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Abstract: It is known that random noises have a significant impact on differential systems. Recently,
the influences of random noises for impulsive systems have been started. Nevertheless, the existing
references on this issue ignore the significant phenomena of nonlinear impulses and time-varying
delays. Therefore, we see the necessity to study the influences of random noises for impulsive systems
with the above two factors. Stimulated by the above, a polynomial random noise is introduced to
suppress the potential explosive behavior of the nonlinear impulsive differential system with time-
varying delay. Fortunately, the stochastically controlled impulsive delay differential system admits a
unique global solution, is bounded, and grows at most in the polynomial form.
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1. Introduction

In reality, differential systems are established to describe many natural phenomena
well. Random noises are known to significantly affect the behavior of differential systems
(DSs, for short). Hasminskii [1] discovered that two random noises could stabilize a
linear DS. This initiated the field of stochastic stabilization. Subsequently, more and more
scholars began to concentrate on the influence of random noise on differential systems.
For example, Arnold et al. [2] gave the sufficient and necessary criteria on stabilization of
a random noise for a linear DS. Under the local Lipschitz condition (LLC, for short) and
linear growth condition (LGC, for short), a DS can be stabilized [3,4]. Appleby et al. [5,6]
studied the stabilization of random noises for DSs under the one-sided LGC (OLGC, for
short) which includes more situations than LGC. Mao et al. [7] illustrated that random
noises could suppress the potential explosive behavior of population systems. Wu et al. [8]
studied the exponential stabilization of two independent random noises for DSs with the
one-sided polynomial growth conditions (OPGC, for short), which was extended to the
delay case by Ref. [9]. In regard to more references on stochastic stabilization, we refer
the readers to Refs. [10–12] and the references therein. Except for the stabilization role,
other influences of random noises were explored as well, e.g., suppressing/expressing the
behavior of exponential growth/decay [13–15]. In particular, Liu et al. [16] demonstrated
that one polynomial random noise could suppress the explosive behavior of DSs with
general OPGC and provide it grow at most in the polynomial form, which was extended by
Refs. [17,18]. Except for population systems and neural networks, the influences of random
noises for many other physical models were also investigated (e.g., [19–22]).

In addition, impulsive jump, as a kind of instantaneous abrupt change, is a widespread
occurrence. Impulsive differential systems (IDSs, for short) are modeled to describe natural
phenomena with impulsive jumps, which have been widely used in many fields, such
as control systems, population systems, and ecosystems [23–26]. For the widespread
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existence of random noises, impulsive systems with random noises have also attracted
researchers’ attention (e.g., Refs. [24,27–31]), but few studies have reported on random
noises for impulsive systems. Cheng et al. [32] studied the noise stabilization for IDSs with
OLGC. OLGC is strict for many nonlinear cases. Hence, based on the idea of Ref. [8], Hao
et al. [33] discussed the stabilization role of random noises for IDSs with linear impulses
and OPGC. Nevertheless, the existing literature on random noises for IDSs ignored the
important phenomena of nonlinear impulses and time-varying delays. As is known, for
deterministic/stochastic systems, the delay issue is an important source of instability,
uncontrollability, and other harmful properties. In regard to these qualitative properties of
deterministic/stochastic delay DSs, we refer the readers to Refs. [34,35] and the references
therein. So, considering the delay issue is of necessity, it is easy to see that, under OPGC,
the impulsive delay differential system (IDDSs, for short) with the above two important
ignored phenomena may explode on some finite instants (see system (5)). Consequently,
inspired by Refs. [16–18], we seek to answer the following questions: could one polynomial random
noise be imported to suppress the explosive behavior of IDDSs with nonlinear impulses and time-
varying delays? If so, what properties can be obtained for the stochastically controlled systems?
Positively answering them is the main contribution of our work.

Motivated by the above considerations and the ideas of Refs. [16–18], this note is to
study the stochastic role of one polynomial random noise for an impulsive differential
system with nonlinear impulses and time-varying delays. It will be illustrated that the
corresponding stochastically controlled impulsive system has a unique global solution with
the property of boundedness and grows at most in the polynomial form.

2. Problem Description

Let (Ω, F, P) be a complete probability space with the σ algebraic stream {Ft}t≥0 and usual
condition, B(t) (or B0(t)) be a scalar (or m-dimensional) Brownian motion defined on (Ω, F, P).
Assume that |·| is the Euclidean norm on Rn, numbers τ > 0, 1 > η > 0, C(R+; [0, τ]) is the
family of functions ψ2 : R+ → [0, τ] with the continuity, C([−τ, 0], Rn) is the family of functions
ψ1 : [−τ, 0]→ Rn with the continuity and norm ||ψ1|| = sups∈[−τ,0]ψ1(s), C2,1(Rn × R+; R+)

is the family of functions U(z, s) ≥ 0 with the continuity, twice differentiability on z and
once on s.

The following n-dimensional nonlinear IDDS is concerned,{
dy(t) = f (y(t), y(t− µ(t)), t)dt t ≥ 0, t 6= ξg, g = 1, 2, · · · ,

y
(
ξg
)
= hg

(
y
(
ξg−

) ) (1)

with initial value ζ = {y(t) : t ∈ [−τ, 0]} ∈ C([−τ, 0], Rn), where f : Rn × Rn × R+ → Rn

satisfies the LLC with f (0, 0, t) = 0 for ∀t ≥ 0, the variable delay µ(t) ∈ C(R+; [0, τ]) is
nondecreasing with µ′(t) ≤ 1− η, hg : Rn → Rn , ξg are the instants sequence of impulsive
jump, y

(
ξg−

)
= lim

t→ξg−0
y(t).

Remark 1. The LLC can be perceived as a weakened condition of global Lipschitz condition (GLC,
for short). The LLC can include many cases such as f (y, v, s) with the continuous partial derivatives
of first order on y and v.

For IDDS (1), we give the following assumptions, which can be drawn from system (5).

Assumption 1. (OPGC) There are constants ϑ, k, k, γ ≥ 0 with 〈y, f (y, v, s)〉 ≤ |y|2(k|y|ϑ+k|v|ϑ
+γ) for ∀(y, v, s) ∈ Rn × Rn × R+.

Assumption 2. There are constants bg ≥ 0, g = 1, 2, · · · with
∣∣hg(y)

∣∣ ≤ bg|y|.

From system (5), one can easily see that, if IDDS (1) satisfies Assumption 1 and
Assumption 2, the system may explode to the infinity on a finite instant. Based on the
ideas of Refs. [16–18], we introduce the polynomial random noise δ|y(t)|χy(t)

.
B(t), then
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the controlled IDDS becomes the stochastic impulsive delay differential system (SIDDS,
for short){

dy(t) = f (y(t), y(t− µ(t)), t)dt + δ|y(t)|χy(t)dB(t) t ≥ 0, t 6= ξg, g = 1, 2, · · · ,
y
(
ξg
)
= hg

(
y
(
ξg−

) ) (2)

Remark 2. One always notes that when χ ≥ 0, function δ|y(t)|χy(t) satisfies the LLC.

Remark 3. For f (0, 0, t) = 0, SIDDS (2) admits the zero equilibrium solution.

Remark 4. The OPGC in Assumption 1 is assumed on R+. In fact, the OPGC can be assumed
on each impulsive interval. For instant, 〈y, f (y, v, s)〉 ≤ |y|2(kg|y|ϑ+kg|v|ϑ + γg) holds for
impulsive interval

[
ξg, ξg+1

]
.

As discussed above, we mainly study the behavior of SIDDS (2). For this, in the
following, a definition and some new notations are given.

Definition 1 ([16]). If there are constants Ξ > 0, r > 0 with sup
t≥0

E|y(t)|r ≤ Ξ, then solution y(t)

of SIDDS (2) is said to be bounded in the sense of r-th moment.

The Itô operator L [3] of V(u(t), ) ∈ C2,1(Rn × R+; R+) is cited for the stochastic
delay DS du(t) = f0(u(t), u(t− µ0(t)), t)dt + g0(u(t), u(t− µ0(t)), t)dB0(t),

LV(u(t), t) = Vt(u(t), t) + Vu(u(t), t) f0(u(t), u(t− µ0(t)), t)
+ 1

2 trace
[
g0

T(u(t), u(t− µ0(t)), t)Vuu(u(t), t)g0(u(t), u(t− µ0(t)), t)
]
,

where Vt(u(t), t) = ∂V(u(t),t)
∂t ,Vu(u(t), t) =

(
∂V(u(t),t)

∂u1
, · · · , ∂V(u(t),t)

∂un

)
,

Vuu(u(t), t) = ( ∂2V(u(t),t)
∂uguj

)
n×n

, f0 : Rn × Rn × R+ → Rn , g0 : Rn × Rn × R+ → Rm×n ,

µ0(t) ∈ C(R+; [0, τ]). For the definition of local maximum solution of the stochastic
delay DS, one can refer to Definition 3.1 of Ref. [9].

3. Stochastic Suppression of Explosive Solution

Our goal here is to consider the impact of polynomial random noise δ|y(t)|χy(t)
.
B(t)

for IDDS (1). The corresponding conclusions are given below.

Theorem 1. It is assumed that Assumptions 1 and 2 hold. If max
r,L

∏L
k=r bk

2< ∞ , δ 6= 0, 2χ >ϑ,

then, for ∀ζ, the unique global solution y(t) exists for SIDDS (2) on t ≥ 0.

Its proof is provided in Appendix A.

Theorem 2 . Under the conditions of Theorem 1, then, for ∀a ∈
(

0, 1
2

)
, a constant Na > 0

exists for
sup
t≥0

E|y(t)|2a ≤ Na, (3)

and for ∀ψ ∈ (0, 1), a constant Q(ψ) > 0 exists for limsup P
t→∞

{|y(t)| ≤ Q(ψ)} ≥ 1− ψ, where

y(t) is the solution of SIDDS (2).

Its proof is provided in Appendix B.
Theorem 2 demonstrates the properties of moment boundedness and stochastic uni-

form boundedness. Besides of the above assertion, the next assertion further demonstrates
that the solution of SIDDS (2) grows at most in the polynomial form.



Mathematics 2022, 10, 1525 4 of 13

Theorem 3. Under the conditions of Theorem 2,

limsup
t→∞

log(1 + |y(t)|2)
logt

≤ 2, (4)

where y(t) is the solution of SIDDS (2).

Its proof is provided in Appendix C.
Summarizing the aforesaid Theorems 1, 2, and 3, we can give the assertion as a

straightforward application.

Theorem 4. With respect to a nonlinear IDDS (1) with Assumptions 1 and 2, under condi-
tions max

r,L
∏L

k=r bk
2 < ∞, δ 6= 0, 2χ > ϑ, one can introduce one polynomial random noise

δ|y(t)|χy(t)
.
B(t) such that stochastically controlled IDDS (2) admits a unique global solution, is

bounded, and grows at most in the polynomial form.

Remark 5. Theorems 1–4 here give positive answers to the questions in Section 1.

Remark 6. In comparison with Refs. [32,33], this note emphasizes nonlinear impulses and time-
varying delays. Thereinto, some technologies are imported to deal with nonlinear impulses with
Assumption 2. Please refer to the proofs of Theorems 2 and 3. In comparison with Refs. [16–18],
this note emphasizes the impulsive jumps.

Remark 7. In comparison with Ref. [36], the differences of this note are reflected in the following
aspects: (1) the object here is SIDDS of integer order, while one of Ref. [36] is stochastic delay DSs
of fractional order without impulsive jumps; (2) the constraint here is high nonlinearity with LLC,
while nonlinearity with GLC is assumed for Ref. [36]; (3) this note is to study the control role of
random noises, while Ref. [36] highlights the stability analysis.

4. A Numeric Example

Next, we will discuss a numeric example to reveal our control theory.
A scalar nonlinear IDDS is concerned,{

dy(t) = [0.5y(t) + 0.1y(t− µ(t))]y(t)dt, t ≥ 0, t 6= ξg, g = 1, 2, · · ·
y
(
ξg
)
= 0.5(1− 0.6g)y

(
ξg−

)
+ 0.5sin((1− 0.6g)y

(
ξg−

)
)

(5)

where µ(t) = 0.01(1 + cos(t)), ξg = 0.2g.

Remark 8. Essentially, this system is a one-species impulsive population system. The impulsive
jump here is the simple combination of linear form and sine form. Thereinto, these parameter values
are just to verify our theory.

From the computer simulation (i.e., Figure 1), IDDS (5) explodes to the infinity on a
finite instant. Based on our theory, polynomial random noise |y(t)|y(t)

.
B(t) is introduced

to suppress its explosive behavior, and the stochastically controlled IDDS becomes

{
dy(t) = [0.5y(t) + 0.1y(t− µ(t))]y(t)dt + |y(t)|y(t)dB(t) t ≥ 0, t 6= ξg, g = 1, 2, · · · ,

y
(
ξg
)
= 0.5(1− 0.6g)y

(
ξg−

)
+ 0.5 sin((1− 0.6g)y

(
ξg−

)
)

(6)
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Figure 1. Trajectory of IDDS (5) with ζ = 1. by Euler-Maruyama scheme with step 10−5.

Obviously, SIDDS (6) satisfies Assumptions 1, 2 with bg = 1− 0.6g, and max
r,L

∏L
k=r bk

2 <

∞ holds. Hence, SIDDS (6) admits a unique global solution by Theorem 1 (see Figure 2).
Moreover, SIDDS (6) is bounded by Theorem 2, and grows at most in the polynomial form
by Theorem 3 (see Figure 3).
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5. Conclusions and Future Discussion

Fortunately, the questions in Section 1 have been well answered. This note illus-
trates that one polynomial random noise can suppress the explosive behavior of IDDS (1)
with Assumptions 1 and 2, and make it grow at most in the polynomial form. Neverthe-
less, the time-varying delay here is bounded, and nonlinear impulses here need to fulfill
Assumptions 2. How to relax these two constraints will be our further work.
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Appendix A. Proof of Theorem 1

Proof. For max
r,L

∏L
k=r bk

2 < ∞, constants D > 0, A > 0 exist for max
r,L

∏L
k=r bk

2 < A and

max
k

bk
2 < D. For the property of LLC, a unique local maximum solution y(t) exists for

SIDDS (2) on
[
ξg−1, ρ

g
e

]
, where ρ

g
e is the explosive instant of impulsive interval

[
ξg−1, ξg

]
,

g = 1, 2, · · · . In order to verify that y(t) is global on [0, ∞], one just needs to prove
ρ

g
e = ξg, g = 1, 2, · · · a.e.. τ

g
k = in f

{
t : ξg−1 ≤ t ≤ ρ

g
e , |y(t)| ≥ k

}
, g = 1, 2, · · · . Obvi-

ously, τ
g
k is monotonically increasing with respect to k and τ

g
k →

k→∞
τ

g
∞ ≤ ρ

g
e . Provided

τ
g
∞ = ξg a.e., then ρ

g
e = ξg, g = 1, 2, · · · a.e.. Note τ

g
∞ = ξg ⇔ P{τg

k ≤ t} →
k→∞

0,
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∀t ∈ ξg−1, ξg, g = 1, 2, · · · . Therefore, it is just to prove P
{

τ
g
k ≤ t

}
→

k→∞
0, ∀t ∈

[
ξg−1, ξg

]
,

g = 1, 2, · · · .

Define V(y(t)) = (1 + |y(t)|2)
a
,a ∈

(
0, 1

2

)
. We can get

LV(y(t)) = 2a(1 + |y(t)|2)
a−1

yT f (y(t), x(t), t) + a(1 + |y(t)|2)
a−2

[(2a− 1)δ2|y(t)|2χ+4

+δ2|y(t)|2χ+2]

≤ 2a(1 + |y(t)|2)
a(

k|y(t)|ϑ + γ
)
+ 2ak|x(t)|ϑ + 2ak|y(t)|2a|x(t)|ϑ

+a(1 + |y(t)|2)
a−2[

(2a− 1)δ2|y(t)|2χ+4 + δ2|y(t)|2χ+2
]

≤ 2a(1 + |y(t)|2)
a(

k|y(t)|ϑ + γ
)
+ 2ak|x(t)|ϑ + 2ak

ϑ+2a

(
2a|y(t)|ϑ+2p + ϑ|x(t)|ϑ+2p

)
+a(1 + |y(t)|2)

a−2[
(2a− 1)δ2|y(t)|2χ+4 + δ2|y(t)|2χ+2

]
,

(A1)

where x(t) = y(t− µ(t)).
For ∀t ∈ [0, ξ1], one has

EV
(
y
(
t ∧ τ1

k
))
≤ EV(y(0)) + E

∫ t∧τ1
k

0 H(y(s))ds + 2kaE
∫ t∧τ1

k
0 [|y(s− µ(s))|ϑ − η−1|y(s)|ϑ]ds

+ 2ϑak
ϑ+2a E

∫ t∧τ1
k

0 [|y(s− µ(s))|ϑ+2a − η−1|y(s)|ϑ+2a]ds,
(A2)

where H(z) = a(1 + |z|2)
a−2[

(2a− 1)δ2|z|2χ+4 + δ2|z|2χ+2
]
+ 2a(1 + |z|2)

a(
k|z|ϑ + γ

)
+

2kaη−1|z|ϑ + 2ak
(
2a + ϑη−1)(ϑ + 2a)−1|z|ϑ+2a. Simple calculations show (1+ |z|2)2−a ·H(z)

≤ a(2a− 1)δ2|z|2χ+4 + aδ2|z|2χ+2 + 4a(1 + |z|4)(k|z|ϑ + γ) + 22−akaη−1|z|ϑ(1 + |z|4−2a)

+
22−pak(2a+ϑη−1)

ϑ+2a |z|ϑ+2a(1+ |z|4−2a). For a ∈
(

0, 1
2

)
and 2χ > ϑ, from Lemma 2.1 in Ref. [9],

there is a constant H > 0 satisfying H(y) ≤ (1 + |y|2)
2−a

H(y) ≤ H.

Noting
∫ t∧τ1

k
0 [|y(s− µ(s))|ϑ− η−1|y(s)|ϑ]ds ≤ η−1

∫ t∧τ1
k

−τ |y(s)|
ϑds− η−1

∫ t∧τ1
k

0 |y(s)|ϑds

= η−1
∫ 0
−τ |y(s)|

ϑds and
∫ t∧τ1

k
0 [|y(s− µ(s))|ϑ+2a − η−1|y(s)|ϑ+2a]ds = η−1

∫ 0
−τ |y(s)|

ϑ+2ads,
so

EV
(
y
(
t ∧ τ1

k
))
≤ E[1 + |y(0)|2]

a
+ Ht + 2kaη−1E

∫ 0
−τ |y(s)|

ϑds + 2ϑak
ϑ+2a E

∫ 0
−τ |y(s)|

ϑ+2ads
=: Ht,1.

Hence,

p(τ1
k < t)k2a = E

(
I(τ1

k <t)

∣∣∣y(t ∧ τ1
k

)∣∣∣2a
)
≤ E

∣∣∣y(t ∧ τ1
k

)∣∣∣2a
≤ E[1 +

∣∣∣y(t ∧ τ1
k

)∣∣∣2]a ≤ Ht,1,

which implies that, for ∀t ∈ [0, ξ1]

lim
k→∞

p
{

τ1
k < t

}
≤ lim

k→∞

Ht,1

k2a = 0. (A3)

When t ∈ [ξ1, ξ2], we have that

V(y(ξ1)) ≤ 1 + |y(ξ1)|2a

≤ 1 + |h1(y(ξ1−))|2a

≤ 1 + b1
2a|y(ξ1−)|2a

≤ 1 + b1
2a(1 + |y(ξ1−)|2)

a

≤ 1+b1
2a[(1 + |y(0)|2)

a
+
∫ ξ1

0 LV(y(s))ds
+
∫ ξ1

0 Vyδ|y(t)|χy(t)dB(s).

(A4)
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Moreover, we have

k2a p
{

τ2
k < t

}
≤ E

∣∣y(t ∧ τ2
k
)∣∣2a ≤ EV(y(ξ1)) + E

∫ t∧τ2
k

ξ1
LV(y(s))ds

≤ 1 + b1
2a[E(1 + |y(0)|2)

a
+ E

∫ ξ1
0 LV(y(s))ds] + E

∫ t∧τ2
k

ξ1
LV(y(s))ds

≤ 1 + CaE(1 + |y(0)|2)
a
+ (Ca + 1)E

∫ t∧τ2
k

0 LV(y(s))ds
≤ 1 + CaE(1 + |y(0)|2)

a
+ (Ca + 1)

[
Ht + 2kaη−1E

∫ 0
−τ |y(s)|

ϑds + 2ϑak
ϑ+2a E

∫ 0
−τ |y(s)|

ϑ+2ads
]

=: Ht,2.

Letting k→ ∞ , then lim
k→∞

p
{

τ2
k < t

}
≤ lim

k→∞

Ht,2
k2a = 0 .

Similarly to (A4), by mathematical induction, for any integer v > 0, one can obtain

V(y(ξv)) ≤ 1 +
v
∑

r=1

v
∏

k=r
bk

2a ∫ ξr
ξr−1

LV(y(s))ds +
v
∑

r=1

v
∏

k=r
bk

2a ∫ ξr
ξr−1

Vyδ|y(s)|χy(s)dB(s)

+
v
∑

r=2

v
∏

k=r
bk

2a +
v

∏
k=r

bk
2a(1 + |y(0)|2)

a
.

(A5)

Obviously, when v = 1, inequality (A5) is inequality (A4).
Assume inequality (A5) holds for v = m1(m1 ≥ 1). Then, when v = m1 + 1, we have

V
(
y
(
ξm1+1

))
≤ 1 +

∣∣y(ξm1+1
)∣∣2a≤ 1 +

∣∣h(y(ξm1+1−
))∣∣2a≤ 1 + bm1+1

2a
∣∣y(ξm1+1−

)∣∣2a

≤ 1 + bm1+1
2a(1 +

∣∣y(ξm1+1−
)∣∣2)a

≤ 1 + bm1+1
2a[V(y(ξm1)) +

∫ ξm1+1
ξm1

LV(y(s))ds +
∫ ξm1+1

ξm1
Vyδ|y(s)|χy(s)dB(s)

≤ 1 + bm1+1
2a[1 +

m1
∑

r=2

m1
∏

k=r
bk

2a +
m1
∏

k=r
bk

2a(1 + |y(0)|2)
a
+

m1
∑

r=1

m1
∏

k=r
bk

2a ∫ ξr
ξr−1

Vyδ|y(s)|χy(s)dB(s)

+
m1
∑

r=1

m1
∏

k=r
bk

2a +
∫ ξm1+1

ξm1
LV(y(s))ds +

∫ ξm1+1
ξm1

Vyδ|y(s)|χy(s)dB(s)]

≤ 1 +
m1+1

∑
r=1

m1+1
∏

k=r
bk

2a ∫ ξr
ξr−1

LV(y(s))ds +
m1+1

∑
r=1

m1+1
∏

k=r
bk

2a ∫ ξr
ξr−1

Vyδ|y(s)|χy(s)dB(s)

+
m1+1

∑
r=2

m1+1
∏

k=r
bk

2a +
m1+1

∏
k=r

bk
2a(1 + |y(0)|2)

a
.

When v = m1 + 1, inequality (A5) is also true. Therefore, inequality (A5) is true.
Repeat the above procedure on ∀[ξL, ξL+1), L = 2, 3, · · · . Then, ∀t ∈ [ξL, ξL+1),

k2a p
{

τL+1
k < t

}
≤ E

∣∣∣y(t ∧ τL+1
k

)∣∣∣2a
≤ EV

(
y
(

t ∧ τL+1
k

))
≤ EV(y(ξL)) + E

∫ t∧τL+1
k

ξL
LV(y(s))ds

≤ 1 +
L
∑

r=2

L
∏

k=r
bk

2a +
L
∏

k=1
bk

2aE(1 + |y(0)|2)
a

+E
∫ t∧τL+1

k
ξL

LV(y(s))ds +
L
∑

r=1

L
∏

k=r
bk

2aE
∫ ξL

ξL−1
LV(y(s))ds

≤ 1 +
L
∑

r=2
Aa + AaE(1 + |y(0)|2)

a
+ E

∫ t∧τL+1
k

ξL
LV(y(s))ds + Aa

L
∑

r=1
E
∫ ξL

ξL−1
LV(y(s))ds

≤ 1 + (L− 1)Aa + AaE(1 + |y(0)|2)
a
+ (Aa + 1)E

∫ t∧τL+1
k

0 LV(y(s))ds
≤ 1 + (L− 1)Aa + AaE(1 + |y(0)|2)

a
+ (Aa + 1)[Ht + 2kaη−1E

∫ 0
−τ |y(s)|

ϑds
+ 2ϑak

ϑ+2a E
∫ 0
−τ |y(s)|

ϑ+2ads]
=: Ht, L+1,

Letting k→ ∞ , get lim
k→∞

p
{

τL+1
k < t

}
≤ lim

k→∞

Ht, L+1
k2a = 0.
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Since t ∈ [ξL, ξL+1) is arbitrary, we obtain TL
∞ = ρL

e = ξL. Therefore, the local
maximum solution for each impulse interval [ξL−1, ξL) is global. The required assertion is
obtained. �

Appendix B. Proof of Theorem 2

Proof. Define W(y(t)) = eθtV(y(t)), θ > 0. Computing Itô operator of W(y(t)), have

LW(y(t)) = θeθt(1 + |y(t)|2)
a
+ eθtLV(y(t))

≤ θeθt(1 + |y(t)|2)
a
+ eθta(1 + |y(t)|2)

a−2[
(2a− 1)δ2|y(t)|2χ+4 + δ2|y(t)|2χ+2

]
+eθt[2a(1+|y(t)|2)a

(
k|y(t)|ϑ + γ

)
+ 2ak|x(t)|ϑ + 2ak

ϑ+2a

(
ϑ|x(t)|ϑ+2a

+2a|y(t)|ϑ+2a
)
],

(A6)

Then, we obtain that

EV(y(t)) = e−θtV(y(0)) + e−θtE
∫ t

0 LW(y(s))ds
≤ e−θtV(y(0)) + e−θtE

∫ t
0 [θeθs(1 + |y(s)|2)

a
+ 2aeθs(1 + |y(s)|2)

a(
k|y(s)|ϑ + γ

)
+eθs 2ak

ϑ+2a 2a|y(s)|ϑ+2a + eθ(s+τ)2akη−1|y(s)|ϑ + eθ(s+τ) 2akϑ
ϑ+2a η−1|y(s)|ϑ+2a

+eθsa
(

1 + |y(s)|2)a−2
[
(2a− 1)δ2|y(s)|2χ+4 + δ2|y(s)|2χ+2

]]
ds + e−θtE

∫ t
0

2akϑeθs

ϑ+2a

·
[
|y(s− µ(s))|ϑ+2a − η−1eθτ |y(s)|ϑ+2a

]
ds + e−θtE

∫ t
0 eθs2ak[|y(s− µ(s))|ϑ

−η−1eθτ |y(s)|ϑ]ds
= e−θtV(y(0)) + e−θtE

∫ t
0 eθs H∗(y(s))ds + e−θtE

∫ t
0 eθs2ak[|y(s− µ(s))|ϑ

−η−1eθτ |y(s)|ϑ]ds + e−θtE
∫ t

0 eθs 2akϑ
ϑ+2a [|y(s− µ(s))|ϑ+2a − η−1eθτ |y(s)|ϑ+2a]ds,

(A7)

where H∗(z) = θ(1 + |z|2)
a
+ 2a(1 + |z|2)

a(
k|z|ϑ + γ

)
+ 2ak

ϑ+2a
(
2a + ϑη−1eθτ

)
|z|ϑ+2a + 2ak ·

eθτη−1|z|ϑ + a(1 + |z|2)
a−2[

(2a− 1)δ2|z|2χ+4 + δ2|z|2χ+2
]
.

Since a ∈
(

0, 1
2

)
, from Lemma 2.1 in Ref. [9], a constant H∗ exists for H∗(y) ≤ H∗.

From the inequalities∫ t
0 eθs

[
|y(s− µ(s))|ϑ − η−1eθτ |y(s)|ϑ

]
ds ≤ η−1

∫ 0
−τ eθ(s+τ)|y(s)|ϑds,∫ t

0 eθs
[
|y(s− µ(s))|ϑ+2a − η−1eθτ |y(s)|ϑ+2a

]
ds ≤

η−1
∫ 0
−τ eθ(s+τ)|y(s)|ϑ+2ads,

we have that
E
∫ t

0 LW(y(s))ds ≤ E
∫ t

0 eθsH∗ds
+η−12akE

∫ 0
−τ eθ(s+τ)|y(s)|ϑds

+ 2ϑkaη−1

ϑ+2a
∫ 0
−τ eθ(s+τ)|y(s)|ϑ+2ads.

(A8)

Similar to (A5), it is obtained that, by mathematical induction, for any integer v > 0,

W(y(ξv)) ≤ eθξv
(

1 + |y(ξv)|2a
)
≤ eθξv

(
1 + |h(y(ξv−))|2a

)
≤ eθξv

(
1 + bv

2a|y(ξv−)|2a
)

≤ eθξv + bv
2aeθξv(1 + |y(ξv−)|2)

a

≤ eθξv + bv
2a[W(y(ξv−1)) +

∫ ξv
ξv−1

LW(y(s))ds +
∫ ξv

ξv−1
Wxδ|y(s)|χy(s)dB(s)]

≤ eθξv +
v
∑

r=1

v
∏

k=r
bk

2a ∫ ξr
ξr−1

LW(y(s))ds +
v
∑

r=1

v
∏

k=r
bk

2a ∫ ξr
ξr−1

Wxδ|y(s)|χy(s)dB(s)

+
v
∑

r=2

v
∏

k=r
bk

2aeθξr−1 +
v

∏
k=r

bk
2aeθξ0(1 + |y(0)|2)

a
.

(A9)
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For any t ∈ [ξL, ξL+1), L = 0, 1, · · · , by inequality (A9), we have

Eeθt(1 + |y(t)|2)
a

= EW(y(ξL)) + E
∫ t

ξL
LW(y(s))ds

≤ eθξL +
L
∏

k=1
bk

2aeθξ0 E(1 + |y(0)|2)
a
+

L
∑

r=2

L
∏

k=1
bk

2aeθξr−1

+E
L
∑

r=1

L
∏

k=1
bk

2a ∫ ξr
ξr−1

LW(y(s))ds+E
∫ t

ξL
LW(y(s))ds

≤ eθξL + Aaeθξ0 E(1 + |y(0)|2)
a
+

L
∑

r=2
AaeθξL−1 + Aa

L
∑

r=1
E
∫ ξL

ξr−1
LW(y(s))ds

+E
∫ t

ξL
LW(y(s))ds

≤ eθξL + Aaeθξ0 E(1 + |y(0)|2)
a
+

L
∑

r=2
AaeθξL−1 + (Aa + 1)E

∫ t
0 LW(y(s))ds

≤ eθξL + Aaeθξ0 E(1 + |y(0)|2)
a
+

L
∑

r=2
AaeθξL−1 + (Da + 1)[E

∫ t
0 H∗eθsds

+E
∫ 0
−τ 2akη−1eθ(s+τ)|y(s)|ϑds + 2akϑ

ϑ+2a η−1E
∫ 0
−τ eθ(s+τ)|y(s)|ϑ+2ads]

≤ eθξL + Daeθξ0 E(1 + |y(0)|2)
a
+

L
∑

r=2
DaeθξL−1 + (Da + 1)[H∗

θ

(
eθt − 1

)
+2akη−1E

∫ 0
−τ eθ(s+τ)|y(s)|ϑds + 2akϑ

ϑ+2a η−1E
∫ 0
−τ eθ(s+τ)|y(s)|ϑ+2ads].

(A10)

Furthermore,

E(1 + |y(t)|2)
a

≤ [eθξL + Aaeθξ0 E(1 + |y(0)|2)a +
L
∑

r=2
AaeθξL−1 ]e−θt + (Aa + 1)[H∗

θ

(
1− eθt)

+2akη−1e−θtE
∫ 0
−τ eθ(s+τ)|y(s)|ϑds + 2akϑ

ϑ+2a η−1e−θtE
∫ 0
−τ eθ(s+τ)|y(s)|ϑ+2ads]

≤ [eθξL + Aaeθξ0 E(1 + |y(0)|2)a +
L
∑

r=2
AaeθξL−1 ] + (Aa + 1)[H∗

θ + 2akη−1

·E
∫ 0
−τ eθ(s+τ)|y(s)|ϑds + 2akϑ

ϑ+2a η−1E
∫ 0
−τ eθ(s+τ)|y(s)|ϑ+2ads]

=: Na.

(A11)

Therefore, sup
t≥0

E|y(t)|2a ≤ Na.

For ∀ψ ∈ (0, 1), letting Q(ψ) = (Na
ψ )

1
2a , by the Chebyshev inequality, it follows that,

limsup
t→∞

p{|y(t; ξ)| > Q(ψ)} ≤ E|y(t, ξ)|2a

Q(ψ)2a ≤ ψ,

the conclusion is proved. �

Appendix C. Proof of Theorem 3

Proof. Let W̃(y(t)) = eθtṼ(y(t)), where θ > 0, Ṽ(y(t)) = log(1 + |y(t)|2). Compute the
Itô operator of W̃(y(t)),
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LW̃(y(t))

= θeθtlog(1 + |y(t)|2) + 2eθtyT(t)
1+|y(t)|2

f (y(t), x(t), t)

+eθt 1−|y(t)|2

(1+|y(t)|2)
2 δ2|y(t)|2χ+2

≤ θeθtlog(1 + |y(t)|2) + 2eθt

1+|y(t)|2
|y(t)|2

(
k|y(t)|ϑ

+k|x(t)|ϑ + γ
)

+eθt 1−|y(t)|2

(1+|y(t)|2)
2 δ2|y(t)|2χ+2≤ θeθtlog(1 + |y(t)|2) + 2eθt

(
k|y(t)|ϑ + γ

)
+

2eθtk
(
|x(t)|ϑ − η−1eθτ |y(t)|ϑ

)
+2eθ(t+τ)kη−1|y(t)|ϑ

+eθt(1 + |y(t)|2)
−2(

δ2|y(t)|2χ+2 − δ2|y(t)|2χ+4
)

.

(A12)

Assume that ξN is the maximum finite impulsive jump instant, namely, 0 < ξ1 <
· · · < ξN < ξN+1 = ξN+2 = · · · = ∞. For t ∈ [ξN , ∞), applying Itô formula, it follows

eθtlog(1 + |y(t)|2) ≤ eθξN log(1 + |y(ξN)|2) +
∫ t

ξN

LW̃(y(s))ds +
∫ t

ξN

W̃yδ|y(s)|χy(s)dB(s). (A13)

By mathematical induction, we can get

eθξN log(1 + |y(ξN)|2)
≤ eθξN log(1 + |h(y(ξN−))|2)
≤ eθξN log(1 + bN

2|y(ξN−)|2)
≤ eθξN log[max(1, bN

2)
(

1 + |y(ξN−)|2
]

≤ eθξN log[max(1, bN
2)] + eθξN log(1 + |y(ξN−)|2)

≤ eθξN log[max(1, bN
2)] + eθξN−1 log(1 + |y(ξN−1−)|2)

+
∫ ξN

ξN−1
LW̃(y(s))ds+

∫ ξN
ξN−1

W̃yδ|y(s)|χy(s)dB(s)

≤
N
∑

k=1
eθξk log[max(1, bN

2)] + eθξ0 log(1 + |y(ξ0)|2)+
N
∑

k=1

∫ ξk
ξk−1

LW̃(y(s))ds

+
N
∑

k=1

∫ ξk
ξk−1

W̃yδ|y(s)|χy(s)dB(s)

(A14)

Substituting (A14) into (A13), we yield that,

eθtṼ(y(t)) =
N

∑
k=1

eθξk log[max(1, bk
2)] + eθξ0 log(1 + |y(ξ0)|2) +

∫ t

0
LW̃(y(s))ds + M(t),

where M(t) =
∫ t

0 W̃yδ|y(s)|χy(s)dB(s) =
∫ t

0
2eθsδ|y(s)|χ+2

(1+|y(s)|2)
dB(s) is a continuous local martin-

gale, whose quadratic variation is
∫ t

0
4e2θsδ2|y(s)|2χ+4

(1+|y(s)|2)
2 ds. Furthermore, for integer ∀k > 0, any

ρ ∈
(

0, 1
2

)
and µ > 1, the exponential martingale inequality demonstrates

P{ sup
0≤t≤k

[M(t)− ρ

2eθk

∫ t
0

4e2θsδ2|y(s)|2χ+4

(1+|y(s)|2)
2 ds ≥ µeθklogk

ρ } ≤ 1
kµ .

For ∑∞
k=1

1
kµ < ∞, Borel-Cantelli Lemma demonstrates that there exists a Ω̃ ⊆ Ω with

p
(

Ω̃
)
= 1 such that, for ∀ω ∈ Ω̃, a integer N0(ω) exists for ∀j ≥ N0(ω) and j− 1 ≤ t ≤ j,

M(t) ≤ ρ

2eθ j

∫ t

0

4e2θsδ2|y(s)|2χ+4

(1 + |y(s)|2)
2 ds +

µeθ jlogj
ρ

≤ 2ρ
∫ t

0

eθsδ2|y(s)|2χ+4

(1 + |y(s)|2)
2 ds +

µeθ(t+1)log(t + 1)
ρ

.

Then, for ∀j ≥ N0(ω) and j− 1 ≤ t ≤ j, we get
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eθtlog(1 + |y(t)|2)

≤
N
∑

k=1
eθξk log[max(1, bk

2] + eθξ0 log(1 + |y(ξ0)|2) +
∫ t

0 [θeθslog(1 + |y(s)|2)

+ 2eθs(k
∣∣∣y(s)∣∣∣ϑ + γ) + 2eθsk

( ∣∣y(s)∣∣ϑ − η−1eθτ
∣∣y(s)∣∣ϑ)+ 2eθ(s+τ)kη−1

∣∣∣y(s)∣∣∣ϑ + eθs (1+|y(s)|2)−2

·
(

δ2
∣∣y(s)∣∣2χ+2 − δ2

∣∣y(s)∣∣2χ+4
)
+ 2ρeθsδ2|y(s)|2χ+4

(1+|y(s)|2)
2 ]ds + µeθ(t+1)log(t+1)

ρ

≤
N
∑

k=1
eθξk log[max(1, bk

2] + eθξ0 log(1 + |y(ξ0)|2) +
∫ t

0 eθs(1 + |y(s)|2)
−2

[θ(1 + |y(s)|2)
2
log(1

+|y(s)|2) + 2(1 + |y(s)|2)
2(

k|y(s)|ϑ + γ
)
+ 2eθτ(1 + |y(s)|2)

2
kη−1|y(s)|ϑ + δ2|y(s)|2χ+2

−δ2|y(s)|2χ+4]ds +
∫ t

0 2eθsk(|x(s)|ϑ − η−1eθτ |y(s)|ϑ)ds

+
∫ t

0 2ρeθsδ2|y(s)|2χ+4(1 + |y(s)|2)
−2

ds + µeθ(t+1)log(t+1)
ρ

=
∫ t

0 eθs(1 + |y(s)|2)
−2

[θ
(

1 + |y(s)|2)2log(1 + |y(s)|2
)
+ 2(1 + |y(s)|2)

2(
k|y(s)|ϑ + γ

)
+ 2eθτ(1

+|y(s)|2)2kη−1|y(s)|ϑ + δ2|y(s)|2χ+2 + (2a− 1)δ2|y(s)|2χ+4]ds +
∫ t

0 2eθsk(|x(s)|ϑ

−η−1eθτ |y(s)|ϑ)ds+ µeθ(t+1)log(t+1)
ρ +

N
∑

k=1
eθξk log[max(1, bk

2)] + eθξ0 log(1 + |y(ξ0)|2)

≤
N
∑

k=1
eθξk log[max(1, bk

2)] + eθξ0 log(1 + |y(ξ0)|2) +
∫ t

0 eθsQ(y(s))ds

+2kη−1
∫ 0
−τ eθ(s+τ)|y(s)|ϑds + µeθ(t+1)log(t+1)

ρ ,

(A15)

which holds with probability 1, where Q(z) = (1 + |z|2)−2
[θ(1 + |z|2)2log(1 + |z|2) +2(1+

|z|2)2
(k|z|ϑ + γ)+2eθτ(1 + |z|2)2kη−1|z|ϑ + δ2|z|2χ+2 + (2a− 1)δ2|z|2χ+4].

For 2a− 1 < 0, from Lemma 2.1 in Ref. [9], a constant Q exists for Q(y) ≤ Q. Then,

eθtlog(1 + |y(t)|2)

≤
N
∑

k=1
eθξk log[max(1, bk

2] + eθξ0 log(1 + |y(ξ0)|2)

+
∫ t

0 eθsQds + 2kη−1
∫ 0
−τ eθ(s+τ)|y(s)|ϑds

+
µeθ(t+1)log(t+1)

ρ

≤
N
∑

k=1
eθξk log[max(1, bk

2] + eθξ0 log(1 + |y(ξ0)|2) + Q
θ

(
eθt − 1

)
+2kη−1

∫ 0
−τ eθ(s+τ)|y(s)|ϑds

+
µeθ(t+1)log(t+1)

ρ .

When t→ ∞, µ→ 1, ρ→ 1
2 , the result (4) is got. �
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