange multipliers. l = 9, NC
λ = 8. (a) Reduced

integration domain (RID). (b) Lagrange multipliers for different values of µ /∈ Ptr.

To further evaluate the accuracy the method we compute the errors eu(µ), eλ(µ) and
eener(µ), either on the RID and on Ω (with the reconstructed dual solution) on a set of 101
points in P (including the 11 points of the training set Ptr). The results are reported in
Figure 7.
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Figure 7. Half-disks test case. HHR errors evaluations of 101 points. l = 9, NC
λ = 8. (a) Error on the

minimum energy eener(µ). (b) Primal error on the displacement field eu(µ) on Ω and dual error of
the Lagrange multipliers eλ(µ) on the RID.

The primal solution is always approximated with accuracy, with relative errors in
the 2-norm below 0.05% (5×10−4) on the parametric space. The dual solution is also
approximated accurately ranging from 0.1% to a maximum of 0.8%. The error on the
minimum energy is also very satisfying, with errors below 10−4 on Ω, even outside the
training set.

In [10], the cone-projected greedy (CPG) algorithm was applied on the same problem
with the same training set and the same POD truncation (l = 9 POD modes). The CPG
method yields to errors ranging from 10−6 to 10−3 for the error on the minimum energy, and
from 10−5 to 4×10−3 for the error on the displacement field. Those errors were obtained
on parametric points of the training set only. No errors on Lagrange multipliers were
reported. Compared with the errors shown in Figure 7 of the present paper, it highlights
the robustness of the proposed HHR method—that is to say the accuracy of the results on
the parametric space, even outside the training set.
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5.2. Test Case B: 2D Axisymmetric Contact—Bidimensional Parametric Space

We consider here a two-dimensional axisymmetric test case introduced in [35], rep-
resenting a simplified contact problem between a nuclear fuel pellet and its surrounding
cladding. The test’s geometry is sketched in Figure 8a. The two materials follow an elastic
isotropic behaviour with a Young modulus and Poisson coefficient of E = 190 GPa, ν = 0.3
for the fuel, and E = 78 GPa, ν = 0.34 for the cladding. The uniform initial gap between
the two solids is d = 2 µm. The test case consists in applying a pressure P1 on a length
h1 on the outside part of the cladding. The range values of parameters P1 and h1 form
the parametric space P = [5, 200] MPa×[0.6, 6.0] mm. This configuration leads to a low
displacement along the z axis, allowing good modeling of the contact with a node-to-node
configuration. The parametric variations are challenging for ROM models as it includes
strong variations of the contact surface as well as the contact pressure. The FOM is built on
a mesh with 7070 nodes, 6161 for the mesh representing the fuel and 909 for the cladding,
see Figure 8b. There are 101 potential contacts (Nλ = 101).

In order to build the HHR model, 500 snapshots regularly distributed in the parametric
space are used for the training set Ptr. Due to the large variations of the parametric space,
a POD threshold of εPOD = 10−6 is used to initially limit the dimension of the primal RB
to l = 36 (see the decrease of approximation error on the snapshot matrix in Section 5.2.2).
Using the set of points L obtained from the DEIM applied to the primal RB results in the
RID illustrated in Figure 9a where a region of interest corresponding to the Neumann
surface has been added. The number of potential contact is the RID is NC

λ = 12. This RID
gives ride to unsatisfactory primal solutions. We then expand the set L using a second
DEIM on a dual POD RB (with a threshold ε = 4× 10−4). It worth underlying that this
dual POD RB is only used for the RID expansion. The expanded RID is presented in
Figure 9b, having also the Neumann surface as a zone of interest. In this case, NC

λ = 34. The
advantage of using the DEIM on a dual POD RB is that the selected DoFs will be located on
the contact surface.

1

4.1mm 0.57 mm

mm

h1

h17- 

(a)

Maillage initial

(b)
Figure 8. The 2D axisymmetric test case. Sketch of the problem and FOM discretization. (a) Geometry
of the 2D axisymmetric test case. (b) FOM mesh.
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(a) (b)
Figure 9. The 2D axisymmetric test case. Reduced integration domain (RID). (a) RID obtained with
one DEIM. (l = 36, NC

λ = 12). (b) RID obtained with two DEIM. (l = 36, NC
λ = 34).

In the following, the results presented focus on the expanded RID (l = 36, NC
λ = 34)

and on parameters outside of the training set Ptr. In this case, the solvability condition is
not initially respected. Hence, the primal RB have to be enriched to solve the HHR problem.

5.2.1. Enrichment Strategies

We focus here on the algorithm presented in Section 3.3 for the enrichment of the primal
RB with FE shape functions. Figure 10 shows the output at the different iterations of the
greedy Algorithm 1. Although the solvability condition is not verified initially, a numerical
solution can be obtained. However this latter exhibits high dual relative errors. Figure 10
illustrates that the strict respect of the solvability condition (indicated by the dashed red
vertical lines) is not enough to obtain a satisfying accuracy on the dual solutions. With FE
shape function enrichment, the solvability condition is verified for l̄ = 40 (4 supplementary
FE shape functions), but with a condition number of B[Aλ,Ac]V[Ac, :] superior to 1000,
lying to dual relative errors greater than 70%. The further enrichment of the primal RB
based on the improvement of this condition number enables drastically improving the
dual relative errors, up to 2% for the parametric point (170 MPa, 3.2 mm) considered in
Figure 10a. The dual relative error becomes significantly lower for a condition number
around 10, see Figure 10b. For κmax = 10, the greedy algorithm results in card(V)=55 and a
dual relative error of 6.3%.

The enrichment strategy of the primal RB with POD and FE modes, introduced in
Section 3.4, is now compared to the enrichment strategy based on FE modes only, and
previously illustrated. We set κmax = 1 (maximal enrichment) in Algorithm 1 for both
approaches. We report in Table 1 the results obtained for different truncation levels for the
enrichment by POD modes on two points of the parametric space (strong or weak contact)
outside the training set Ptr.

The enrichment method by POD+FE modes can enable us to reach dual and primal
relative errors lower than the enrichment method with only FE modes. Using a maximal
enrichment κmax = 1, the enrichment method by extended POD naturally leads to higher
cardinal of the primal extended RB (see Table 1).
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Figure 10. The 2D axisymmetric test case. Study of the two enrichment strategies: by FE modes only
(‘l’) and by POD+FE (‘l + 9’, 9 POD modes added), with l = 36 and NC

λ = 34. Point: P1 = 170 MPa
and h1 = 3.2 mm. (a) Dual relative error regarding the number of FE modes added to the primal
POD RB enriched (‘l + 9’) or not (‘l’). (b) Relative dual errors regarding the condition number of the
projected contact rigidity matrix for the two enrichment strategies.

Regarding the errors, we can see that for a parametric point already well treated by
the FE enrichment method (see P1 = 170 MPa and h1 = 3.2 mm), few additional POD
modes are enough to lower the dual relative error. However, when the dual relative errors
remain high with the FE enrichment method, it is useful to add more POD modes to lower
the dual relative error. For example, on the point P1 = 30 MPa and h1 = 5.25 mm, adding
9 POD modes (corresponding to εPOD2 = 3.5 × 10−7) allows us to divide the dual relative
error by four.

We can outline from Table 1 that the choice of εPOD2 remains non-trivial as (too) low
values lead to phenomena associated with over-fitting that degrade the accuracy of the
solutions.

We notice that an enrichment method with POD modes only will not be efficient to
lower the condition number of the projected contact rigidity matrix without impacting the
precision of the reduced solutions.

In Figure 10, the output of the greedy algorithm on the primal RB extended with nine
supplementary POD modes (denoted as ‘l + 9’ in the legend) are reported. For an equivalent
primal RB dimension, the POD+EF enrichment strategy becomes interesting only for low
errors, see Figure 10a. However regarding to condition number of the projected contact
rigidity matrix, the POD+FE enrichment strategy is always improving the dual errors for a
given prescribed condition number, see Figure 10b. It is worth noting that the solvability
condition is reached for a comparable condition number. This confirms the strong relation
between solvability, precision, and condition number.

The two enrichment methods are now compared on the whole parametric space. For
that purpose, HHR solutions are calculated on 6400 points regularly distributed in the
parametric space. We set the maximum condition number to κmax = 10, which seems to be
a good compromise between precision and dimension of the extended primal RB.

The maps of the dual relative errors are reported in Figure 11 for the FE enrichment
strategy (Figure 11b) and POD+EF enrichment strategy with 9 supplementary POD modes
(Figure 11a). It clearly shows an improvement due to the POD+EF enrichment method.
The dimension of the final extended primal RB (l̄) is, in this case, 7 modes larger (instead of
9), which implies that the improvement of the condition number is slightly facilitated by
the addition of POD modes.

Whatever the enrichment strategy, dual relative errors remain high on the left side
of the maps, for low pressures P1. This highlights the complexity to efficiently reduce a
problem on such a parametric space, where the contact can be strong, weak, or even absent,
and on a large or small surface.
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Table 1. The 2D axisymmetric test case: study of the enrichment strategy by POD modes and FE
shape functions (l = 36 et NC

λ = 34).

P1 = 170 MPa P1 = 30 MPa
h1 = 3.2 mm h1 = 5.25 mm

nb POD εPOD2
κ(B[Aλ,Ac]

V [Ac, :])
l̄ =

card(V)
Rel. err. Rel. err.

mod. add. ×10−7 after POD
enrich. Final Primal Dual Primal Dual

FE Enr. 0 − 1.5 × 106 70 1.0% 2.5% 2.9% 21%

POD+FE
Enr. 3 7.5 2.3 × 104 73 2.5% 1.8% 0.5% 26%

POD+FE
Enr. 6 5 4.5 × 103 76 0.5% 1.6% 1.6% 16%

POD+FE
Enr. 9 3.5 4.1 × 103 79 0.1% 1.3% 3.5% 5.6%

POD+FE
Enr. 12 2.7 3.4 × 103 82 1.4% 1.7% 2.5% 6.7%

POD+FE
Enr. 15 2.2 878 85 1.9% 1.7% 1.3% 5.8%

POD+FE
Enr. 18 1.7 386 88 1.1% 1.4% 0.2% 5.3%

POD+FE
Enr. 21 1.3 383 91 7.8% 1.8% 13.4% 9.3%

POD+FE
Enr. 23 1.1 330 93 0.8% 1.3% 16% 9.9%

POD+FE
Enr. 26 0.9 328 96 12% 1.3% 1.5% 9.5%

This naturally opens the way to study clustering strategies on the parametric space.
Before presenting numerical results for the clustering strategies, we first study here

the impact of the size of the RID over the enrichment strategies. We hence consider a larger
extended RID with more potential contact points. This RID is simply obtained considering a
higher dual POD RB threshold of ε = 1× 10−4 for the DEIM point selection, see Section 5.2.
In this case, the RID contains NC

λ = 60 potential contacts with always the same primal RB
of l = 36 POD modes, see Figure 12.
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Figure 11. The 2D axisymmetric test case. Dual relative error maps (in %) for the HHR model with
l = 36, NC

λ = 34 on a test space of 6400 points. Enrichment strategies applied with κmax = 10. (a) FE
enrichment. l = 55. (b) POD+FE enrichment (l + 9). l = 62.
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Figure 12. The 2D axisymmetric test case. Larger extended RID. l = 36, NC
λ = 60.

As a consequence of the augmentation of NC
λ , the solvability condition requires a

larger enriched primal RB. For this RID, the FE enrichment method reaches the solvability
condition for l̄ = 61; that is to say, 35 supplementary FE modes. However, as previously
shown, for this extended basis, the dual reduced solutions are not satisfying enough.
Further enrichment based on the condition number of the projected contact rigidity matrix
is required.

In Figure 13, we report dual relative error maps using both FE and POD+FE enrichment
with a maximal condition number κmax = 10. This results in a primal RB with a cardinal
of l̄ = 83 for the FE enrichment method and of l̄ = 91 for the POD+FE enrichment
method with nine supplementary POD modes (l + 9). Compared to Figure 11a, the first
conclusion to be drawn is that the increase of NC

λ does not improve the error maps for the FE
enrichment method, see Figure 13a. In counterpart, we can see a significant improvement
for the POD+FE enrichment method, cf. Figures 11a and 13b.
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Figure 13. The 2D axisymmetric test case. Dual relative error maps (in %) for the HHR model with
l = 36, NC

λ = 60 on a test space of 6400 points. Enrichment strategies applied with κmax = 10. (a) FE
enrichment. l = 83. (b) POD+FE enrichment (l + 9). l = 91.

An important point here is to remember that the RID contains more Lagrange mul-
tipliers when NC

λ = 60 than when NC
λ = 34, meaning that the computation of the dual

relative error as defined by (18) implies more forces in the case NC
λ = 60. Contact forces for

the parametric point P1 = 170 MPa and h1 = 3.2 mm for both configuration of NC
λ with

full FE enrichment (κmax = 1) are reported in Figure 14. In both situations, the dual forces
are locally very accurate on the RID (2.6% for NC

λ = 60, and 2.5% for NC
λ = 34). However,
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having more potential contact points in the RID and, therefore, more contact forces solved
is obviously an advantage both for the physical interpretation of the simulation and the
reconstruction of the dual solution, but the drawback is the dimension of the primal RB
that grows with NC

λ .
This motivates one to, furthermore, look to forward clustering approaches to limit the

increase of the primal RB cardinal while reaching the same accuracy.

(a) (b)

Figure 14. The 2D axisymmetric test case. Contact forces for P1 = 170 MPa and h1 = 3.2 mm. HHR
with FE enrichment (red arrows) and FOM (black arrows). (forces superposed on the right side).
(a) HHR with l = 36, NC

λ = 34 and l = 70. (b) HHR with l = 36, NC
λ = 60 and l = 96.

5.2.2. Clustering Strategies
From Regular Snapshots

We focus here on the clustering strategy proposed in Section 4.1. The same regular
training set Ptr composed by 500 snapshots is used. The partition of parametric space
is built through groups of four snapshots forming rectangles in the 2D parametric space
representation, see Figure 15a. In Figure 15b we can see the results of the clustering
algorithm for K = 3 clusters, each point representing a snapshot and the background color
representing a cluster.

(a) (b)

Figure 15. The 2D axisymmetric test case. Partition and clustering of the parametric space from
regular snapshots. (a) Partition of the parametric space. (b) Clusters for K = 3.

The clusters contain respectively 170, 194, and 170 snapshots in their local snapshot
matrices. Figure 15b shows that the clustering strategy on the parametric space naturally
focuses on the position h1 of the potential contact zone. It confirms that a large variation of
the potential contact zone is the preponderant parameter of nonlinearity.

As the parametric space is locally reduced into the cluster, the local HHR models are
obtained from a primal POD threshold εPOD = 10−8. The choice of this threshold still
enables a low-rank approximation as confirmed by Figure 16.
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Figure 16. The 2D axisymmetric test case. Approximation error (definition recalled in Appendix A)
on the snapshot matrices for the case with (K = 3) and without clustering.

The primal RB size in each cluster is l = {31, 39, 36}. A local RID is built for each local
model. As previously, a DEIM on the primal RB and a contribution from a DEIM on a dual
POD RB (with a threshold ε = 10−6) is used to obtain the set of nodes L. The resulting
RIDs are reported in Figure 17. The number of potential contacts treated in each RID is
NC

λ = {36, 40, 35}.

(a) (b) (c)
Figure 17. The 2D axisymmetric test case. (a) RID for the ROM associated with cluster 1. (l = 31,
NC

λ = 36). (b) RID for the ROM associated with cluster 2. (l = 39, NC
λ = 40). (c) RID for the ROM

associated with cluster 3. (l = 36, NC
λ = 35).

As a direct results of the cluster shapes, the RID of the local reduced order models are
much more localized. Figure 17 confirms the observation made from Figure 15b, as the
three RIDs finally form a domain decomposition of the FOM potential contact zone. For
each cluster, the RID is localized around the possible values of h1, which represents the
zone of status change (contact/gap).

On each cluster, the primal RB extension is performed through the FE enrichment
strategy only (since εPOD is already low). The results obtained with a maximum enrichment
(κmax = 1) for the two points studied in Table 1 are reported in Table 2.
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Table 2. 2D axisymmetric test case. Study of the clustering strategy with full local FE enrichment.

Cluster
κ(B[Aλ,Ac]

V [Ac, :])
l = card(V) l̄ = card(V) Rel. err.

Label before FE enrich. Initial Final Primal Dual

P1 = 170 MPa 2 1.5×105 39 79 0.03% 2.0%h1 = 3.2 mm

P1 = 30 MPa 1 2.2×104 31 67 0.02% 2.4%h1 = 5.25 mm

For the point P1 = 170 MPa and h1 = 3.2 mm, already accurately treated by the
enrichment strategies performed on the whole parametric space, similar dual errors are
obtained (with a significant improvement on the primal error).

For the point P1 = 30 MPa and h1 = 5.25 mm, the results are much better than
the ones obtained on the whole parametric space, whatever the enrichment strategy (see
Table 1). Moreover, the size of the primal RB remains limited (l̄ = 67).

Generally speaking, the proposed clustering strategy helps smooth the dual relative
errors. It particularly improves the accuracy on the parametric points where the relative
errors are high without the clustering strategy, see Figure 18.

Concerning the RB dimensions, this clustering strategy leads to comparable sizes than
the strategies introduced in Section 5.2.1 However the dual errors are greatly improved by
the clustering compared to Figure 11.

The error maps of Figure 18 are even better than the ones obtained on an extended
RID with the POD+EF enrichment strategy, see Figure 13b. In this latter case, the bases
dimensions were almost 40% larger.
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Figure 18. The 2D axisymmetric test case. Dual relative error map (in %) for the clustering strategy
with K = 3 clusters. Test space of 6400 points. FE enrichment method with κmax = 10. HHR models
with l = {31, 39, 36}, NC

λ = {36, 40, 35} and l = {54, 67, 57}.

We should note that, even with the clustering strategy, it remains difficult to accurately
approximate very low contact pressure parametric zones.

The number of clusters K cannot be too increased. Indeed, the more the cluster, the
smaller the local parametric space becomes. However, each cluster must have enough
snapshots to build a representative POD RB and then an accurate HHR model.

More snapshots could be initially used, but another interesting way to investigate
would be to consider a recursive clustering strategy (with possibly adding snapshots) inside
clusters having the least accurate HHR solutions.
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From Irregular Snapshots

We focus here on an irregular distribution of the snapshots in the parametric space
P obtained through a snapshot selection by the greedy algorithm introduced in [9]. The
resulting training set Ptr contains 200 snapshots, which can be visualized in Figure 19a. Let
us notice that they are mainly located around small values of contact pressure P1.

(a) (b)
Figure 19. The 2D axisymmetric test case. Clustering strategy for irregular snapshots. K = 3 clusters.
(a) Cluster labels on the irregular snapshots. (b) Prediction function obtained with the random forest
classifier. (label 0: blue, label 1: grey, label 2: red).

In order to appreciate the solutions obtained by the clustering algorithm introduced in
Section 4.2, we first briefly present some key results obtained by the HHR method with
enrichment trained on irregular snapshots of Ptr (without clustering).

The HHR model is built using the primal POD threshold εPOD = 10−6, resulting in a
primal RB of dimension l = 33. The RID is obtained as the one shown in Figure 12 (DEIM
on the primal RB, and a contribution from a DEIM on a POD dual RB obtained with the
threshold ε = 10−4). It finally contains NC

λ = 57 potential contacts. For the POD+FE enrich-
ment method, an error threshold εPOD2 = 3.5× 10−7 is used (as in Figures 11b and 13b)
resulting in a primal RB of dimension (l + 5) = 38 before enrichment. Both enrichment
strategies are moreover applied, setting κmax = 10 as a maximum condition number in
Algorithm 1. The FE enrichment method results in a primal RB of cardinal l = 60, while
the POD+FE method results in a primal RB of cardinal l = 82. We present in Figure 20 the
dual relative errors on the parametric space for both reduced models.
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(b)
Figure 20. The 2D axisymmetric test case. Irregular snapshots in the training set. Dual relative error
maps (in %) for the HHR model with l = 33, NC

λ = 57 on a test space of 6400 points. Enrichment
strategies applied with κmax = 10. (a) FE enrichment. l = 60. (b) POD + FE enrichment (l + 5). l = 82.

The errors are in good agreement with those obtained with 500 regular snapshots
on a RID of similar size, see Figure 13. It is worth noting that better results are globally
reached (especially for low contact pressure) and with a more compact primal RB (lower
dimension). This confirms the interest of greedy-selected snapshots [9].
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In order to evaluate the clustering strategy based on irregular snapshots (cf. Section 4.2)
on this training set, we build K = 3 clusters through the k-medoid algorithm (as for the
previous clustering strategy based on regular snapshots). In Figure 19a, the cluster labels
are reported. The random forest classifier is then trained to obtain a prediction function,
represented in Figure 19b as a partition of the parametric space. Let us note that, in this case,
the clusters are not uniquely defined thanks to the contact position h1 but also according to
the pressure values P1 for small h1. It confirms that a small contact pressure applied to a
reduced contact area is difficult to capture.

The local reduced order models are built with the same strategy than for the clustering
on regular snapshots. The associated local RIDs are shown in Figure 21. As for the regular
snapshot case, the RIDs are localized around the potential contact surface of the cluster (h1
parameter). RIDs of cluster 0 and 2 are quite similar.

(a) (b) (c)
Figure 21. The 2D axisymmetric test case. Irregular snapshots. RIDs associated to the local ROMs.
(a) Cluster 0. (l = 27, NC

λ = 36). (b) Cluster 1. (l = 35, NC
λ = 56). (c) Cluster 2. (l = 23, NC

λ = 35).

The dual errors map is shown in Figure 22. The clustering strategy helps smooth the
dual relative errors, as observed previously. The errors are considerably reduced for RB of
comparable sizes to those without clustering (cf. Figure 20), even for low contact pressures.

As an improvement, we can see that an adaptive snapshots strategy into clusters could
be interesting since big clusters (see cluster 1) may lack snapshots and since the cluster
delimitation could be improved where snapshots are sparsely distributed.
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Figure 22. The 2D axisymmetric test case. Irregular snapshots. Dual relative errors map (in %) for the
clustering strategy with K = 3 clusters. FE enrichment method with κmax = 10. HHR models with
l = {27, 35, 23}, NC

λ = {36, 56, 35} and l = {52, 77, 48}.
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6. Conclusions

Efficient strategies to improve the dual solution precision of reduced order modeling
of contact mechanics problems treated by Lagrange multipliers have been proposed. We
focused on the hybrid hyper-reduced (HHR) method where the dual reduced basis returns
to a restriction on a reduced integration domain of the full order dual basis.

First, the strong correlation between the condition number of the projected contact
rigidity matrix and the accuracy of the dual solution was highlighted. Two strategies of
enrichment of the primal POD reduced basis were introduced. These strategies allowed us
to verify the solvability condition of the reduced saddle-point problem (if not respected
initially) and improve the accuracy of the method, especially the dual solution.

Secondly, for a large parametric space, especially for large variations of the contact
zone where the non-smoothness of the contact conditions makes difficult low rank dual
approximations, clustering-based strategies have been proposed. Precise local enriched
HHR models are then built leading to globally enhance the accuracy of the reduced model
using limited sizes of reduced bases. Clustering strategies have been presented for regular
or irregular snapshots.

These different strategies have been applied on two-dimensional test cases, demon-
strating very good accuracy of the method on small parametric spaces, and the usefulness
contribution of the enrichment and clustering strategies on large parametric spaces. The
HHR method is able to accurately treat non-smooth cases where the contact forces can be
strong or weak, and very localized or extended.

Future works will focus on the extension of the HHR to more complex geometries
where node-to-segment contact detection is required.
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Appendix A

Approximation Error
The approximation error is obtained by using the energy rate carried by the k first

singular vectors of the SVD on the snapshot matrices:

E(k) = ∑k
i=1 σ2

i

∑d
i=1 σ2

i

= 1− ∑d
i=k+1 σ2

i

∑d
i=1 σ2

i

(A1)
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