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Abstract: In this paper, static and dynamic stability analyses taking axial excitation into account
are presented for a laminated carbon fiber reinforced polymer (CFRP) cylindrical shell under a non-
normal boundary condition. The non-normal boundary condition is put forward to signify that both
ends of the cylindrical shell are free and one generatrix of the shell is clamped. The partial differential
motion governing the equations of the laminated CFRP cylindrical shell with a non-normal boundary
condition is derived using the Hamilton principle, nonlinear von-Karman relationships and first-order
deformation shell theory. Then, nonlinear, two-freedom, ordinary differential equations on the radial
displacement of the cylindrical shell are obtained utilizing Galerkin method. The Newton-Raphson
method is applied to numerically solve the equilibrium point. The stability of the equilibrium point is
determined by analyzing the eigenvalue of the Jacobian matrix. The solution of the Mathieu equation
describes the dynamic unstable behavior of the CFRP laminated cylindrical shells. The unstable
regions are determined using the Bolotin method. The influences of the radial line load, the ratio of
radius to thickness, the ratio of length to thickness, the number of layers and the temperature field of
the laminated CFRP cylindrical shell on static and dynamic stability are investigated.

Keywords: laminated cylindrical shell; stability; unstable region; boundary condition; carbon fiber
reinforced polymer

MSC: 74H55

1. Introduction

Carbon fiber reinforced polymer (CFRP) laminates are widely used in many engineer-
ing fields, such as the ship, vehicle, and aerospace industries, because of their high strength,
excellent material performance, light weight, high heat resistance and anti-corrosion prop-
erties. In recent years, scholars have carried out research on the mechanical properties of
carbon fiber composite materials in order to expand their application range and maintain
their reliability [1–3]. The stability characteristics of structures made of CFRP ensure their
security and reliability. In unstable conditions, the vibration amplitude of the structure
is unbounded and increases exponentially with time. Since the resulting vibration may
completely destroy the structural members, leading to structural mutations, predictions of
structural stability are of the utmost importance from the point of view of both design and
optimization [4]. Cylindrical shells are among the most widely used structures in many
engineering fields, such as rocket and aircraft propulsion systems and large deployable
space annular antenna [5,6]. Hence, it is necessary to understand and predict the nonlinear
stability characteristics of CFRP laminated cylindrical shells.
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Numerous investigations of the stability characteristics of beam, plate and shell struc-
tures have been published to date. Kiral et al. [7] described the dynamic stability of a
composite cantilever beam under periodic axial load delamination at predetermined posi-
tions. Ke et al. [8] studied the dynamic stability of functionally graded microbeams. In that
report, the effects of gradient index, length scale parameters, the slenderness ratio and end
supports on static buckling, free vibrations and the dynamic stability of FGM microbeams
are discussed in detail. Couto et al. [9] studied the influence of non-uniform bending on
transverse torsional buckling of slender steel beams at high temperature. Talebitooti [10]
studied the buckling of laminated conical shells made of composite materials under
uniformly distributed external loads according to first-order shear deformation theory.
Maali et al. [11] studied the buckling behavior of thin defective conical plates under basic
supported conditions. Bich et al. [12] studied the linear buckling behavior of functionally
graded tapered plates under axial and external pressures. Gajdzicki et al. [13] carried out
research on the stability of bi-directionally corrugated plates under compression and shear.
Zeng et al. [14] studied the stability and vibrations of rectangular plates with side cracks.
Dey et al. [15] studied the dynamic instability and post-buckling behavior of a composite,
supported cylindrical shell plate under dynamic local edge load and transverse patch load.
Finally, Han et al. [16] studied the dynamic stability of cylindrical shells under periodic
axial loads with varying rotational speeds.

However, while there are numerous studies on the dynamic response of carbon fiber
composites, few have examined their stability characteristics. Kolanua et al. [17] investi-
gated the stability behavior and failure characteristics of carbon fiber reinforced polymer
(CFRP) composite panels with a secondary bonded blade stiffener under compression.
The suitability of a CFRP plate subjected to low-velocity impacts for the estimation of
the critical load of delamination onset and the approximation of the load-displacement
curve are investigated by Salvetti et al. [18]. Cui et al. [19] studied the failure process of
CFRP electromagnetic riveting joints under high-speed loading. The deformation and
stress capacity of CFRP was studied by Zhang et al. [20]. Juntanalikit et al. [21] studied
the cyclic performance of reinforced concrete columns with non-ductile CFRP jackets by
experimental and numerical methods. Reuter et al. [22] studied the shear strength of GFRP
tubular structures using novel simulation methods. Time et al. [23] studied the fire stability
of a CFRP shell structure with a medium-sized test device. Zhang and Zhao [24–26] studied
the nonlinear response of a laminated CFRP cantilever plate under the action of moment
excitation, in-plane airflow and supersonic airflow.

Cylindrical shells are often used as structural units. Hwu et al. [27], Viswanathan et al. [28]
and Sarkheil et al. [29] respectively studied the free vibrations of a composite sandwich
plate and cylindrical shell, an anti-symmetric cylindrical shell and a cylinder-conical
shell. The nonlinear vibrations of water-filled cylindrical shells were studied by Ama-
bili et al. [30]. Song et al. [31] studied the vibration behavior of carbon nanotube-reinforced,
composite, closed cylindrical shells using Reddy’s high-order shear deformation theory.
Zhang et al. [32] studied the nonlinear dynamics of a clamped, functional gradient material
cylindrical shell under complex combined loads. Du et al. [33] discussed the internal
resonance behavior of FGM cylindrical shells under a thermal environment. Sun et al. [34]
studied the multi-pulse chaotic motion of a circular grid antenna and the nonlinear dy-
namics of an equivalent cylindrical shell. Liu et al. [35] studied the nonlinear vibrations of
composite cylindrical shells with radial prestretched films at the ends. Wang [36] studied
the nonlinear vibrations of rotating, composite laminated cylindrical shells with large
amplitudes near the lowest resonance under radial harmonic excitation. Hao et al. [37]
studied the aerodynamic and thermoelastic flutter characteristics of ceramic-metal gradient
truncated conical shells. Wang et al. [38,39] studied the nonlinear dynamic response of ro-
tating cylindrical shells under spectral neighborhood harmonic excitation using numerical
methods and approximate analytical solutions. Shen et al. [40,41] studied large amplitude,
nonlinear vibrations of shear deformed FGM cylindrical shells surrounded by elastic media.
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Non-normal boundary conditions, i.e., when both ends are free and one generatrix of
the shell is clamped, often occur in cylindrical shells, e.g., large annular antenna structures.
However, few researchers have studied the stability of cylindrical shells under non-positive
boundary conditions. In the present research, nonlinear static and dynamic stability analy-
ses of CFRP laminated cylindrical shells with non-normal boundary conditions are carried
out. Based on von-Karman-type nonlinear relationships, FSDT and the Hamilton principle,
the nonlinear dynamic equation of CFRP laminated cylindrical shells was established using
the Galerkin method and expressed as an ordinary differential equation describing radial
displacement. The newton-Raphson method is used to numerically analyze the equilibrium
point, and local stability is determined by the eigenvalues of the Jacobian matrix. The solu-
tion of the Mathieu equation describes the dynamic unstable behavior of a CFRP laminated
cylindrical shell. The correctness of the results in this paper is verified by comparisons with
the existing results. The influence of radial line load, the ratio of radius to thickness, the
ratio of length to thickness, the number of layers and the temperature field on the static
and dynamic stability of a CFRP laminated cylindrical shell is studied by parameterization.

2. Equations of Motion

A mechanical model of carbon fiber-reinforced, polymer laminated, cylindrical shells
with length L, middle surface radius R and uniform thickness h, as shown in Figure 1, is
considered. There are Ns layers with a ply stacking sequence of (45/−45)s. The curvilinear
coordinate system (x, θ, z) is located in the mid-surface of the CFRP laminated cylindrical
shell along the axial direction, the circumferential direction and the radial direction, respec-
tively. Displacement components u, v and w represent the displacements of an arbitrary
point in directions x, θ and z, respectively. Non-normal boundary of cylindrical shells
which are free at both ends and clamped at θ = 0, i.e., one of the longitudinal sections,
are considered, as shown in Figure 1a. Figure 1b presents the sections of x = L and
x = 0. The temperatures of the cylindrical shell surface are To and Tre f , respectively. Axial
excitation P is loaded at both ends (x = 0, x = L) of the CFRP laminated cylindrical shell.

P = p0 + p1 cos(Ωt) (1)

where p0 and p1 cos(Ω2t) are static and dynamic harmonic excitation, respectively.

Figure 1. Model of a CFRP laminated cylindrical shell: (a) the mechanical model, (b) the sections of
x = L and x = 0.

According to first-order shear deformation theory [42], it is assumed that the displace-
ment field of CFRP laminated cylindrical shells is

u(x, θ, z) = u0(x, θ) + zϕx(x, θ) (2)
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v(x, θ, z) = v0(x, θ) + zϕθ(x, θ) (3)

w(x, θ, z) = w0(x, θ) (4)

where u0, v0 and w0 represent the mid-plane displacements in directions x, θ and z, respec-
tively. ϕx and ϕθ denote radial rotations in the θ and x directions, respectively.

Displacement field Equations (2)–(4) is substituted into the von Karman geometric
nonlinear strain-displacement relation [43], and the nonlinear strain is determined as:


εx
εθ

γθz

 =


ε
(0)
x

ε
(0)
θ

γ
(0)
xθ

+ z


ε
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γ
(1)
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,
{
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}
=
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1
R v0

∂w0
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}
(5)
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,


ε
(1)
x

ε
(1)
θ
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(1)
xθ

 =


∂ϕx
∂x

1
R

∂ϕθ
∂θ

1
R

∂ϕx
∂θ + ∂ϕθ

∂x

 (6)

where εx and εθ are the principal strains, and γxθ , γθz, and γxz denote the shear strains.
The constitutive relationship of laminated CFRP cylindrical shell, considering thermal

stress, may be written as


σx
σθ

σxθ

σθz
σxz



(k)

=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55


(k)


εx
εθ

γxθ

γθz
γxz

−


αx
αθ

2αxθ

0
0

∆T(z)



(k)

(7)

where Qij (i, j = 1, 2, 4, 5, 6) are the stiffness coefficients, ∆T is the temperature increment,
and αx, αθ and αxθ are the coefficients of thermal expansion, which are expressed by

αx = α1 cos2 β + α2 sin2 β (8)

αθ = α1 sin2 β + α2 cos2 β (9)

αxθ = (α1 − α2) sin β cos β (10)

where α1 and α2 are the coefficients of the thermal expansion in the different material
directions, respectively.

It is supposed that the laminated CFRP cylindrical shell is initially stress free at Tre f .
Assuming that the temperature increment is linear, i.e.,

∆T = Tre f +
z
h

(
T0 − Tre f

)
(11)

then the stiffness coefficients Qij are given by



Q11
Q12
Q22
Q16
Q26
Q66


=



C4 2C2S2 S4 4C2S2

C2S2 C4 + S4 C2S2 −4C2S2

S4 2C2S2 C4 4C2S2

C3S CS3 − C3S −CS3 −2CS
(
C2 − S2)

CS3 C3S− CS3 −C3S 2CS
(
C2 − S2)

C2S2 −2C2S2 C2S2 (
C2 − S2)2




Q11
Q12
Q22
Q66

 (12)
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Q44
Q45
Q55

 =


C2 S2

−CS CS
S2 C2


{

Q44
Q55

}
, C = cos β, S = sin β (13)

where β is the ply angle of the laminated CFRP cylindrical shell. The stiffness coefficients
of material Qij are

Q11 = E1
1−ν12ν21

, Q12 = ν12E2
1−ν12ν21

, Q22 = E2
1−ν12ν21

,

Q66 = G12, Q44 = G23, Q55 = G13
(14)

where ν12 and ν21 are Poisson’s ratios, E1 and E2 are Young’s moduli, and G12, G23 and
G13 respectively are the shear modulus of the laminated CFRP cylindrical shell in different
material directions.

Based on Hamilton’s principle, a set of nonlinear partial differential governing equa-
tions of motion for a CFRP laminated cylindrical shell are obtained, as follows:

Nxx,x +
1
R

Nxθ,θ = I0
..
u0 + I1

..
ϕx (15)

Nxθ,x +
1
R

Nθθ,θ +
1
R
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..
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..
ϕθ (16)

Nxx,x
∂w0
∂x + Nxx
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∂w0
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R2 Nxθ,θ
∂2w0
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1
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1
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+ 1
R2 Nθθ
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1
R Qθ,θ − P ∂2w0

∂x2 − γ
.
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..
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..
ϕx (18)

Mxθ,x +
1
R

Mθθ,θ −Qθ = I1
..
v0 + I2

..
ϕθ (19)

where γ is the damping coefficient and superscript dots represent the derivative with
respect to time. The mass moments of inertia in Equations (15)–(19) are expressed as

Iη =
N

∑
η = 1

∫ zη+1

zη

ρzidz, (η = 0, 1, 2) (20)

The resultant forces of stress and moment are calculated by
Nxx
Nθθ
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 = {[A], [B]}
{

ε(0)
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}
−


NT

xx
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NT
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}
−
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,

{
Qx
Qθ

}
= K[A]

{
γxz
γθz

} (21)

where K is the shear correction coefficient, given by Efraim as 5/6 [44]. The resulting
thermal stress for the CFRP laminated cylindrical shell is defined as

NT
xx

NT
θθ

NT
xθ

,


MT

xx
MT

θθ
MT

xθ


 =

N

∑
k = 1

∫ zk+1

zk

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

(k)
αx
αθ

αxθ


(k)

(∆T, ∆Tz)dz (22)

The tensile rigidity Aij, bending-tensile coupling rigidity Bij, and bending rigidity Dij
of the laminated CFRP cylindrical shell determined as follows:(

Aij, Bij, Dij
)
=

N

∑
k = 1

∫ zk+1

zk

Qij

(
1, z, z2

)
dz, (i, j = 1, 2, 6) (23)

Aij =
N

∑
k = 1

∫ zk+1

zk

Qi,j

(
1, z, z2

)
dz, (i, j = 4, 5) (24)
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According to Equations (20)–(24), the nonlinear motion equation can be expressed by
the generalized displacement of laminated CFRP cylindrical shells, as follows:
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1
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1
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The surface of θ = 0 is clamped and both ends of the shell are free. This may be
expressed by

u0 = v0 = w0 = ϕx = ϕy = 0 at θ = 0 and θ = 2π (30)

Nxx = Nxθ = Mxx = Mxθ = Qx = 0 at x = 0 and x = L (31)∫ h
2

− h
2
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∫ h

2

− h
2

PRdθ (32)
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According to [5,42], displacements u0, v0, w0, ϕx and ϕθ of the shell, which satisfy the
non-normal conditions, are written as

u0 =
M

∑
n = 1

N

∑
m = 1

umn(t) cos
(mπx

L

)
Yn(θ) (33)

v0 =
M

∑
n = 1

N

∑
m = 1

vmn(t)Xm(x) sin(nθ) (34)

w0 =
M

∑
n = 1

N

∑
m = 1

wmn(t)Xm(x)Yn(θ) (35)

ϕx =
M

∑
n = 1

N

∑
m = 1

ϕxmn(t) cos
(mπx

L

)
Yn(θ) (36)

ϕθ =
M

∑
n = 1

N

∑
m = 1

ϕθmn(t)Xm(x) sin(nθ) (37)

where
Xi(x) = sin

λix
L

+ sinh
λix
L
− αi(cosh

λix
L

+ cos
λix
L

) (38)

Yj(θ) = sin
µjθ

2π
− sinh

µjθ

2π
+ β j(cosh

µjθ

2π
− cos

µjθ

2π
) (39)

cos λiL · cosh λiL− 1 = 0, cos µj2π · cosh µj2π − 1 = 0 (40)

αi =
sinhλiL + sin λiL
cosh λiL + cos λiL

, β j =
sinhµj2π + sin µj2π

cosh µj2π + cos µj2π
(41)

According to Noseir and Bhimaraddi [45,46], the influence of the inertia terms of u0, v0,
ϕx and ϕθ in the rotation and in-plane on the nonlinear vibrations of the CFRP laminated
cylindrical shell is very small compared to the radial inertia term given in Equation (15).
Therefore, inertia terms u0, v0, ϕx and ϕθ can be omitted. Thus, we now focus on the first
two modes of transverse displacement w. Using Galerkin’s method, both the in-plane and
rotational displacement can be expressed as functions of the radial displacement. On this
basis, the second order, nonlinear, ordinary differential equation of radial motion of CFRP
laminated cylindrical shells is established

..
w1 + µ1

.
w1 + ω2

1w1 + m2w2
1 + m3w1w2 + m4w2

2 + m5w3
1 + m6w2

1w2 + m7w1w2
2 + m8w3

2

+m9w1(p1 cos Ωt) = 0
(42)

..
w2 + µ2

.
w2 + ω2

2w2 + n2w2
1 + n3w1w2 + n4w2

2 + n5w3
1 + n6w2

1w2 + n7w1w2
2 + n8w3

2

+n9w2(p1 cos Ωt) = 0
(43)

where ω2
1 = m1 + m9 p0 and ω2

2 = n1 + n9 p0. All coefficients in Equation (19) can be
found in Appendix A.

In order to obtain the dimensionless equation of laminated CFRP cylindrical shells,
the following variables and parameters are introduced

τ = ω1t, w1 = q1h, w2 = q2h, Ω = Ω
ω1

, µ1 = µ1
ω1

, µ2 = µ2
ω1

, ω1 = ω1
ω1

,

ω2 = ω2
ω1

, p0 = p0
ω2

1
, p1 = p1

ω2
1
, mζ =

mζ h
ω2

1
, nζ =

nζ h
ω2

1
, (ζ = 2, 3, 4),

mς =
mςh2

ω2
1

, nς =
nςh2

ω2
1

, (ς = 5, 6, 7, 8)

(44)
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Equation (19) can be rewritten in non-dimensional form:

..
q1 + µ1

.
q1 + ω2

1q1 + m2q2
1 + m3q1q2 + m4q2

2 + m5q3
1 + m6q2

1q2 + m7q1q2
2 + m8q3

2

+m9 p1q1 cos Ωτ = 0
(45)

..
q2 + µ2

.
q2 + ω2

2q2 + n2q2
1 + n3q1q2 + n4q2

2 + n5q3
1 + n6q2

1q2 + n7q1q2
2 + n8q3

2

+n9 p1q2 cos Ωτ = 0
(46)

where “.” signifies the derivative with respect to dimensionless time “τ”.

3. Static Bifurcation and Stability

In this section, dynamic harmonic excitation is set to zero and static excitation is
selected as the controlling parameter to analyze the bifurcation and stability of the CFRP
laminated cylindrical shell. The Newton-Raphson method is applied to numerically analyze
the equilibrium points. Then, by solving the eigenvalues of the Jacobian matrix, the stability
of the equilibrium point is obtained.

Equations (45) and (46) can be rewritten as a first-order system as follows:

.
q1 = q01 (47)

.
q01 = −µ1q01 −m1q1 −m9 p0q1 −m2q2

1 −m3q1q2 −m4q2
2 −m5q3

1 −m6q2
1q2 −m7q1q2

2 −m8q3
2 (48)

.
q2 = q02 (49)

.
q02 = −µ2q02 − n1q2 − n9 p0q2 − n2q2

1 − n3q1q2 − n4q2
2 − n5q3

1 − n6q2
1q2 − n7q1q2

2 − n8q3
2

−n9 p1q2 cos Ωτ
(50)

Setting the left parts of Equations (47)–(50) to zero, the nonlinear algebraic equations
are expressed as

q01 = 0 (51)

− µ1q01 −m1q1 −m9 p0q1 −m2q2
1 −m3q1q2 −m4q2

2 −m5q3
1 −m6q2

1q2 −m7q1q2
2 −m8q3

2 = 0 (52)

q02 = 0 (53)

− µ2q02 − n1q2 − n9 p0q2 − n2q2
1 − n3q1q2 − n4q2

2 − n5q3
1 − n6q2

1q2 − n7q1q2
2 − n8q3

2 = 0 (54)

The Jacobian matrix is indicated as

J =


0 1 0 0

∂
.
q01

∂q1

∂
.
q01

∂q01

∂
.
q01

∂q2

∂
.
q01

∂q02

0 0 0 1
∂

.
q02

∂q1

∂
.
q02

∂q01

∂
.
q02

∂q2

∂
.
q02

∂q02

 (55)

where
∂

.
q01

∂q1
= −m1 −m9 p0 −m2q1 −m3q2 −m5q2

1 −m6q1q2 −m7q2
2 (56)

∂
.
q01

∂q01
= −µ1 (57)

∂
.
q01

∂q2
= −m3q1 −m4q2 −m6q2

1 −m7q1q2 −m8q2
2 (58)

∂
.
q01

∂q02
= 0 (59)
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∂
.
q02

∂q1
= −n2q1 − n3q2 − n5q2

1 − n6q1q2 − n7q2
2 (60)

∂
.
q02

∂q01
= −µ2 (61)

∂
.
q02

∂q2
= −n1 − n9 p0 − n3q1 − n4q2 − n6q2

1 − n7q1q2 − n8q2
2 (62)

∂
.
q02

∂q02
= 0 (63)

By calculating the equilibrium points of Equations (51)–(54), critical static in-plane
load pcr, which has nonzero equilibrium points, is found. The stability of the equilibrium
point is determined by examining the maximum real part of the eigenvalue of the Jacobian
matrix expressed in Equation (55).

In following analysis, a Ns-layer, antisymmetric angle-ply shell (45/−45)s with length
L = 1 m is considered, and the shell’s material properties E1 = 140× 103 MPa, E2 = 10×
103 MPa, G12 = 7× 103 MPa, G13 = 7× 103 MPa, G23 = 7× 103 MPa, ν12 = 0.25,
α1 = −0.3× 10−6 m/K and α2 = 28× 10−6 m/K are utilized. The temperatures of inner
surfaces of the shell is 300 K.

In order to validate the present results, the dimensionless natural frequencies
(Ωn = ωnR

√
(1− ν2)ρ/E) are compared with the results of Zhang et al. [47] and

Song et al. [48] in Table 1, taking into account simply supported isotropic cylindrical
shells with L/R = 20, m = 1 and ν = 0.3. As shown, the calculated results are in
good agreement with existing ones. In addition, the dimensionless axial static buckling
load PcrL2/

(
E02h3) of the simply supported orthotropic cylindrical shell is calculated and

compared with the results of Lee et al. [49] and Gao et al. [50] in Table 2. The geometric
parameters and material properties are as follows: h = 0.00254 m, R/h = 100, L/R = 2,
E01 = 275.8× 109 Pa, E02 = 27.58× 109 Pa, G0 = 10.34× 109 Pa, ν12 = 0.25, ν21 = 0.025
and ρ = 1619.27 kg/m3. As can be seen, the results compare reasonably well.

Table 1. Comparison of the frequency parameters (Ωn = ωnR
√
(1− ν2)ρ/E) for a simply supported

isotropic cylindrical shell with L/R = 20, m = 1 and ν = 0.3.

h/R n Zhang et al. [47] Song et al. [48] Present Study

0.05 0 0.0929586 0.0929392 0.0929465
1 0.0161065 0.0161299 0.0151185
2 0.0393038 0.0393231 0.0393236
3 0.1098113 0.1097653 0.1096523
4 0.1098113 0.1097653 0.1098103

0.002 0 0.0929296 0.0929296 0.0929236
1 0.0161011 0.0161011 0.01610032
2 0.0054532 0.0054536 0.0054532
3 0.0050418 0.0050424 0.0050423
4 0.0085340 0.0085344 0.0085354

Table 2. Comparison of a dimensionless axial static buckling load Pcr L2/
(
E02h3) on a simply sup-

ported orthotropic cylindrical shell.

(m,n) Lee et al. [49] Gao et al. [50] Present Study

(1, 1) 78,139.72 78,145.73 78,151.26
(1, 2) 29,556.79 29,580.83 29,578.52
(1, 3) 13,850.67 13,904.75 13,895.28
(2, 1) 32,341.27 32,347.28 32,343.52
(2, 2) 19,852.90 19,876.93 19,856.36
(2, 3) 12,046.73 12,100.82 12,089.65
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Figure 2 shows the effects of the ratio of radius to thickness and temperature field on
the critical static in-plane load. It is observed that with an increase of the ratio of radius
to thickness, the critical static in-plane load decreases monotonically. On the other hand,
with an increase of temperature difference between the inner and outer surface, the critical
static in-plane load decreases. This is because increasing the ratio of radius to thickness
and the temperature field can lead to a decrease in the stiffness of the system. The curves of
critical in-plane load versus the ratio of length to thickness L/h with different temperature
fields are shown in Figure 3. One can find that the critical static in-plane load decreases
while the ratio of length to thickness or the temperature field increases. Figure 4 shows
that the curves for a critical in-plane load versus the number of layers Ns when the outer
surface temperature To is set at 400, 500 and 600, respectively. As in Figures 2 and 3, with
the increase of temperature field, the critical static in-plane load decreases. In addition,
we observe that as the number of layers increases, the stiffness of the system increases
monotonously, as does the critical in-plane load.

Figure 2. Critical in-plane load versus the ratio of radius to thickness R/h with different temperature
fields.

Figure 3. Critical in-plane load versus the ratio of length to thickness L/h with different temperature
fields.



Mathematics 2022, 10, 1531 11 of 25

Figure 4. Critical in-plane load versus the number of layers Ns with different temperature fields.

Now, the nonlinear static bifurcations and the stabilities of equilibrium points will be
investigated. In this regard, point (L/2, π, 0) on the CFRP laminated cylindrical shell is the
referential location. Figure 5 illustrates the solution curves of the transverse displacement
of the CFRP laminated cylindrical shell with different temperature fields when Ns = 8,
L/h = 120 and R/h = 30. As noted in Figure 5a–c, the outer surface temperatures
To are set at 400, 500 and 600, respectively. Here, the solid line is the stable equilibrium
solution and the dashed line is the unstable equilibrium solution. Three solutions, i.e., two
stable nonzero solutions and one unstable zero solution, occur when the in-plane load
is greater than the critical load. By contrasting Figure 5a–c, we see that with an increase
in the outer surface temperature, the critical static load increases, as does the nonzero
equilibrium displacement of the referential location. The solution curves for the transverse
displacement of the CFRP laminated cylindrical shell versus the static in-plane load with
different numbers of layers Ns when L/h = 120, R/h = 30 and To = 400 K are shown
in Figure 6. As shown, the static bifurcation point are 31.6, 28.4 and 24.6 when the number
of layers is set as Ns = 8, Ns = 6 and Ns = 4, respectively. With an increase in the
numbers of layers Ns, the critical static load increases. Figure 7 illustrates the effects of the
static in-plane load and the ratio of radius to thickness on the nonlinear static bifurcations
and the stabilities of the equilibrium points of the CFRP laminated cylindrical shell when
Ns = 8, R/h = 20 and To = 400 K. As shown in Figure 7a–c, the values of the ratios
of length to thickness are set at 80, 100 and 120, respectively. As the static in-plane load
increases, nonlinear static bifurcation occurs in the system. Additionally, static bifurcation
occurs earlier when the ratio of length to thickness is bigger. Figure 8 shows the solution
curves for the transverse deflection of the CFRP laminated cylindrical shell versus the static
in-plane load with different ratios of radius to thickness R/h when Ns = 6, L/h = 80
and To = 400 K. Increasing the ratio of radius to thickness R/h may cause nonlinear static
bifurcation to occur sooner.
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Figure 5. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different temperature fields: (a) To = 400 K, (b) To = 500 K, (c) To = 600 K.

Figure 6. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different numbers of layers Ns: (a) Ns = 8, (b) Ns = 6, (c) Ns = 4.
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Figure 7. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different ratios of length to thickness L/h: (a) L/h = 80, (b) L/h = 100, (c) L/h = 120.

Figure 8. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different ratios of radius to thickness R/h: (a) R/h = 10, (b) R/h = 20, (c) R/h = 30.

4. Dynamic Stability Analysis

In this section, the dynamic stabilities of the CFRP laminated cylindrical shell are
investigated. As noted in Equations (45) and (46), dynamic harmonic excitation is selected
as the controlling parameter to investigate the dynamic stability of the system. Based on
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the Liapunov principle and studies [51,52], the dynamic unstable region of the nonlinear
dynamic system can be determined by its linear parts.

The Mathieu equations, obtained by omitting all the nonlinear terms in Equations (45)
and (46), can be written in the following form:

..
q1 + m1q1 + m9α0 pcrq1 + m9α1 pcrq1 cos Ωτ = 0 (64)

..
q2 + n1q2 + n9α0 pcrq2 + n9α1 pcrq2 cos Ωτ = 0 (65)

where α0 and α1 are the static and dynamic in-plane load factors, respectively. The static
and dynamic loads can be expressed as p0 = α0 pcr and p1 = α1 pcr, respectively.

Using the Bolotin method, the approximated solutions with period T = 2π/Ω are
assumed to be

q1 = a1 sin

(
Ωτ

2

)
+ b1 cos

(
Ωτ

2

)
(66)

q2 = a2 sin

(
Ωτ

2

)
+ b2 cos

(
Ωτ

2

)
(67)

Substituting Equation (27) into Equation (26), and combining the coefficients of the
sine and cosine function, we obtain the following equations:

(
− 1

4 Ω2
+ m1 + m9α0 pcr − 1

2 m9α1 pcr

)
a1 sin

(
Ωτ
2

)
+ 1

2 m9α1 pcra1 sin
(

3Ωτ
2

)
+
(
− 1

4 Ω2
+ m1 + m9α0 pcr +

1
2 m9α1 pcr

)
b1 cos

(
Ωτ
2

)
+ 1

2 m9α1 pcrb1 cos
(

3Ωτ
2

)
= 0

(68)

(
− 1

4 Ω2
+ n1 + n9α0 pcr − 1

2 n9α1 pcr

)
a2 sin

(
Ωτ
2

)
+ 1

2 n9α1 pcra2 sin
(

3Ωτ
2

)
+
(
− 1

4 Ω2
+ n1 + n9α0 pcr +

1
2 n9α1 pcr

)
b2 cos

(
Ωτ
2

)
+ 1

2 n9α1 pcrb2 cos
(

3Ωτ
2

)
= 0

(69)

Setting the coefficients of sin
(

Ωτ
2

)
and cos

(
Ωτ
2

)
of Equation (28) to zero, we obtain a

series of algebraic equations which can be written as

− 1
4

Ω2
+ m1 + m9α0 pcr −

1
2

m9α1 pcr = 0 (70)

− 1
4

Ω2
+ m1 + m9α0 pcr +

1
2

m9α1 pcr = 0 (71)

− 1
4

Ω2
+ n1 + n9α0 pcr −

1
2

n9α1 pcr = 0 (72)

− 1
4

Ω2
+ n1 + n9α0 pcr +

1
2

n9α1 pcr = 0 (73)

Based on Equation (29), the dynamic stability of the CFRP laminated cylindrical shell
subjected to axial excitation may be analyzed numerically. The unstable regions are plotted
by the dynamic load factor against the excitation frequency on the plane

(
α1, Ω

)
for the

first two modes.
The present dynamic unstable regions of the laminated composite cylindrical shell

(L/R = 1, R/h = 100) are compared with those of Ganapathi et al. [53] and Dey et al. [54]
in Figure 9. In this regard, a laminated composite cylindrical shell with the following
material properties is considered: E11/E22 = 25, G23 = 0.2E22, G12 = G13 = 0.5E22 and
ν12 = 0.25. The present results agree well with the results reported by Ganapathi et al. [53]
and Dey et al. [54].
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Figure 9. The dynamic unstable regions of a cross-ply laminated composite cylindrical shell
(L/R = 1, R/h = 100) subjected to uniform periodic in-plane loading.

Figure 10 illustrates the effect of the temperature fields on the dynamic unstable
regions of the CFRP laminated cylindrical shell when Ns = 8, L/h = 120, R/h = 30
and α0 = 0. Figure 10 show the dynamic unstable regions of the first and second modes,
respectively. The part between the two lines is the dynamic unstable region. Inside the
dynamic unstable region, the CFRP laminated cylindrical shell vibrates with unbounded
amplitudes, and as such, unstable behavior occurs. Outside the dynamic unstable region,
the amplitudes of the CFRP laminated cylindrical shell are bounded, i.e., the shell is stable.
One can observe that all the dynamic unstable regions become wider with an increase of
dynamic in-plane load factor α1. Furthermore, with an increase of the temperature field, the
unstable regions of both modes are translated to the lower parametric excitation frequency.

Figure 10. The dynamic unstable regions of the CFRP laminated cylindrical shell with different
temperature fields: (a) first mode, and (b) second mode.
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Figure 11 shows the linear response for the CFRP laminated cylindrical shell with an ex-
citation frequency in the unstable region. It may be observed that the linear response of the
CFRP laminated cylindrical shell grows exponentially and the shell becomes unstable. Fig-
ure 12 shows the nonlinear response of the CFRP laminated cylindrical shell with the same
parameters. The amplitude of the nonlinear response is the same as that of the assumed
initial amplitude, so we may consider this shell to also be unstable. Figures 13 and 14
show the linear and nonlinear responses for the CFRP laminated cylindrical shell with an
excitation frequency in the stability region. The frequency of the nonlinear response is
higher than that of the linear response.

Figure 11. The linear response for the CFRP laminated cylindrical shell with an excitation frequency
in the unstable region: (a) the time history on the plane (τ, ŵ), and (b) the phase portrait on the plane
(ŵ,

.
ŵ).

Figure 12. The nonlinear response for the CFRP laminated cylindrical shell with an excitation
frequency in the unstable region: (a) the time history on the plane (τ, ŵ), and (b) the phase portrait
on the plane (ŵ,

.
ŵ).
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Figure 13. The linear response for the CFRP laminated cylindrical shell with an excitation frequency
in the stable region: (a) the time history on the plane (τ, ŵ), and (b) the phase portrait on the plane
(ŵ,

.
ŵ).

Figure 14. The nonlinear response for the CFRP laminated cylindrical shell with an excitation
frequency in the stable region: (a) the time history on the plane (τ, ŵ), and (b) the phase portrait on
the plane (ŵ,

.
ŵ).

The dynamic unstable regions are shown in Figure 15; these illustrate the effect of the
ratio of length to thickness L/h on the CFRP laminated cylindrical shell with To = 400 K,
Ns = 8, R/h = 30 and α0 = 0. It is found that with an increase of L/h, the dynamic
unstable regions in both modes shift downward. The dynamic unstable regions of the
CFRP laminated cylindrical shell with R/h = 10, R/h = 20 and R/h = 30 are depicted
in Figure 16 when To = 400 K, Ns = 8, L/h = 100 and α0 = 0. As shown, the value
of the unstable frequency decreases with an increase in the ratio of radius to thickness.
Figure 17 shows the effect of number of layers Ns on the dynamic unstable regions of the
CFRP laminated cylindrical shell with To = 400 K, L/h = 100, R/h = 30 and α0 = 0.
The number of layers was set at 8, 6, and 4, respectively. It is well known that when Ns
decreases, the unstable regions of the system begin at a lower frequency.
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Figure 15. The dynamic unstable regions of the CFRP laminated cylindrical shell with different L/h:
(a) the first mode, and (b) the second mode.
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Figure 16. The dynamic unstable regions of the CFRP laminated cylindrical shell with different R/h:
(a) the first mode, and (b) the second mode.
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Figure 17. The dynamic unstable regions of the CFRP laminated cylindrical shell with different Ns:
(a) the first mode, and (b) the second mode.

5. Conclusions

This paper presents static and dynamic stability analyses of a carbon fiber reinforced
polymer (CFRP) laminated cylindrical shell under axial excitation. Non-normal boundary
conditions were applied, i.e., both ends of the cylindrical shell were free and one generatrix
of the shell was clamped. Based on von-Karman-type nonlinear relationships, first-order
shear deformation theory and the Hamilton principle, the partial differential motion control
equation of CFRP laminated cylindrical shells was derived. Using the Galerkin method, the
nonlinear ordinary differential motion equation of the shell along the radial displacement
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was obtained. The newton-Raphson method was used to numerically analyze the equilib-
rium point, and the local stability was obtained by the eigenvalues of the Jacobian matrix.
The Mathieu equation describes the dynamic unstable behavior of the CFRP laminated
cylindrical shell. The correctness of the results in this paper was verified by comparisons
with existing results. A parametric study was conducted to investigate the effects of the
radial line load, the ratio of radius to thickness, the ratio of length to thickness, the number
of layers and the temperature field on the static and dynamic stability of a CFRP laminated
cylindrical shell. It can be concluded that:

(1) Bifurcation phenomena might occur when the static in-plane load is greater than the
critical load.

(2) The ratio of radius to thickness, the ratio of length to thickness, the number of layers
and the temperature field have significant effects on static bifurcation characteristics
of a CFRP laminated cylindrical shell.

(3) With an increase of ratio of radius to thickness, the ratio of length to thickness and
the temperature field, the unstable regions in both modes are translated to a lower
parametric excitation frequency.

(4) When the number of layers decreases, the unstable regions of the system begin at a
lower frequency.
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Appendix A

The coefficients obtained in Equations (42) and (43) are presented as follows

m1 = e5
e4

, m9 = e2
e4

, m10 = e1
e4

, µ1 = e3
e4

, n1 = g5
g4

, n9 = g2
g4

, n10 = g1
g4

, µ2 = g3
g4

,

m2 = − a1b3e10
e4Γ + a3b1e10

e4Γ + a2b3e9
e4Γ −

a3b2e10
e4Γ + a1b2d3e10

d2e4Γ + a1b3d1e12
d2e4Γ + a2b1d3e12

d2e4Γ − a3b1d1e12
d2e4Γ

− a1b2c3e11
c2e4Γ + a2b1c3e11

c2e4Γ − a2b3c1e11
c2e4Γ + a3b2c1e11

c2e4Γ + e6
e4

,

m3 = + a4b1e10
e4Γ + a2b3e13

e4Γ − a3b2e13
e4Γ − a1b3e14

e4Γ + a3b1e14
e4Γ − a4b2e9

e4Γ + a2b1c4e11
c2e4Γ − a1b2c4e11

c2e4Γ

− a4b1d4e12
d2e4Γ − a1b2d3e16

d2e4Γ + a1b3d1e16
d2e4Γ + a2b1d3e16

d2e4Γ + a3b2c1e15
c2e4Γ − a1b2c3e15

c2e4Γ + a2b1c3e15
c2e4Γ

− a2b3c1e15
c2e4Γ + a4b2c1e11

c2e4Γ − a3b1d1e16
d2e4Γ + e7

e4
,

m4 = − a4b2e13
e4Γ + a4b1e14

e4Γ − a4b4d4e16
d2e4Γ − a1b2c4e15

c2e4Γ + a2b1c4e15
c2e4Γ + a4b2c1e15

c2e4Γ + e8
e4

,

m5 = − a1b4e10
e4Γ + a5b1e10

e4Γ + a2b4e9
e4Γ −

a5b2e9
e4Γ −

a1b2c5e11
c2e4Γ + a2b1c5e11

c2e4Γ − a2b4c1e11
c2e4Γ + a5b2c1e11

c2e4Γ

− a1b2d4e12
d2e4Γ + a1b4d1e12

d2e4Γ + a2b1d4e12
d2e4Γ − a5b1d1e12

d2e4Γ + e11
e4

,

(A1)
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m6 = − a5b1e14
e4Γ + a2b5e9

e4Γ −
a6b2e9

e4Γ −
a1b5e10

e4Γ + a6b1e10
e4Γ + a2b4e13

e4Γ − a5b2e13
e4Γ − a1b4e14

e4Γ

+ a2b1d5e12
d2e4Γ − a6b1d1e12

d2e4Γ − a1b2d4e16
d2e4Γ + a1b4d1e16

d2e4Γ + a2b1d4e16
d2e4Γ + a1b4d1e16

d2e4Γ + a2b1d4e16
d2e4Γ

− a5b1d1e16
d2e4Γ + a2b1c6e11

c2e4Γ − a2b5c1e11
c2e4Γ + a6b2c1e11

c2e4Γ − a1b2c5e15
c2e4Γ − a2b4c1e15

c2e4Γ

+ a2b1c5e15
c2e4Γ − a1b2c6e11

c2e4Γ + a5b2c1e15
c2e4Γ − a1b2c5e12

c2e4Γ + a1b5c1e12
c2e4Γ + e18

e4
,

m7 = − a1b6e10
e4Γ + a7b1e10

e4Γ + a2b5e13
e4Γ − a6b2e13

e4Γ − a1b5e14
e4Γ + a6b1e14

e4Γ + a2b6e9
e4Γ −

a7b2e9
e4Γ

− a1b2d5e16
d2e4Γ + a1b5d1e16

d2e4Γ + a2b1d5e16
d2e4Γ − a6b1d1e16

d2e4Γ + a6b2c1e15
c2e4Γ + a7b2c1e11

c2e4Γ + a2b1c6e15
c2e4Γ

− a2b5c1e15
c2e4Γ − a2b6c1e11

c2e4Γ − a1b2c7e11
c2e4Γ + a2b1c7e11

c2e4Γ − a1b2c6e15
c2e4Γ − a1b2c6e12

c2e4Γ

+ a1b6c1e12
c2e4Γ + a2b1c6e12

c2e4Γ − a7b1c1e12
c2e4Γ + e19

e4
,

m8 = − a2b6e13
e4Γ + a7b2e13

e4Γ + a1b6e14
e4Γ − a7b1e14

e4Γ − a1b2d6e16
d2e4Γ + a1b6d1e16

d2e4Γ + a2b1d6e16
d2e4Γ − a7b1d1e16

d2e4Γ

− a1b2c7e15
c2e4Γ + a2b1c7e15

c2e4Γ − a2b6c1e15
c2e4Γ + a7b2c1e15

c2e4Γ + e20
e4

,

n2 = + a2b3g9
g4Γ −

a3b2g9
g4Γ −

a1b3g9
g4Γ + a3b1g10

g4Γ + a1b3d1g12
d2g4Γ + a2b1d3g12

d2g4Γ − a3b1d1g12
d2g4Γ − a1b2c3g11

c2g4Γ

+ a2b1c3g11
c2g4Γ − a2b3c1g11

c2g4Γ + a3b2c1g11
c2g4Γ − a1b2d3g12

d2g4Γ + g6
g4

,

n3 = + a2b3g13
g4Γ − a3b2g13

g4Γ − a1b3g14
g4Γ + a3b1g14

g4Γ − a4b2g9
g4Γ + a4b1g10

g4Γ − a1b2c4g11
c2g4Γ + a1b2c3g15

c2g4Γ

− a4b1d1g12
d2g4Γ − a1b2d3g16

d2g4Γ + a1b3d1g16
d2g4Γ + a2b1d3g16

d2g4Γ − a3b1d1g16
d2g4Γ

+ a2b1c3g15
c2g4Γ + a2b1c4g11

c2g4Γ + a4b2c1g11
c2g4Γ − a2b3c1g15

c2g4Γ + a3b2c1g15
c2g4Γ + g7

g4
,

n4 = − a4b2g13
g4Γ + a4b1g14

g4Γ − a1b2c4g11
c2g4Γ + a2b1c4g15

c2g4Γ + a4b2c1g15
c2g4Γ − a4b1d1g11

d2g4Γ + g8
g4

,

n5 = + a2b4g9
g4Γ −

a5b2g9
g4Γ −

a1b4g10
g4Γ + a5b1g10

g4Γ + a1b2d4g12
d2g4Γ + a1b4d1g12

d2g4Γ + a2b1d4g12
d2g4Γ − a5b1d1g12

d2g4Γ

+ a1b2c5g11
c2g4Γ + a2b1c5g11

c2g4Γ − a2b4c1g11
c2g4Γ + a5b2c1g11

c2g4Γ + g17
g4

,

n6 = + a2b4g13
g4Γ − a5b2g13

g4Γ − a1b4g14
g4Γ + a5b1g14

g4Γ + a2b5g9
g4Γ −

a6b2g9
g4Γ −

a1b5g10
g4Γ + a6b1g10

g4Γ

− a1b2d4g16
d2g4Γ + a1b4d1g16

d2g4Γ + a2b1d4g16
d2g4Γ − a5b1d1g16

d2g4Γ − a2b4c1g15
c2g4Γ − a2b5c1g11

c2g4Γ − a1b2c6g11
c2g4Γ

+ a2b1c5g15
c2g4Γ + a6b2c1g11

c2g4Γ + a2b1c6g11
c2g4Γ − a1b2c5g15

c2g4Γ − a1b2d5g12
d2g4Γ + a5b2c1g15

c2g4Γ

+ a1b5d1g12
d2g4Γ + a2b1d5g12

d2g4Γ − a6b1d1g12
d2g4Γ + g18

g4
,

n7 = + a2b6g9
g4Γ −

a7b2g9
g4Γ −

a1b6g10
g4Γ + a7b1g10

g4Γ + a2b5g13
g4Γ − a6b2g13

g4Γ − a1b5g14
g4Γ + a6b1g14

g4Γ

− a2b5c1g15
c2g4Γ + a2b1c7g11

c2g4Γ − a2b6c1g11
c2g4Γ + a7b2c1g11

c2g4Γ + a2b1c6g15
c2g4Γ + a6b2c1g15

c2g4Γ − a1b2c6g15
c2g4Γ

− a1b2d6g12
d2g4Γ − a1b2c7g11

c2g4Γ + a1b6d1g12
d2g4Γ + a2b1d6g12

d2g4Γ − a7b1d1g12
d2g4Γ − a1b2d5g16

d2g4Γ

+ a1b5d1g16
d2g4Γ + a2b1d5g16

d2g4Γ − a6b1d1g16
d2g4Γ + g19

g4
,

n8 = − a1b6g14
g4Γ + a7b1g14

g4Γ + a2b6g13
g4Γ − a7b2g13

g4Γ − a1b2d6g16
d2g4Γ + a1b6d1g16

d2g4Γ + a2b1d6g16
d2g4Γ − a7b1d1g16

d2g4Γ

− a1b2c7g15
c2g4Γ + a2b1c7g15

c2g4Γ − a2b6c1g15
c2g4Γ + a7b2c1g15

c2g4Γ + g20
g4

,

(A1)

where

Γ = a1b2 − a2b1, a1 = −31.00835726A11/L− 7.871121054LA66/R2,

a2 = −21.19550611A16/L− 0.01374976696LA26/R2,

a3 = −1.316898663LA26/R3, a4 = 0.05435034699LA26/R3,

a5 = −629.3381897A11/L2 + 11.58524211A66/R2 − 11.58524380A12/R2,

a6 = −3130.142027A11/L2 − 56.62296173A66/R2 + 95.01717950A12/R2,

a7 = −1642.614350A11/L2 + 5.21998485A66/R2 − 47.79767774A12/R2,

b1 = −0.5428190419A16/L− 0.01374966901LA26/R2,

(A2)
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b2 = −144.4460509A66/L− 0.7841786683LA22/R2 − 3.136714672KLA44/R2,

b3 = −0.1641087045LA22/R3, b4 = 58.03431294A26/R2,
b5 = −118.4772154A16/L2 − 49.61690248A26/R2,

b6 = 2185.537826A16/L2 + 171.2842070A26/R2,

c1 = −31.00835726B11/L− 7.871121054LB66/R2,

c2 = −3.141803460LA55K− 31.00835727D11/L− 7.871121053LD66/R2,

c3 = −1.316898663LB26/R3, c4 = 0.05435034702LB26/R3,

c5 = −629.3381897B11/L2 + 11.58524211B66/R2 − 11.58524380B12/R2,

c6 = −3130.142024B11/L2 − 56.62296171B66/R2 + 95.01717948B12/R2,

c7 = −1642.614350B11/L2 + 5.21998492B66/R2 − 47.79767769B12R2,

d1 = −144.4460509B66/L− 0.7841786683LB22/R2 − 3.136714672KLB44/R2,

d2 = −0.5428190419B16/L− 0.01374966901LB26/R2,

d3 = −0.1641087045LB22/R3, d4 = 58.03431294B26/R2,

d5 = −118.4772154B16/L2 − 49.61690248B26/R2,

d6 = 2185.537826B16/L2 + 171.2842070B26/R2, e1 = 25.09540907,

e2 = 288.9114871/L, e3 = −6.273850301Lγ, e4 = −6.273850303LI0,

e5 = −288.9114871A55K/L− 6.273850307LA22/R2 − 15.71779897LA44K/R2

−288.9114871NT
xx/L− 15.71779897LNT

θθ/R2,

e6 = −39.72963636A26/R3, e7 = −165.6765179A26/R3, e8 = −103.2852305A26/R3,

e9 = 545.8105948A11/L2 − 6.64989922A66/R2 + 6.649896554A12/R2,

e10 = −58.03431074A26/R2, e12 = −58.03431074B26/R2,

e11 = 545.8105948B11/L2 − 6.64989922B66/R2 + 6.649896554B12/R2,

e13 = −182.5445517A11/L2 − 143.4703132A66/R2 − 8.169858374A12/R2,

e14 = −640.3323995A16/L2 + 17.60816090A26/R2,

e15 = −182.5445517B11/L2 − 143.4703132B66/R2 − 8.169858374B12/R2,

e16 = −640.3323995B16/L2 + 17.60816090B26/R2,

e17 = −18183.70969A11/L3 − 18.0373938LA22/R4 + (197.449892A12 + 394.89978A66)/LR2,

e18 = 1209.128345A11/L3 + 5.069883616LA22/R4 − (242.5993347A12 + 485.19867A66)LR2,

e19 = 74011.22204A11/L3 − 59.75908863LA22/R4 − (356.845848A12 + 2841.38288A66)/LR2,

e20 = 9504.768786A11/L3 + 1.592447035LA22/R4 − (21.736372A12 + 43.4727439A66)/LR2,

g1 = 25.0954091, g2 = 1078.441452/L, g3 = −6.285173437Lγ, g4 = −6.285173437LI0,

g5 = −1078.441451A55K/− 6.285173436LA22/R2 − 42.00198451LA44K/R2

−1078.441451NT
xx/L− 42.00198451LNT

θθ/R2,

g6 = −49.75797336A26/R3, g7 = −165.6765179A26/R3, g8 = −62.58299370A26/R3,

g9 = −182.5480497A11/L2 − 27.31625097A66/R2 + 8.169718595A12/R2,

g10 = −120.4374000A26/R2, g12 = −120.4374000B26/R2,

g11 = −182.5480497B11/L2 − 27.31625097B66/R2 + 8.169718595B12/R2,

g13 = 1188.606609A11/L2 − 3.31779223A66/R2 + 30.35534344A12/R2,

g14 = −1536.656782A16/L2 − 120.4374000A26/R2,

g15 = 1188.606609B11/L2 − 3.31779223B66/R2 + 30.35534344B12/R2,

g16 = −1536.656782B16/L2 − 120.4374000B26/R2,

g17 = −180.6408093A11/L3 + 1.690008865LA22/R4 − (33.432213A12 + 66.864426A66)/LR2,

g18 = −14810.2121A11/L3 − 59.7583037LA22/R4 − (1241.088955A12 + 2482.1779A66)/LR2,

(A2)
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g19 = 1585.526437A11/L3 + 4.777494122LA22/R4 − (291.12256A12 + 581.5127135A66)/LR2,
g20 = −23540.79961A11/L3 − 119.1995LA22/R4 − (119.3011A12 + 238.60223A66)/LR2 (A2)
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