
Citation: Sinitsyn, I.; Sinitsyn, V.;

Korepanov, E.; Konashenkova, T.

Bayes Synthesis of Linear

Nonstationary Stochastic Systems by

Wavelet Canonical Expansions.

Mathematics 2022, 10, 1517. https://

doi.org/10.3390/math10091517

Academic Editors: Natalia

Bakhtadze, Igor Yadykin,

Andrei Torgashov and

Nikolay Korgin

Received: 25 March 2022

Accepted: 27 April 2022

Published: 2 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Bayes Synthesis of Linear Nonstationary Stochastic Systems by
Wavelet Canonical Expansions
Igor Sinitsyn 1,2, Vladimir Sinitsyn 1,2, Eduard Korepanov 1 and Tatyana Konashenkova 1,*

1 Federal Research Center “Computer Science and Control”, Russian Academy of Sciences (FRC CSC RAS),
119333 Moscow, Russia; sinitsin@dol.ru (I.S.); vsinitsin@ipiran.ru (V.S.); ekorepanov@ipiran.ru (E.K.)

2 Moscow Aviation Institute, National Research University, 125993 Moscow, Russia
* Correspondence: tkonashenkova64@mail.ru

Abstract: This article is devoted to analysis and optimization problems of stochastic systems based
on wavelet canonical expansions. Basic new results: (i) for general Bayes criteria, a method of
synthesized methodological support and a software tool for nonstationary normal (Gaussian) linear
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1. Introduction

Nowadays, for stochastic systems research, e.g., functioning at essentially nonsta-
tionary disturbances of complex structures, we need analytical modeling technologies
for accurate analysis and synthesis. Methods of analysis and synthesis based on canoni-
cal expansions are very suitable for quick analytical modeling realizations using the first
two probabilistic moments. Wavelet canonical expansions essentially increase the flexibility
and accuracy of corresponding technologies.

It is known [1–3] that canonical expansion (CE) of stochastic processes (StP) is widely
used to solve problems of analysis, modeling and synthesis of linear nonstationary stochas-
tic systems (StS). For StS with high availability, corresponding software tools based on
CE were worked out in [4–8]. In [4], we gave a brief review of the known algorithmic
and software tools. In [5,6], the issues of instrumental software for analytical modeling
of nonstationary scalar and vector random functions by means of wavelet CE (WLCE)
are considered. The parameters of WLCE are expressed in terms of the coefficients of the
expansion of the covariance matrix of random function over two-dimensional Dobshy
wavelets. Article [7] continues the thematic cycle dedicated to analytical modeling of linear
nonstationary StS based on wavelet and wavelet canonical expansions. The article describes
wavelet algorithms for analytical modeling of mathematical expectation, a covariance ma-
trix and a matrix of covariance functions, as well as wavelet algorithms for spectral and
correlation-analytical express modeling.

The article [8] continues the thematic cycle devoted to software tools for analytical
modeling of linear with parametric interference (Gaussian and non-Gaussian) StS based
on nonlinear correlation theory (the method of normal approximation and the method
of canonical expansions). Analytical methods are based on orthogonal decomposition of
covariance matrix elements using a two–dimensional Dobshy wavelet with a compact
carrier and Galerkin–Petrov wavelet methods.
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In [5], for an essentially nonstationary StP wavelet, CE (WLCE) was proposed. Nowa-
days, deterministic wavelet methods are intensively applied to the problems of numerical
analysis and modeling. A broad class of numerical methods based on Haar wavelets
achieved great success [9]. These methods are simple in the sense of versatility and flexibil-
ity and possess less computational cost for accuracy analysis problems. The theory and
practice of wavelets has attained its modern growth due to mathematical analysis of the
wavelet in [10–12]. The concept of multiresolution analysis was given in [13]. In [14,15]
method to construct wavelets with compact support and scaling function was developed.
Among the wavelet families, which are described by an analytical expression, the Haar
wavelets deserve special attention. Haar wavelets, in combination with the Galerkin
method, are very effective and popular for solving different classes of deterministic equa-
tions [16–25]. The application of a wavelet for CE of StP and stochastic differential and
integrodifferential equations was given in [7,8,26].

In [27,28], design problems for linear mean square (MS) optimal filters are considered
on the basis of WLCE. Explicit formulae for calculating the MS optimal estimate of the
signal and the MS optimal estimate of the quality of the constructed linear MS optimal
operator are derived. Articles [29,30] are devoted to the synthesis of wavelets in accordance
with complex statistical criteria (CsC). The basic definitions of CsC and approaches are
given. Methodological support is based on Haar wavelets. The main wavelet equations,
algorithms, software tools and examples are given. Some particular aspects of the StS
wavelet synthesis under nonstationary (for example, shock) perturbations are presented
in [31].

The developed wavelet algorithms have a fairly high degree of versatility and can
be used in various applied fields of science. Such complex StS describes organizations–
technical–economical systems functioning in the presence of internal and external noises
and stochastic factors. The developed wavelet algorithms are used for data analysis and
information processing in high-availability stochastic systems, in complex data storage
systems, model building and calibration.

Let us state the general problem of the Bayes synthesis of linear nonstationary normal
observable StS (OStS) by WLCE means. Special attention will be paid to the synthesis of
linear optimal system for criterion of the maximum probability that the signal will not
exceed a particular value in absolute magnitude. For example, the results of computer
experiments are presented and discussed.

2. Bayes Criteria

In practice [1,2], the choice of criterion for comparing alternative systems for the same
purpose, like any question regarding the choice of criteria, is largely a matter of common
sense, which can often be approached from consideration of operating conditions and
purpose of any particular system.

The criterion of the maximum probability that the signal will not exceed a particular
value in absolute magnitude can be represented as

E[l(W, W∗)] = min. (1)

If we take the function l as the characteristic function of the corresponding set of
values of the error, the following formula is valid:

l(W, W∗) =
{

1 at |W∗ −W| > W,
0 at |W∗ −W| ≤W.

(2)

In applications connected with damage accumulation (1) needs to be employed with
function l in the form:

l(W, W∗) = 1− e−k2(W∗−W)2
. (3)

Thus, we get the following general principle for estimating the quality of a system
and selecting the criterion of optimality. The quality of the solution of the problem in each
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actual case is estimated by a function l(W, W∗), the value of which is determined by the
actual realizations of the signal W and its estimator W∗. It is expedient to call this the loss
function. The quality of the solution of the problem on average for a given realization of
the signal W with all possible realizations of the estimator W∗ corresponding to particular
realization of the signal W is estimated by the conditional mathematical expectation of the
loss function for the given realization of the signal:

ρ(A|W) = E[l(W, W∗|W)]. (4)

This quantity is called conditional risk. The conditional risk depends on the operator
A for the estimator W∗ and on the realization of signal W. Finally, the average quality of
the solution for all possible realization of W and its estimator W∗ is characterized by the
mathematical expectation of the conditional risk

R(A) = E[ρ(A|W)|W] = E[l(W, W∗)]. (5)

This quantity is called the mean risk.
All criteria of minimum risk which correspond to the possible loss functions or func-

tionals which may contain undetermined parameters are known as Bayes’ criteria.

3. Basic formulae for Optimal Bayes Synthesis of Linear Systems

Let us consider scalar linear OStS with real StP Z(τ) (τ ∈ [t− T, t]), which is the sum
of the useful signal and the additive normal noise X(τ):

Z(τ) =
N

∑
r=1

Urξr(τ) + X(τ). (6)

The useful signal is the linear combination of given random parameters Ur (r = 1, N).
We need to get StP W(t) in the following form:

W(t) =
N

∑
r=1

Urζr(t) + Y(t). (7)

Here, ξ1(τ), . . . , ξN(τ), ζ1(τ), . . . , ζN(τ) are known structural functions; U1, . . . , UN
are given random variables (RV) which do not depend on noises X(τ), Y(τ) (EX(τ) = 0,
EY(τ) = 0).

We state to construct an optimal system with operator A in cases when output StP:

W∗(t) = AZ (8)

based on observation StP Z(τ) at time interval [t− T, t], reproducing given output signal
W(t) for criteria (1) with maximal accuracy.

It is known [1–3] that the solution of this problem through CE is based on two-stage
procedures based on Formulae (4) and (5).

Vector CE
[

X(τ) Y(τ)
]T presents the linear combination of uncorrelated RV with

deterministic coordinate functions:

X(τ) = ∑
ν

Vνxν(τ), Y(τ) = ∑
ν

Vνyν(τ) (9)

According to [1,2] for Vν we have

Vν =

t∫
t−T

aν(τ)X(τ)dτ +

t∫
t−T

aν(τ)Y(τ)dτ (10)
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Then, coordinate functions are calculated by the following formulae:

xν(τ) =
1

Dν

t∫
t−T

aν(θ)KX(τ, θ)dθ +
1

Dν

t∫
t−T

aν(θ)KXY(τ, θ)dθ, (11)

yν(τ) =
1

Dν

t∫
t−T

aν(θ)KXY(θ, τ)dθ +
1

Dν

s∫
t−T

aν(θ)KY(τ, θ)dθ. (12)

Here, E[Vν] = 0. Dν = D[Vν], KX(τ, θ) = E[X(τ) · X(θ)], KXY(τ, θ) = E[X(τ) ·Y(θ)],
KY(τ, θ) = E[Y(τ) ·Y(θ)]; aν(τ) is a given set of deterministic functions satisfying biorthog-
onality conditions:

t∫
t−T

aν(τ)xµ(τ)dτ +

t∫
t−T

aν(τ)yµ(τ)dτ = δνµ. (13)

Let us consider RV

Zν =

t∫
t−T

aν(τ)Z(τ)dτ, (14)

and its presentation

Zν =
N

∑
r=1

ανrUr + Vν, (15)

where

ανr =

t∫
t−T

aν(τ)ξr(τ)dτ. (16)

The sum of RV Zν, multiplied by xν(τ) gives the CE of StP Z(τ) (τ ∈ [t− T, t])

Z(τ) = ∑
ν

Zνxν(τ). (17)

To find the conditional mathematical expectation of the loss function for StP Z(τ)
(τ ∈ [t− T, t]), it is necessary to find the conditional probability density of output StP
relatively on input StP Z(τ). According to (4), StP W(t) depends upon the given random
parameters Ur (r = 1, N) and random noise Y(t). So, we get

Y(t) = ∑
ν

Vνyν(t) = ∑
ν

(
Zν −

N

∑
r=1

ανrUr

)
yν(t) = ∑

ν

Zνyν(t)−
N

∑
r=1

Ur∑
ν

ανryν(t). (18)

Here,

W(t) =
N

∑
r=1

Urζr(t) + ∑
ν

Zνyν(t)−
N

∑
r=1

Ur∑
ν

ανryν(t). (19)

The last formula shows that StP W(t) depends upon random parameters Ur (r = 1, N)
and the set of Zν.

Let us introduce the vector of RV U =
[

U1 U2 . . . UN
]T . Conditional dis-

tribution of U relative StP Z(τ) coincides with the set of RV Zν . Conditional density
f1(u|z1, z2, . . .) is defined by the known formula:

f1(u|z1, z2, . . .) =
f (u) f2(z1, z2, . . . |u)

+∞∫
−∞

f (u) f2(z1, z2, . . . |u)du
. (20)
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Here, f (u) is a given apriority density of RV U =
[

U1 U2 . . . UN
]T; f2(z1, z2, . . . |u)

is a density of RV Zν , relatively U =
[

U1 U2 . . . UN
]T .

Taking into account that vector random noise is normal, Vν is the linear transform of
vector

[
X(τ) Y(τ)

]T . We conclude that RV are not only correlated, but also indepen-
dent. Joint density of Vν with zero mathematical exactions and variances Dν is expressed
by formula

fV(v1, v2, . . .) =
1√

(2π)LD1 · D2 · . . .
exp

{
−1

2∑
ν

v2
ν

Dν

}
. (21)

In (7), let us replace RV U1, . . . , UN with their realizations u1, . . . , uN ; then, Zν is
the linear function of RV Vν with known joint density. Expressing Vν by Zν and using
Formula (21), we get:

f2(z1, z2, . . . |u) = 1√
(2π)LD1 · D2 · . . .

exp

−1
2∑

ν

1
Dν

(
zν −

N

∑
r=1

ανrur

)2
, (22)

where αν(u) =
N
∑

r=1
ανrur.

After substituting Formula (22) into (20), we get the formula for a posteriori density
f1(u|z1, z2, . . .) of U =

[
U1 U2 . . . UN

]T for input StP Z(τ) (τ ∈ [t− T, t]):

f1(u|z1, z2, . . .) = χ(z) f (u) exp

{
∑
ν

zναν(u)
Dν

− 1
2∑

ν

α2
ν(u)
Dν

}
, (23)

χ(z) =

 +∞∫
−∞

f (u) exp

{
∑
ν

zναν(u)
Dν

− 1
2∑

ν

α2
ν(u)
Dν

}
du

−1

. (24)

This formula may be used after observation when realization Z(τ) is available.
A posteriori mathematical expectation of loss function l(W, W∗) is called conditional

risk, and is denoted as ρ(A|W):

ρ(A|W) = E[l(W, W∗)|Z] = χ(z)
+∞∫
−∞

l(W, W∗) f (u)

× exp
{

∑
ν

zναν(u)
Dν

− 1
2 ∑

ν

α2
ν(u)
Dν

}
du.

(25)

In order to solve the stated problem, it is necessary to calculate the optimal output StP
W∗(t) for every t from condition of minimum of integral (11).

Let us consider this integral as a function of PW = W∗(t) at fixed values of parameters

η0 = η0(z1, z2, . . .) = ∑
ν

zνyν(t), ηr = ηr(z1, z2, . . .) = ∑
ν

ανrzν

Dν
(r = 1, N) (26)

and time t:

I(PW , η1, . . . , ηN , t) =
+∞∫
−∞

. . .
+∞∫
−∞

l
(

N
∑

r=1
ur(ζr(t)− br0) + η0, PW

)
f (u1, . . . , uN)

× exp

{
N
∑

r=1
ηrur − 1

2

N
∑

p,q=1
bpqupuq

}
du1 . . . duN .

(27)

Here,

bp0 = ∑
ν

ανpyν(t), bpq = ∑
ν

1
Dν

ανpανq (q, p = 1, N). (28)
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The value of parameter PW = PW
0 (t, η0, η1, . . . , ηN) when integral (27) reaches the mini-

mum value defines the Bayes optimal operator for criterion (1). Changing ηr, (r = 0, N) and
PW

0 (t, η0, . . . , ηN) variables η1, . . . , ηN and z1, z2, . . . with the corresponding RV H0, . . . , HN
and Z1, Z2, . . ., we get the required optimal operator:

W∗(t) = AZ = Pw
0 (t, H0, . . . , HN), (29)

where
H0 = ∑

ν

Zνyν(t), Hr = Hr(Z1, Z2, . . .) = ∑
ν

ανrZν

Dν
(r = 1, N) (30)

The quality of the optimal operator is estimated by the mean risk [1,2]

R(A) = E[ρ(A|W)|W] = E[l(W, W∗)]

=
+∞∫
−∞

. . .
+∞∫
−∞

l
(

N
∑

r=1
ur(ζr(t)− br0) + η0, PW

0

)
f2(z1, z2, . . . |u) f (u)dz1dz2 . . . du.

(31)

So, we get the following basic Formulae (23)–(31) necessary for wavelet canonical
expansion method.

4. Wavelet Canonical Expansions Method

Let us construct an operator for an optimal linear system using the Haar wavelet CE
method WLCE [5,6]: {

ϕ00(τ), ψjk(τ)
}

(32)

where

ϕ00(τ) = ϕ(τ) =

{
1, τ ∈ [0, 1),
0, τ /∈ [0, 1)

is a scaling function, (33)

ψ00(τ) = ψ(τ) =


1, τ ∈

[
0, 1

2

)
,

−1, τ ∈
[

1
2 , 1
)

,
0, τ /∈ [0, 1)

is a mother wavelet, (34)

ψjk(τ) =
√

2jψ(2jτ− k) are wavelets of level j for j = 1, 2, . . . , J; k = 0, 1, . . . , 2j − 1; J
is maximal resolution level defined by required accuracy of approximation for any function

f (τ) ∈ L2[0, 1] by finite linear combination of Haar wavelets, equal to 2−
J
2 .

Then, let us present a one-dimensional wavelet basis (32) as:

g1(τ) = ϕ00(τ), g2(τ) = ψ00(τ), gν(τ) = ψjk(τ),
j = 1, 2, . . . , J; k = 0, 1, . . . , 2j − 1; ν = 2j + k + 1; ν = 3, L.

(35)

For construction of the Haar WLCE for vector
[

X(τ) Y(τ)
]T at τ ∈ [t− T, t], we

pass to new time variable τ ∈ [0, 1] , τ = τ−(t−T)
T and assume

KX(τ1, τ2) ∈ L2([t− T, t]× [t− T, t]), KXY(τ1, τ2) ∈ L2([t− T, t]× [t− T, t]),
KY(τ1, τ2) ∈ L2([t− T, t]× [t− T, t]),

(36)

KX(τ1, τ2) ∈ L2([0, 1]× [0, 1]) , KXY(τ1, τ2) ∈ L2([0, 1]× [0, 1]) ,
KY(τ1, τ2) ∈ L2([0, 1]× [0, 1]) .

(37)

Additionally, for presentation of given covariance functions in the form of two-
dimensional wavelet expansion, it is necessary to define the two-dimensional orthogonal
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basis through tensor composition of one-dimensional bases (32) when scaling is performed
simultaneously for two variables

ΦA(τ1, τ2) = ϕ00(τ1)ϕ00(τ2), ΨH(τ1, τ2) = ϕ00(τ1)ψ00(τ2),
ΨB(τ1, τ2) = ψ00(τ1)ϕ00(τ2), ΨD

jkn(τ1, τ2) = ψjk(τ1)ψjn(τ2)
(38)

where j = 1, 2, . . . , J; k, n = 0, 1, . . . , 2j − 1.
So, the two-dimensional wavelet expansion of given covariance functions takes

the form

KX(τ1, τ2) = axΦA(τ1, τ2) + hxΨH(τ1, τ2) + bxΨB(τ1, τ2) + ∑J
j=0 ∑2J−1

k=0 ∑2J−1
n=0 dx

jknΨD
jkn(τ1, τ2) (39)

where

ax =
1∫

0

1∫
0

KX(τ1, τ2)ΦA(τ1, τ2)dτ1dτ2, hx =
1∫

0

1∫
0

KX(τ1, τ2)ΨH(τ1, τ2)dτ1dτ2,

bx =
1∫

0

1∫
0

KX(τ1, τ2)ΨB(τ1, τ2)dτ1dτ2, dx
jkn =

1∫
0

1∫
0

KX(τ1, τ2)ΨD
jkn(τ1, τ2)dτ1dτ2,

(40)

KXY(τ1, τ2) = axyΦA(τ1, τ2) + hxyΨH(τ1, τ2) + bxyΨB(τ1, τ2) + ∑J
j=0 ∑2J−1

k=0 ∑2J−1
n=0 dxy

jknΨD
jkn(τ1, τ2) (41)

where

axy =
1∫

0

1∫
0

KXY(τ1, τ2)ΦA(τ1, τ2)dτ1dτ2, hxy =
1∫

0

1∫
0

KXY(τ1, τ2)ΨH(τ1, τ2)dτ1dτ2,

bxy =
1∫

0

1∫
0

KXY(τ1, τ2)ΨB(τ1, τ2)dτ1dτ2, dxy
jkn =

1∫
0

1∫
0

KXY(τ1, τ2)ΨD
jkn(τ1, τ2)dτ1dτ2,

(42)

KY(τ1, τ2) = ayΦA(τ1, τ2) + hyΨH(τ1, τ2) + byΨB(τ1, τ2) + ∑J
j=0 ∑2J−1

k=0 ∑2J−1
n=0 dy

jknΨD
jkn(τ1, τ2) (43)

here

ay =
1∫

0

1∫
0

KY(τ1, τ2)ΦA(τ1, τ2)dτ1dτ2, hy =
1∫

0

1∫
0

KY(τ1, τ2)ΨH(τ1, τ2)dτ1dτ2,

by =
1∫

0

1∫
0

KY(τ1, τ2)ΨB(τ1, τ2)dτ1dτ2, dy
jkn =

1∫
0

1∫
0

KY(τ1, τ2)ΨD
jkn(τ1, τ2)dτ1dτ2.

(44)

After transition to time variable τ ∈ [0, 1] , τ = τ−(t−T)
T at τ = τ(τ) = Tτ + (t− T),

expression (3) takes the form

Z(τ) = Z(τ(τ)) = Z(τ) =
N

∑
r=1

Urξr(τ) + X(τ). (45)

Analogously, we have

Vν = T ·Vν; Vν =

1∫
0

aν(τ)X(τ)dτ +

1∫
0

aν(τ)Y(τ)dτ, Dν = T2Dν, Dν = D
[
Vν

]
. (46)

According to [3,5], functions aν(τ) may be expressed by functions:

a1(τ) = g1(τ), aν(τ) =
ν−1

∑
λ=1

cνλgλ(τ) + gν(τ) (ν = 2, L). (47)
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Using notations:

xν(τ) =
1

Dν

1∫
0

aν(θ)KX(τ, θ)dθ +
1

Dν

1∫
0

aν(θ)KXY(τ, θ)dθ, (48)

yν(τ) =
1

Dν

1∫
0

ax
ν(θ)KXY(θ, τ)dθ +

1
Dν

1∫
0

ay
ν(θ)KY(τ, θ)dθ (49)

we get the following formulae:

xν(τ) = xν(τ(τ)) =
1
T

xν(τ), yν(τ) = yν(τ(τ)) =
1
Ty

yν(τ), (50)

X(τ(τ)) =
L

∑
ν=1

Vνxν(τ(τ)) =
L

∑
ν=1

TVν
1
T

xν(τ) =
L

∑
ν=1

Vνxν(τ), (51)

Y(τ(τ)) =
L

∑
ν=1

Vνyν(τ(τ)) =
L

∑
ν=1

TVν
1
T

yν(τ) =
L

∑
ν=1

Vνyν(τ). (52)

Here, RV Vν have zero mathematical expectations, and variances coordinate functions
xν(τ) and yν(τ) are successively defined by the following formulae:

x1(τ) =
1

D1
hx

1(τ); xν(τ) =
1

Dν

(
ν−1

∑
λ=1

dνλhx
λ(τ) + hx

ν(τ)

)
; (53)

y1(τ) =
1

D1
hy

1(τ); yν(τ) =
1

Dν

(
ν−1

∑
λ=1

dνλhy
λ(τ) + hy

ν(τ)

)
; (54)

where

dνλ = cνλ +
ν−1

∑
µ=λ+1

cνµdµλ (λ = 1, ν− 2); dν,ν−1 = cν,ν−1; ν = 2, L; (55)

cν1 = − kν1
D1

(ν = 2, L); cνµ = − 1
Dµ

(
kνµ −

µ−1
∑

λ=1
Dλcµλcνλ

)
(µ = 2, ν− 1; ν = 3, L);

D1 = k11; Dν = kνν −
ν−1
∑

λ=1
Dλ|cνλ|2 (ν = 2, L).

(56)

Parameters kνµ are expressed by coefficients of two-dimensional wavelet expressions
of covariance functions KX(τ1, τ2), KXY(τ1, τ2) , and KY(τ1, τ2)

k11 = ax + 2axy + ay, k12 = hx + 2hxy + hy, k21 = bx + 2bxy + by,
k22 = dx

000 + 2dxy
000 + dy

000, kνµ = dx
jkn + 2dxy

jkn + dy
jkn

(ν = 2j + k + 1; µ = 2j + n + 1; j = 1, J; k, n = 0, 1, . . . , 2j − 1).
(57)

The other kνµ = 0.
Auxiliary functions hx

ν(τ), hy
ν(τ) are expressed by basic wavelet functions (38) and coef-

ficients of wavelet expansions of covariance functions KX(τ1, τ2), KXY(τ1, τ2) , KY(τ1, τ2) :

hx
1(τ) = (ax + axy)ϕ00(τ) + (bx + bxy)ψ00(τ), hy

1(τ) = (axy + ay)ϕ00(τ) + (bxy + by)ψ00(τ),
hx

1(τ) = (hx + hxy)ϕ00(τ) +
(

dx
000 + dxy

000

)
ψ00(τ), hy

1(τ) = (hxy + hy)ϕ00(τ) +
(

dxy
000 + dy

000

)
ψ00(τ),

hx
ν(τ) =

2j−1
∑

k=0

(
dx

jkn + dxy
jkn

)
ψjk(τ) (v = 3, L; v = 2j + n + 1; n = 0, 1, . . . , 2j − 1).

(58)
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Considering (45), (46), we get

Zν = TZν, Zν =
N

∑
r=1

ανrUr + Vν, (59)

ανr = Tανr, ανr =

1∫
0

aν(τ)ξr(τ)dτ. (60)

If functions ξ1(τ), . . . , ξN(τ) ∈ L2[t− T, t], then ξ1(τ), . . . , ξN(τ) ∈ L2[0, 1] and have
wavelet expansions

ξr(τ) = aξ
r ϕ00(τ) + ∑J

j=0 ∑2j−1
k=0 dξ

rjkψjk(τ) (r = 1, . . . , N), (61)

aξ
r =

1∫
0

ξr(τ)ϕ00(τ)dτ, dξ
rjk =

1∫
0

ξr(τ)ψjk(τ)dτ, (62)

Using notation (38) we get from (61), (62)

ξr(τ) = cξ
r1g1(τ) +

L

∑
ν = 2

(ν = 2j + k + 1; j = 0, J;k = 0, 1, . . . , 2j − 1)

cξ
rνgν(τ) (r = 1, . . . , N), (63)

cξ
r1 = aξ

r , cξ
rν = dξ

rjk . (64)

From (60), (62), (64), we have

α1r = cξ
r1; ανr =

ν−1

∑
λ=1

cνλcξ
rλ + cξ

rν (ν = 2, L). (65)

Finally, using formulae

L

∑
ν=1

Zνxν(τ) =
L

∑
ν=1

(
TZν

)( 1
T

xν(τ)

)
=

L

∑
ν=1

Zνxν(τ) (66)

we get the required WLCE for StP Z(τ) (τ ∈ [t− T, t]):

Z(τ) = Z(τ(τ)) = Z(τ) =
L

∑
ν=1

Zνxν(τ). (67)

In basic Formulae (23)–(31), the parameters are expressed as follows:

η0 =
L

∑
ν=1

zνyν(τ) =
L

∑
ν=1

(Tzν)

(
1
T

yν(τ)

)
=

L

∑
ν=1

zνyν(τ), (68)

ηr =
L

∑
ν=1

ανrzν

Dν
=

L

∑
ν=1

(Tανr)(Tzν)

T2Dν
=

L

∑
ν=1

ανrzν

Dν
(r = 1, N), (69)

bp0 =
L

∑
ν=1

ανpyν(τ) =
L

∑
ν=1

(
Tανp

)( 1
T

yν(τ)

)
=

L

∑
ν=1

ανpyν(τ), (70)

bpq =
L

∑
ν=1

1
Dν

ανpανq =
L

∑
ν=1

1
T2Dν

(
Tανp

)(
Tανq

)
=

L

∑
ν=1

1
Dν

ανpανq. (71)

Note that expression PW
0 (t, η0, . . . , ηN) depends on fixed values z1, . . . , zL of Z1, Z2, . . . , ZL.
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So, the WLCE method is defined by Formulae (67)–(71) at conditions (61)–(65).

5. Synthesis of a Linear Optimal System for Criterion of the Maximum Probability
That Signal Will Not Exceed a Particular Value in Absolute Magnitude

Conditional risk ρ(A|W) in case (2) is equal from interval to probability of error exit

ρ(A|W) = E[l(W, W∗)|W] = P(|W∗ −W| ≥ w(t)) = 1− P(|W∗ −W| < w(t)). (72)

A priori density f (u) = f (u1, . . . , uN) of RV U = [U1 U2 . . . UN ]
T is defined by formula

f (u1, . . . , uN) =
[
(2π)N |K|

]− 1
2 exp

{
−1

2

N

∑
p,q=1

cpqupuq

}
(73)

where K is the covariance matrix of U, cpq (p, q = 1, N) is K−1 elements.
Let us find minimum of the integral

I(PW , η0, . . . , ηN , t) =
[
(2π)N |K|

]− 1
2

×
s

|
N
∑

r=1
ur(ζr(t)−br0)+η0−PW |≥w(t)

exp

{
N
∑

r=1
ηrur − 1

2

N
∑

p,q=1

(
cpq + bpq

)
upuq

}
du1 . . . duN . (74)

Integral (74) is propositional to the probability of the normal point (U1, U2, . . . , UN), and

does not get into the subspace defined by inequality |
N
∑

r=1
ur(ζr(t)− br0) + η0 − PW | < w(t).

This probability has a minimum, if its mathematical expectation lies on line
N
∑

r=1
ur(ζr(t)− br0) + η0 − PW = 0. Normal density has maximum mathematical expecta-

tion. So, for definition of mathematical expectation, it is enough to equate partial derivatives
in (74) to zero for u1, u2, . . . , uN . The (74) minimization value P0(t, η0, . . . , ηN) is equal to:

PW
0 =

N

∑
r=1

λr(t)(ζr(t)− br0) + η0. (75)

For solution of functions λ1(t), λ2(t), . . . , λN(t) it is necessary to solve the system of
linear algebraic equations:

N

∑
p=1

λp(t)
(
cpq + bpq

)
= ηq (t) (q = 1, N). (76)

In matrix form, Equation (76) is as follows:

C1 ·Λ = AT
1 · Z1 (77)

where

C1 =
(
cij + bij

)N
i,j=1, A1 =

(
αij

Di

)L,N

i,j=1
, Z1 = [z1, z2, . . . , zL]

T , Λ = [λ1(t), . . . , λN(t)]
T . (78)

Hence,
Λ = C−1

1 · A
T
1 · Z1. (79)
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Using notations

B1 =

 ζ1(t)− b10
. . .

ζN(t)− bN0

, Y1 =

 y1(t)
. . .

yN(t)

 (80)

we get the Bayes optimal operator in matrix form:

A = BT
1 · C−1

1 · A
T
1 + YT

1 . (81)

The Bayes optimal estimate of output StP is defined by

W∗(t) = A · Z1. (82)

The mean risk is at

R(A) =
[
(2π)N+L · D1 · . . . · DL · |K|

]− 1
2 s

|
N
∑

r=1
ur(ζr(t)−br0)+η0−PW

0 |≥w(t)

exp{− 1
2

L
∑

ν=1

z2
ν

Dν
−

−
L
∑

ν=1

N
∑

r=1

ανr
Dν

zνur − 1
2

N
∑

p,q=1

(
cpq + bpq

)
upuq

}
du1 . . . duNdz1 . . . dzL =

= 1−
[
(2π)N+L · D1 · . . . · DL · |K|

]− 1
2 s

|
N
∑

r=1
ur(ζr(t)−br0)+η0−PW

0 |<w(t)

exp{− 1
2

L
∑

ν=1

z2
ν

Dν
−

−
L
∑

ν=1

N
∑

r=1

ανr
Dν

zνur − 1
2

N
∑

p,q=1

(
cpq + bpq

)
upuq

}
du1 . . . duNdz1 . . . dzL.

(83)

Equations (75)–(83) define the method of synthesis of a linear system for criterion of
maximum probability that the signal will not exceed a particular value in absolute magnitude.

New results generalize the following particular results [27–31] for different Bayes
criteria in OStS:

– Mean square error;
– Complex statistical criteria;
– Criterion of maximum probability that the signal not exceed particular value in

absolute magnitude.

6. Example

The designed software tools based on results of Section 5 provide the possibility to
compare mathematical models of different classes of linear OStS, its optimal instrumental
potential accuracy in case of stochastic factors and noises.

Let us consider the extrapolator for a radar-location device described by the
following equations:

Z(τ) = U1 + U2τ + X(τ), W(t) = U1 + U2(t +4), τ ∈ [t− T, t] (84)

Here, U1 and U2 are random calibration parameters for the calibration device, and X
is the colored noise. For the criterion of the maximum probability that the signal will not
exceed a particular value a in absolute magnitude, we use algorithm (82).

Suppose that:

– The noise X(t) is normal EX(t) = 0, KX(τ1, τ2) = D exp{−α|τ2 − τ1|};
– Random parameters U1, U2 are normal with joint density:

f (u1, u2) =

√
c11c22 − c2

12

2π
exp

{
−1

2

2

∑
p,q=1

cpqupuq

}
(85)
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(cpq are elements of the inverse covariance matrix K−1);
– Input data:

t ∈ [9; 18], T = 8, 4 = 1,

D = 1, α = 1, K =

[
1 0
0 1

]
,

ξ1(τ) = 1, ξ2(τ) = τ; ζ1(t) = 1, ζ2(t) = t +4,
J = 2, L = 8.
A typical realization method demonstrates high accuracy in Figure 1. As practice for

quick calibration of typical devices we use, algorithms more simple than (82) were devel-
oped, computed and compared. This information is necessary for passport documentation.
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The extrapolator takes values from −38.6099 to 11.9854. At the same time, the extrapo-
lator error modulus does not exceed 0.7568 (Figure 1).

7. Conclusions

This article is devoted to problems with optimizing observable stochastic systems
based on wavelet canonical expansions. Section 2 is devoted to different Bayes criteria
in terms of risk theory. Following [1,2], in Section 3, basic formulae for optimal Bayes
synthesis based on canonical expansions are given. Section 4 is dedicated to the solution
of a general optimization problem using wavelet canonical expansions in case of complex
nonstationary linear systems. In Section 5, a basic algorithm is given for the criterion of
maximal probability that the signal will not exceed a particular value in absolute magnitude.
An example of a radar-location extrapolator device is discussed.

The developed optimization methodology “quick probabilistic analytical numerical
optimization” does not use statistical Monte Carlo methods.

Directions of future generalizations and implementations:

– New models of scalar and vector OStS (nonlinear, with parametric noises, etc.):
– New classes of the Bayes criteria.

The research was carried out using the infrastructure of the Shared Research Fa-
cilities “High Performance Computing and Big Data” (CKP “Informatics”) of FRC CSC
RAS (Moscow).
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Abbreviations

X(t) random function, noise
Y(t) random function, noise
EX(t) mathematical expectation of random function X(t)
Z(t) input stochastic process
W(t) output stochastic process
W∗(t) estimator W(t)
l(W, W∗) loss function
A system operator
ρ(A|W) conditional risk
R(A) mean risk
Ur random parameter
ξr(τ), ζr(τ) structural functions

Vν random variable of canonical expansion of random vector
[

X(t) Y(t)
]T

xν(t) coordinate function of canonical expansion of random function X(t)
yν(t) coordinate function of canonical expansion of random function Y(t)
Dν variance of random variable Vν

KX(t1, t2) covariance function of random function X(t)
Zν random variable of canonical expansion of StPZ(t)
f (u) probability density of random vector U =

[
U1 U2 . . . UN

]T

f1(u|z1, z2, . . .) conditional probability density of random vector U =
[

U1 U2 . . . UN
]T

relative to random variables Zν

fV(v1, v2, . . .) joint probability density of random variables Vν

f2(z1, z2, . . . |u) conditional probability density of random variables Zν relative to random vector

U =
[

U1 U2 . . . UN
]T

ϕ00(t) Haar scaling function
ψ00(τ) Haar mother wavelet
CE Canonical Expansion
CsC complex statistical criteria
OStS observable Stochastic System
RV random variables
StP Stochastic Process
StS Stochastic System
WLCE Wavelet Canonical Expansion
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