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1. Introduction

Let Ap denote the class of functions of the form:

f (z) = zp +
∞

∑
k=1

ak+pzk+p (p ∈ N = {1, 2, . . .}) (1)

which are analytic in the open unit disc U = {z : |z| < 1} and let A1 := A. A function
f ∈ Ap is said to be in the class S∗p of p-valently starlike functions in U if it satisfies the
following inequality:

<( z f
′
(z)

f (z)
) > 0 (z ∈ U). (2)

Further, A function f ∈ Ap is said to be in the class Kp of p-valently convex in U if it
satisfies the following inequality:

<(1 + z f
′′
(z)

f ′(z)
) > 0 ( z ∈ U).

The starlikeness and convexity of p-valent functions were introduced by Goodman [1]
and considered recently in the works [2–12]. Let Pα be the class of functions with positive

real part of order α that have the form h(z) = 1 +
∞
∑

k=1
ckzk which are analytic in U and

satisfy the following condition

<{h(z)} > α, (0 ≤ α < 1; z ∈ U).

A function f ∈ Ap is said to be in the class P(p, α) if and only if

f
′
(z)

pzp−1 ∈ Pα (0 ≤ α < 1; z ∈ U) .
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For 0 ≤ α < 1, we denote by Rp(α) the family of functions f ∈ Ap which satisfy
the condition

f
′
(z) + z f

′′
(z)

p2zp−1 ∈ Pα (z ∈ U). (3)

As a special case, for p = 1 the class Rp(α) reduces to the familiar class R which
was studied by Chichra [13], Ali and Thomas [14], Singh and Singh [15,16], Kim and
Srivastava [17], Ali et al. [18], Szasz [19] and Yang and Liu [20] . For two functions f and
g ∈ Ap, that is if f is given by (1) and g is given by f (z) = zp + ∑∞

k=1 bk+pzk+p , then
their Hadamard product (convolution), ( f ∗ g), is the function defined by the power series

( f ∗ g)(z) = zp +
∞

∑
k=1

ak+pbk+pzk+p .

For a function f ∈ Ap, Reddy and Padmanabhan [21] defined the following inte-
gral operator:

Jp,c(z) = Jp,c( f (z)) =
c + p

zc

z∫
0

tc−1 f (t)dt (p ∈ N, c > −p)

= zp +
∞

∑
k=1

c + p
c + p + k

ak+pzk+p. (4)

In particular, The operator J1,c was introduced by Bernardi [22] and the operator J1,1
was studied earlier by Libera [23]. By using the Clunie-Jack Lemma [24] it was shown
in [25] that if the function f ∈ A belongs to the class Pβ, then J1,c ∈ S∗ (S∗ is the class of
starllike functions) provided

(1 + c)β >
log 4

e
6

(c2 tan2 α∗π

2
− 3) (5)

where 1 = α∗ + 2
π tan−1 α∗. In their paper [14], Ali and Thomas improved the constant β

in (5). In the work of Lashin [26] a criterion for convolution properties of functions of the
class P(α) was introduced, this criterion was improved by Sokol [27] and Ponnusamy and
Singh [28] . The present paper extends and improves each of these earlier results in [26–28].
Additionally, By using Miller and Mocanu Theorem [29] we will consider the starlikeness
of the integral operator Jp,c and extend the results of Ali and Thomas [14].

2. Preliminaries Lemmas

In this paper, we shall require the following lemmas.

Lemma 1 (see [15]). A sequence {bk}∞
k=0 of non-negative numbers is said to be a convex null

sequence if bk → 0 as k→ ∞ and

b0 − b1 ≥ b1 − b2 ≥ ... ≥ bk − bk+1 ≥ 0.

Let the sequence {bk}∞
k=0 be a convex null sequence. Then the function

q(z) =
b0

2
+

∞

∑
k=1

bkzk (z ∈ U)

is analytic in U and <{q(z)} > 0.

Lemma 2 ([15]). If the function χ(z) is analytic in U with χ(0) = 1 and <{χ(z)} > 1/2, z ∈ U,
then for any function F analytic in U, the function χ ∗ F takes its values in the convex hull of F(U).



Mathematics 2022, 10, 1506 3 of 9

Lemma 3 ([25,30]). Let λ > 0 and 0 ≤ β < 1. If the function q is analytic in U with q(0) = 1,
satisfies the inequality

<
{

q(z) + λzq
′
(z)
}
> β (z ∈ U),

then

< {q(z)} > 1 + 2(1− β)
∞

∑
k=1

(−1)k

1 + λk
(z ∈ U).

Lemma 4 ([31]). For 0 ≤ α < 1 and 0 ≤ β < 1,

Pα ∗ Pβ ⊂ Pδ, δ = 1− 2(1− α)(1− β).

The result is sharp.

Lemma 5 ([29]). Suppose that the function ϕ : C2×U → C satisfies the condition<{ϕ(ix, y; z)}
≤ δ for all real x, y ≤ − (1+x2)

2 and all z ∈ U. If q(z) = 1 + c1z + · · · is analytic in U and

<{ϕ(q(z), zq
′
(z), z)} > δ, for z ∈ U,

then <{q(z)} > 0 in U.

Lemma 6 ([32]). The nth partial sum Sn of the Alternating series
∞
∑

k=1
(−1)nan, an > 0, always

lies between Sn−1 and Sn−2, or

− 1 < −a1 < Sn < a2 − a1 < 0. (6)

3. Main Results

First of all, we state and prove the following results which extend the results of
Lashin [26] and Sokol [27].

Theorem 1. Let p ∈ N, 0 ≤ α, β < 1, and let ψ(p) =
∞
∑

k=1

(−1)k

p+k . If f , g ∈ Ap satisfy f

∈ P(p, α) and g ∈ P(p, β), then ξ = ( f ∗ g) ∈ S∗p, provided that

(1− α)(1− β) < min{ 2p + 1
8p2ψ2 + 4p

,
p + 1

4p2(1− ln 4
e )
}. (7)

Proof. It is easy to see that,

f
′
(z)

pzp−1 ∗
g
′
(z)

pzp−1 =
ξ
′
(z) + zξ

′′
(z)

p2zp−1 . (8)

By the hypothesis on f and g, it follows from (8) and Lemma 4 that

<
(

ξ
′
(z) + zξ

′′
(z)

p2zp−1

)
> 1− 2(1− α)(1− β). (9)

Let

φ(z) =
ξ
′
(z)

pzp−1 , (10)

then φ(z) = 1 + b1z + b2z2 + ... is analytic in U. Using (9) and (10) we obtain

<
(

ξ
′
(z) + zξ

′′
(z)

p2zp−1

)
= φ(z) +

1
p

zφ
′
(z) > 1− 2(1− α)(1− β).
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If we apply Lemma 3, then we have

<
(

ξ
′
(z)

pzp−1

)
> 1 + 4(1− α)(1− β)p

∞

∑
k=1

(−1)k

p + k
=: λ, (z ∈ U). (11)

Since ψ(p) > ψ(1), p ≥ 1, it follows that λ > 1− 2(1− α)(1− β)p(1− ln 4
e ). If

(1− α)(1− β) <
p + 1

4p2(1− ln 4
e )

, (12)

then
λ >

p− 1
2p

> 0. (13)

Applying Lemma 3 again, (11) gives

<
{

ξ(z)
zp

}
> 1 + 2p(1− λ)ψ. (14)

If we apply Lemma 6, then we have

ψ > − 1
p + 1

. (15)

Inequality (15) together with (13) implies 1 + 2p(1− λ)ψ > 0. Let q(z) = zξ
′
(z)

pξ(z) and

τ(z) = ξ(z)
zp , then q(z) is analytic in U with q(0) = 1 and

<{τ(z)} > 1− 8(1− α)(1− β)p2ψ2. (16)

By simple calculation, we find that

ξ
′
(z) + zξ

′′
(z)

p2zp−1 = τ(z)
[

q2(z) +
1
p

zq
′
(z)
]
= ϕ

(
q(z), zq

′
(z), z

)
,

where ϕ(u, v; z) = τ(z)(u2 + 1
p v). By (9) we get

<
[

ϕ
(

q(z), zq
′
(z), z

)]
> 1− 2(1− α)(1− β) (z ∈ U).

Moreover<{ϕ(ix, y, z)} = <{τ(z)( 1
p y− x2)}, and for real x, y ≤ − 1

2 (1+ x2), we have

<{ϕ(ix, y, z)} ≤ − 1
2p
{1 + (1 + 2p)x2}<{τ(z)} ≤ − 1

2p
<{τ(z)} (z ∈ U). (17)

Thus by (16) and (17) we get

<{ϕ(ix, y, z)} ≤ 1− 2(1− α)(1− β),

for all z ∈ U. Thus by Lemma 5, <{q(z)} > 0. Thus, <
{

zξ
′
(z)

pξ(z)

}
> 0, that is, ξ ∈ S∗p.

Remark 1. Putting p = 1 in Theorem 1 we get the result obtained by Lashin ([26], Theorem 1).
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Theorem 2. Let p ∈ N and 0 ≤ α, β, γ < 1. If f , g, h ∈ Ap satisfy f ∈ P(p, α), g ∈ P(p, β)
and h ∈ P(p, γ), then ζ = ( f ∗ g ∗ h) ∈ Kp, where

(1− α)(1− β)(1− γ) < min{ 2p + 1

16p2
(

∞
∑

k=1

(−1)k

p+k

)2
+ 8p

,
p + 1

8p2(1− ln 4
e )
}.

Proof. It is sufficient to show that η(z) = zζ
′
(z)

p ∈ S∗p. Note that,

f
′
(z)

pzp−1 ∗
g
′
(z)

pzp−1 ∗
h
′
(z)

pzp−1 =
η
′
(z) + zη

′′
(z)

p2zp−1 . (18)

By the hypothesis of Theorem 2, it follows from (18) and Lemma 4 that

<
[

η
′
(z) + zη

′′
(z)

p2zp−1

]
> 1− 4(1− α)(1− β)(1− γ),

and the proof is completed similar to the proof of Theorem 1.

Remark 2. Putting p = 1 in Theorem 2 we get the result obtained by Lashin ([26], Theorem 2).

Theorem 3. Let p ∈ N, c > −p and 0 ≤ α < 1. If f ∈ Ap given by (1) be in the class P(p, α),
then the function Jp,c defined by (4) belongs to the class P(p, β), where

β = 1 + 2(1− α)(p + c)
∞

∑
k=1

(−1)k

p + c + k
.

Proof. From (4) we have

zJ
′′
p,c(z) + (c + 1)J

′
p,c(z) = (c + p) f

′
(z). (19)

Let

q(z) =
J
′
p,c(z)

pzp−1 (20)

so that q(z) = 1 + c1z + c2z2 + ... is analytic in U. Therefore (19) and (20) leads us to

<
{

q(z) +
1

p + c
zq
′
(z)
}

= <
{

f
′
(z)

pzp−1

}
> α (c > −p, p ∈ N).

Now by applying Lemma 3 with λ = 1
c+p , c > −p and β = α, we deduce that

<
{

J
′
p,c( f (z))

pzp−1

}
> 1 + 2(1− α)(p + c)

∞

∑
k=1

(−1)k

p + c + k
.

This evidently ends the proof of Theorem 3.

Remark 3. The result (asserted by Theorem 3 above) was also obtained, by means of a markedly
different technique, by Aouf and Ling ([33], Theorem 1).

Remark 4. The result presented in Theorem 4 below generalizes the results shown by Ali and
Thomas [14], by employing a different technique
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Theorem 4. Let f ∈ Ap and Jp,c given by (4). If f ∈ P(p, α), then Jp,c ∈ S∗p (−p < c ≤ 0),
where

1− α < min{ 2p + 1
2(p + c)[1 + 2δ(c + pψ)]

,
p + 1

2p(p + c) ln 4
},

δ(c + p) = ∑∞
k=1

(−1)k

p+c+k and ψ(p) = ∑∞
k=1

(−1)k

p+k .

Proof. Let f ∈ Ap be in the class P(p, α), by using Theorem 3, we have

<
{

J
′
p,c( f (z))

pzp−1

}
> 1 + 2(1− α)(p + c)

∞

∑
k=1

(−1)k

p + c + k
:= µ, say.

Since δ(c + p) > δ(0) for −p < c ≤ 0, then µ > 1− (1− α)(p + c) ln 4. If

(1− α) <
p + 1

2p(p + c) ln 4
, (21)

then µ > p−1
2p > 0. Let us define the function ϕ by

ϕ(z) =
Jp,c(z)

zp ,

so that ϕ(z) = 1 + c1z + c2z2 + ... is analytic in U and

<
{

ϕ(z) +
1
p

zϕ
′
(z)
}

= <
{

J
′
p,c( f (z))

pzp−1

}
> µ.

If we apply Lemma 3 with λ = 1
p and β = µ, then we have

<
{

Jp,c(z)
zp

}
> 1 + 2p(1− µ)ψ. (22)

Since 2p(1− µ) < p + 1, (15) gives 1 + 2p(1− µ)ψ > 0. Note also that from (19),
we have

zJ
′′
p,c(z) + J

′
p,c(z) = (c + p) f

′
(z)− cJ

′
p,c(z).

Since c ≤ 0, the above equation and Theorem 3 give

<
{

zJ
′′
p,c(z) + J

′
p,c(z)

p2zp−1

}
=

(c + p)
p
<
{

f
′
(z)

pzp−1

}
− c

p
<
{

J
′
p,c(z)

pzp−1

}

>
(c + p)

p
α− c

p
µ. (23)

Let q(z) =
zJ
′
p,c(z)

pJp,c(z)
and ρ(z) = Jp,c(z)

zp , then q(z) is analytic in U with q(0) = 1 and

<{ρ(z)} > 1 + 2p(1− µ)ψ. (24)

Applying the same method and technique as in our proof of Theorem 1, we get

zJ
′′
p,c(z) + J

′
p,c(z)

p2zp−1 = ρ(z)
[

q2(z) +
1
p

zq
′
(z)
]
= ϕ

(
q(z), zq

′
(z), z

)
,



Mathematics 2022, 10, 1506 7 of 9

where ϕ(u, v; z) = ρ(z)(u2 + 1
p v). By (23) we get

<
[

ϕ
(

q(z), zq
′
(z), z

)]
>

(c + p)
p

α− c
p

µ (z ∈ U).

Moreover <{ϕ(ix, y, z)} = <{ρ(z)( 1
p y− x2)}, and for real x, y ≤ − 1

2 (1+ x2), we have

<{ϕ(ix, y, z)} ≤ − 1
2p
{1 + (1 + 2p)x2}<{ρ(z)} ≤ − 1

2p
<{ρ(z)} (z ∈ U). (25)

Thus by (24) and (25) we get

<{ϕ(ix, y, z)} ≤ − 1
2p
{1 + 2p(1− µ)ψ}

<
(c + p)

p
α− c

p
µ.

for all z ∈ U. Thus by Lemma 5, <{q(z)} > 0. Thus , <
{

zJ
′
p,c(z)

pJp,c(z)

}
> 0, that is, Jp,c ∈ S∗p

and this ends the proof.

Remark 5. For p = 1 Theorem 4 gives the result obtained by Ali and Thomas [14].

Theorem 5. If f ∈ Rp(α), then f ∈ P(p, α).

Proof. Let f ∈ Ap defined by (1) satisfies the condition (3), then

<
{

f
′
(z) + z f

′′
(z)

p2zp−1

}
= <

{
1 +

∞

∑
k=1

(
p + k

p

)2
ap+kzk

}
> α.

Hence, we have

<
{

1 +
1

2(1− α)

∞

∑
k=1

(
p + k

p

)2
ap+kzk

}
>

1
2

.

Note that

f
′
(z)

pzp−1 = 1 +
∞

∑
k=1

p + k
p

ap+kzk

=

{
1 +

1
2(1− α)

∞

∑
k=1

(
p + k

p

)2
ap+kzk

}
∗
{

1 + 2(1− α)
∞

∑
k=1

p
p + k

zk

}
.

Applying Lemma 1, with c0 = 1 and ck =
p

p+k , k = 1, 2, ..., we get

<
{

1 + 2(1− α)
∞

∑
k=1

p
p + k

zk

}
> α,

which implies that Re
{

f
′
(z)

pzp−1

}
> α, by using Lemma 2.

Remark 6. Theorem 5 is immediate from Hallenbeck-Ruscheweyh theorem [34]. Indeed, define
φ(z) by (10) with f in place of ξ. Then f ∈ Rp(α) means φ(z) + 1

p zφ
′
(z) ≺ 1+(1−2α)z

1−z = L(z).
Now Hallenbeck-Ruscheweyh theorem (see also Miller-Mocanu ([29], P.71, Theorem 3.1b)) implies
φ(z) ≺ L(z),
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Remark 7. Putting p = 1 in Theorem 5 we get the result obtained by Al-Oboudi ([35],
Theorem 2.3, when λ = n = 1).

Theorem 6. Let f ∈ Rp(α). Then f ∈ P(p, ξ), where

ξ =
2 + (p2 + 3p)α
(1 + p)(p + 2)

≥ α.

Proof. It is shown in [36] that, if γ ≥ 0 and if g(z) = z + ∑∞
k=1

1
1+γk zk+1 then

<
{

g(z)
z

}
≥ 2γ2 + 3γ + 1

2(1 + γ)(1 + 2γ)
.

Hence

<
{

1 + 2(1− α)
∞

∑
k=1

p
p + k

zk

}
≥ (2 + p2 + 3p)α

(1 + p)(p + 2)
. (26)

Using (26) in the Theorem 5 we get the result.

Remark 8. Putting p = 1 in Theorem 6 we get the result obtained by Al-Oboudi ([35], Remark 2.5,
when λ = 1).

4. Conclusions

The convolution method has recently been used to study many interesting subclasses
of analytical functions. An interesting criterion was given by Lashin [26] to be starlike for
convolution of functions with positive real parts, which was improved by Sokol [27]. Each
of these earlier results has been extended and improved in this paper. Additionally, by
using Miller and Mocanu Theorem [29] , Ali and Thomas’ results [14] for the starlikeness of
the Bernardi integral operator have been extended.
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