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Abstract: In this paper, static and dynamic stability analyses taking axial excitation into account
are presented for a laminated carbon fiber reinforced polymer (CFRP) cylindrical shell under a non-
normal boundary condition. The non-normal boundary condition is put forward to signify that both
ends of the cylindrical shell are free and one generatrix of the shell is clamped. The partial differential
motion governing the equations of the laminated CFRP cylindrical shell with a non-normal boundary
condition is derived using the Hamilton principle, nonlinear von-Karman relationships and first-order
deformation shell theory. Then, nonlinear, two-freedom, ordinary differential equations on the radial
displacement of the cylindrical shell are obtained utilizing Galerkin method. The Newton-Raphson
method is applied to numerically solve the equilibrium point. The stability of the equilibrium point is
determined by analyzing the eigenvalue of the Jacobian matrix. The solution of the Mathieu equation
describes the dynamic unstable behavior of the CFRP laminated cylindrical shells. The unstable
regions are determined using the Bolotin method. The influences of the radial line load, the ratio of
radius to thickness, the ratio of length to thickness, the number of layers and the temperature field of
the laminated CFRP cylindrical shell on static and dynamic stability are investigated.

Keywords: laminated cylindrical shell; stability; unstable region; boundary condition; carbon fiber
reinforced polymer

MSC: 74H55

1. Introduction

Carbon fiber reinforced polymer (CFRP) laminates are widely used in many engineer-
ing fields, such as the ship, vehicle, and aerospace industries, because of their high strength,
excellent material performance, light weight, high heat resistance and anti-corrosion prop-
erties. In recent years, scholars have carried out research on the mechanical properties of
carbon fiber composite materials in order to expand their application range and maintain
their reliability [1-3]. The stability characteristics of structures made of CFRP ensure their
security and reliability. In unstable conditions, the vibration amplitude of the structure
is unbounded and increases exponentially with time. Since the resulting vibration may
completely destroy the structural members, leading to structural mutations, predictions of
structural stability are of the utmost importance from the point of view of both design and
optimization [4]. Cylindrical shells are among the most widely used structures in many
engineering fields, such as rocket and aircraft propulsion systems and large deployable
space annular antenna [5,6]. Hence, it is necessary to understand and predict the nonlinear
stability characteristics of CFRP laminated cylindrical shells.
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Numerous investigations of the stability characteristics of beam, plate and shell struc-
tures have been published to date. Kiral et al. [7] described the dynamic stability of a
composite cantilever beam under periodic axial load delamination at predetermined posi-
tions. Ke et al. [8] studied the dynamic stability of functionally graded microbeams. In that
report, the effects of gradient index, length scale parameters, the slenderness ratio and end
supports on static buckling, free vibrations and the dynamic stability of FGM microbeams
are discussed in detail. Couto et al. [9] studied the influence of non-uniform bending on
transverse torsional buckling of slender steel beams at high temperature. Talebitooti [10]
studied the buckling of laminated conical shells made of composite materials under
uniformly distributed external loads according to first-order shear deformation theory.
Maali et al. [11] studied the buckling behavior of thin defective conical plates under basic
supported conditions. Bich et al. [12] studied the linear buckling behavior of functionally
graded tapered plates under axial and external pressures. Gajdzicki et al. [13] carried out
research on the stability of bi-directionally corrugated plates under compression and shear.
Zeng et al. [14] studied the stability and vibrations of rectangular plates with side cracks.
Dey et al. [15] studied the dynamic instability and post-buckling behavior of a composite,
supported cylindrical shell plate under dynamic local edge load and transverse patch load.
Finally, Han et al. [16] studied the dynamic stability of cylindrical shells under periodic
axial loads with varying rotational speeds.

However, while there are numerous studies on the dynamic response of carbon fiber
composites, few have examined their stability characteristics. Kolanua et al. [17] investi-
gated the stability behavior and failure characteristics of carbon fiber reinforced polymer
(CFRP) composite panels with a secondary bonded blade stiffener under compression.
The suitability of a CFRP plate subjected to low-velocity impacts for the estimation of
the critical load of delamination onset and the approximation of the load-displacement
curve are investigated by Salvetti et al. [18]. Cui et al. [19] studied the failure process of
CFRP electromagnetic riveting joints under high-speed loading. The deformation and
stress capacity of CFRP was studied by Zhang et al. [20]. Juntanalikit et al. [21] studied
the cyclic performance of reinforced concrete columns with non-ductile CFRP jackets by
experimental and numerical methods. Reuter et al. [22] studied the shear strength of GFRP
tubular structures using novel simulation methods. Time et al. [23] studied the fire stability
of a CFRP shell structure with a medium-sized test device. Zhang and Zhao [24-26] studied
the nonlinear response of a laminated CFRP cantilever plate under the action of moment
excitation, in-plane airflow and supersonic airflow.

Cylindrical shells are often used as structural units. Hwu et al. [27], Viswanathan et al. [28]
and Sarkheil et al. [29] respectively studied the free vibrations of a composite sandwich
plate and cylindrical shell, an anti-symmetric cylindrical shell and a cylinder-conical
shell. The nonlinear vibrations of water-filled cylindrical shells were studied by Ama-
bili et al. [30]. Song et al. [31] studied the vibration behavior of carbon nanotube-reinforced,
composite, closed cylindrical shells using Reddy’s high-order shear deformation theory.
Zhang et al. [32] studied the nonlinear dynamics of a clamped, functional gradient material
cylindrical shell under complex combined loads. Du et al. [33] discussed the internal
resonance behavior of FGM cylindrical shells under a thermal environment. Sun et al. [34]
studied the multi-pulse chaotic motion of a circular grid antenna and the nonlinear dy-
namics of an equivalent cylindrical shell. Liu et al. [35] studied the nonlinear vibrations of
composite cylindrical shells with radial prestretched films at the ends. Wang [36] studied
the nonlinear vibrations of rotating, composite laminated cylindrical shells with large
amplitudes near the lowest resonance under radial harmonic excitation. Hao et al. [37]
studied the aerodynamic and thermoelastic flutter characteristics of ceramic-metal gradient
truncated conical shells. Wang et al. [38,39] studied the nonlinear dynamic response of ro-
tating cylindrical shells under spectral neighborhood harmonic excitation using numerical
methods and approximate analytical solutions. Shen et al. [40,41] studied large amplitude,
nonlinear vibrations of shear deformed FGM cylindrical shells surrounded by elastic media.
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Non-normal boundary conditions, i.e., when both ends are free and one generatrix of
the shell is clamped, often occur in cylindrical shells, e.g., large annular antenna structures.
However, few researchers have studied the stability of cylindrical shells under non-positive
boundary conditions. In the present research, nonlinear static and dynamic stability analy-
ses of CFRP laminated cylindrical shells with non-normal boundary conditions are carried
out. Based on von-Karman-type nonlinear relationships, FSDT and the Hamilton principle,
the nonlinear dynamic equation of CFRP laminated cylindrical shells was established using
the Galerkin method and expressed as an ordinary differential equation describing radial
displacement. The newton-Raphson method is used to numerically analyze the equilibrium
point, and local stability is determined by the eigenvalues of the Jacobian matrix. The solu-
tion of the Mathieu equation describes the dynamic unstable behavior of a CFRP laminated
cylindrical shell. The correctness of the results in this paper is verified by comparisons with
the existing results. The influence of radial line load, the ratio of radius to thickness, the
ratio of length to thickness, the number of layers and the temperature field on the static
and dynamic stability of a CFRP laminated cylindrical shell is studied by parameterization.

2. Equations of Motion

A mechanical model of carbon fiber-reinforced, polymer laminated, cylindrical shells
with length L, middle surface radius R and uniform thickness #, as shown in Figure 1, is
considered. There are N; layers with a ply stacking sequence of (45/—45)s. The curvilinear
coordinate system (x, 6, z) is located in the mid-surface of the CFRP laminated cylindrical
shell along the axial direction, the circumferential direction and the radial direction, respec-
tively. Displacement components u, v and w represent the displacements of an arbitrary
point in directions x, 0 and z, respectively. Non-normal boundary of cylindrical shells
which are free at both ends and clamped at 8 = 0, i.e., one of the longitudinal sections,
are considered, as shown in Figure la. Figure 1b presents the sections of x = L and
x = 0. The temperatures of the cylindrical shell surface are T, and T,,, respectively. Axial
excitation P is loaded at both ends (x = 0, x = L) of the CFRP laminated cylindrical shell.

P = po+ p1cos(Q) @™

where pg and p; cos(Q)yt) are static and dynamic harmonic excitation, respectively.

P, + p,cos(¥)

(a) (b)

Figure 1. Model of a CFRP laminated cylindrical shell: (a) the mechanical model, (b) the sections of
x = Landx = 0.

According to first-order shear deformation theory [42], it is assumed that the displace-
ment field of CFRP laminated cylindrical shells is

u(x,0,z) = ug(x,0)+zpx(x,0) ()
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v(x,0,z) = vg(x,0) +zpg(x,0) 3)
w(x,0,z) = wy(x,0) 4)

where 1, vg and wy represent the mid-plane displacements in directions x, 6 and z, respec-

tively. ¢, and @g denote radial rotations in the 6 and x directions, respectively.
Displacement field Equations (2)—(4) is substituted into the von Karman geometric

nonlinear strain-displacement relation [43], and the nonlinear strain is determined as:

Ex o & Low 1
! 0 (1) Yo: | _ ) PoTrGe — R0 5
€6 €g LD T T2 LT ©)
0 1 = ox x
o %(ce) %(ce) ’
where
2
dug , 1(2
sSP) T2 (Taf) S%cl; aa%
© L) e 1 (2wp\2 Uob = 1% 6
8?0) R+ R+ 5 %) , S‘?1) 1 age * 9ge ©
T R+ AR "o R e

where ¢, and ¢y are the principal strains, and .g, Ys,, and 7y, denote the shear strains.
The constitutive relationship of laminated CFRP cylindrical shell, considering thermal
stress, may be written as

Qu Qp 0 0 0 ) ex Qx ®
Qo Q» 0 0 0 €p L)
= 0 0 Q66 70 0 Yx6 - 20‘3{9 AT(Z) (7)
0 0 0 0 Yoz 0
0 0 0 0 Os Yz 0

where Qij (i,j = 1,2,4,5,6) are the stiffness coefficients, AT is the temperature increment,
and ay, wg and «,y are the coefficients of thermal expansion, which are expressed by

Xy = @ COS° B+ as sin? B (8)
rpg = asin? B+ cos? B 9)
ayg = (w1 —ap)sinpcosf (10)

where a7 and a5 are the coefficients of the thermal expansion in the different material
directions, respectively.

It is supposed that the laminated CFRP cylindrical shell is initially stress free at T, .
Assuming that the temperature increment is linear, i.e.,

AT = T+ % (To — Toey) (11)

then the stiffness coefficients Qij are given by

Op ct 2C2¢? st 4C282

O C2s*  Ci4st 52 —4C282 On

[N sS4 2C28? ct 4C28? Q1

O [T ] CS -3 —cs$® —205(C2—52) () Om (12)
[ Cs® 8s—-Cs® —C3s  2CS(C*-5?) Qss

Qs6 282 —20C282 (282 (C2-¢?)’
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@44 C2 S 2 Q
Qi p = ¢ —CS cs { 44 } C = cosB, S = sinf (13)
o 32 Qss
where f is the ply angle of the laminated CFRP cylindrical shell. The stiffness coefficients
of material Q;; are

_ _ b _ Ep
Qu = T—vipvp1 V12V21 Qu = 1—vypvp17 Qn = 1—v1pvp17
Qes = G12, Quq = Go3, Q55 = Gi3

where v and v, are Poisson’s ratios, E; and E; are Young’s moduli, and Gy, Goz and
G13 respectively are the shear modulus of the laminated CFRP cylindrical shell in different
material directions.

Based on Hamilton'’s principle, a set of nonlinear partial differential governing equa-
tions of motion for a CFRP laminated cylindrical shell are obtained, as follows:

(14)

Nix,x + %Nxe,e = Iptip + L, (15)

Nygx + %Nee,e + %Qe = lovo + 19y (16)

Ny, 500 Nxxaa;‘go + leM% + 2 Neg o 38 4 & Ny v 290 — & Ny + s Nog o2 -
> Ngo 2 892 + Qux + £ Qo0 — a;’ﬁ” —ywo = Ipto

M + xMagg — Qe = hio + b, (18)

Mg x + %Mee,e —Qp = Lo+ Loy (19)

where 7 is the damping coefficient and superscript dots represent the derivative with
respect to time. The mass moments of inertia in Equations (15)—(19) are expressed as

N AN
L, =Y, / pz'dz, (1 = 0,1,2) (20)
n=17%1

The resultant forces of stress and moment are calculated by

Ny £(0) N%;C My £(0) M,gx
Nw ¢ = {[ALIBIY S0 =4 N ¢ Mo p = (BLIDIH Sy t—1 M b,
Nio N Mo Mg 1)
&} - nal)
= K[A
{ Qe 4] Yoz
where K is the shear correction coefficient, given by Efraim as 5/6 [44]. The resulting
thermal stress for the CFRP laminated cylindrical shell is defined as

Ngx sz Zpi1 Qu Qn 0 ) Ky ®)
Ngg ¢4 Mg Z / le Qn 0 Xy (AT, ATz)dz (22)
Ny M, k=1 0 Qes Nyp

The tensile rigidity A;;, bending-tensile coupling rigidity B;;, and bending rigidity D;;
of the laminated CFRP cylindrical shell determined as follows:
Zk+1 o
(Aij, Bi;, Dij) Z /Z Qij(1,2,22)dz, (i,j = 1,2,6) (23)
N Zk+1 2 o
Aij = Z Qi/j (1, Z,Z )dz, (i,j = 4,5) (24)

k=1"%k
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An ax“ + Aco 3z 557

According to Equations (20)—(24), the nonlinear motion equation can be expressed by
062

the generalized displacement of laminated CFRP Cylindncal shells, as follows

+ (A12 + A66) R axae + Bll axZ + B66 RZ 392
(B2 + B66)FW + Ay %0 Tt

1 dwy 92wy

ox ox2 +A66ﬁW 202
1 dwy 2w

+(An + Aéé) T

(25)
R G + GRS = Dot + i,
Ass axo +Apn5HSH + (A + As) % axg% + Bes ax" + Bzlez 507
+(B12 + B6é)ﬁﬁ + Ago i %0 aa;io + Angs 35‘50 S+ (A2 + Age) % 39(%}8 (26)
(% + KR ) 1%+ KAus (oo — %) = lodo+ Ly
Au%‘;? aa;léo + Ap 1 dug wy

1 Jugy 02w
®ov a + 2467 90 ovo0

1 0%ug dwg
RZ 90 9x00 + (A12 + A66)F
1 92 Uy oWy

ug d
+AN G G2 + Ase iz

x00 00
RZ 962 9x ALY 4+ (Ap + Aee) & aza‘é%
— Lt 120 4 2A kSR T + An s R + Ak R 5E
+4 Z%Ba%aa% + A66%aa%aa% + (KA - %) W ) Bia2s %a;%
+2Bes 2 aaq)ex axae + (Bua + Beg) 2 oot 20

a Px awo
R2oxo0 o0 T Bu1
+Bes = Pos g

9¢x 9%wy
52 ox T Bugy 32
Jdwy _ Axpwg _ Byp ) 199y 1 999 9wy
RZ 962 Ox T (KA44 *) Roe +B2g35e e
1 dgg 92wy 1 9% dwy g 92wy
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+B22 Po dwg

2 27
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duwg P dwg | > 2
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2, 2
+Hiange () G+ (A + Kas ) 5+ (492 + KAw) 50
2 2 2
() 4 (2] (b 1) (22 20
dwg \ 2 2w » 2 P Ny,
+(2A12 + Aso %(W> 2+ N5t + gz Ny 5 + 2% N 5 — &
2 .
—PEH — %0 = Igivg
32
B axo + Beo 3z 3920 + (B12 + Beo) & 55 axag + Dy 2 axz + D6 3z 392 + (D12 + Des) & 5255
dwy &2
~KAssg+ Bu 5 G + (Biz + Boo) o 5 55 + Boo x i g @8
+ (312 KA55) TO = Lug+ I2¢x
2
Bes axz + Byngs ag 0 + (B1a + Bes) % axag + Dgg2 axz + Dy agz + (D12 + Des) & “Sé
—KAy(po — ) + 366%%833? + (B2 + 366)%%3,5’3 + 322ﬁ%aa;go (29)
+%% —KAux %y = Lo+l
The surface of 8 = 0 is clamped and both ends of the shell are free. This may be
expressed by
up = v9g = wop = ¢x = ¢y = 0atfd = O0and 6 = (30)
Nix = Nyg = Myx = My = Qx = O0atx = 0andx = L (31)
: :
/h Naxlx - 01 Rd6 = /h PRA9
—2

(32)
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According to [5,42], displacements ug, vg, wy, ¢x and @y of the shell, which satisfy the
non-normal conditions, are written as

Mo N mrmx
y ¥ umn(t)cos( )Yn(e) (33)
n=1m=1
N
Z 2 O (t x) sin(n) (34)
M N
n=1m=1
Mo N mmx
Y % @umn(t)cos( . )Ya(0) (36)
n=1m=1
S LY oo (D X(x) sin(nt) (37)
n=1m=1
where A A A
(x) = gin X X AiX
X;(x) = sin . ts nh a;(cosh =~ [ teos— ) (38)
) — sin'® _ gnntd? 10 _ s 10
Y;(8) = sin e smh +[3]( osh 5y oS 27_[) (39)
cosA;L-coshAL—1 = 0, cos 27 - coshp2m—1 = 0 (40)
sinhA;L + sin A;L sinhy 27t 4 sin p;27t
8 = i i ﬁ _ ] ] (41)

cosh A;L 4+ cos A;L" 7~ cosh 27t + cos p2m

According to Noseir and Bhimaraddi [45,46], the influence of the inertia terms of ug, vy,
@x and @y in the rotation and in-plane on the nonlinear vibrations of the CFRP laminated
cylindrical shell is very small compared to the radial inertia term given in Equation (15).
Therefore, inertia terms ug, vy, x and @g can be omitted. Thus, we now focus on the first
two modes of transverse displacement w. Using Galerkin’s method, both the in-plane and
rotational displacement can be expressed as functions of the radial displacement. On this
basis, the second order, nonlinear, ordinary differential equation of radial motion of CFRP
laminated cylindrical shells is established

Wy + p11 4 wiwy + myw? + mzwywy + Mmaws + Mmsw3 + mewiw, + myw w3 + mgws @)
+mown (pl cos Qt) =0
W) + oWy + W3Wy + NyWw3 + N3wiwy + Nyw3 + NsW3 + NeWIw, + nyww35 + ngws3 3)
+n9w2(p1 Ccos Qt) =0
where w% = my + mopy and w% = 1y + ngpg. All coefficients in Equation (19) can be
found in Appendix A.

In order to obtain the dimensionless equation of laminated CFRP cylindrical shells,
the following variables and parameters are introduced

_ a — . . w
T=wtw = qahw =0l Q=00 =50,0=080 =7

— _ w = _ P o5 _ P o mgho— o ongh _

(UZ - wy’ pO - w%/ pl - w%/ mg - w%/ ng - w%/ (g - 2/3/4)/ (44)

— mch? nch?
. = —;% , e = 5]% , (¢ = 5,6,7,8)
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Equation (19) can be rewritten in non-dimensional form:

{y + Tiady + @Lq1 + Tiaq3 + 3142 + Taq3 + Tisq; + Meqiq, + Myq143 + Tsqs (45)
+i9P g1 cos QT = 0

{y + Tty + @342 + T2q} + 3142 + Taq + sq5 + Teq3q, + Ti7q193 + Tigq (46)

+719P142c0s QT = 0

"oy "1

where “.” signifies the derivative with respect to dimensionless time “7”.

3. Static Bifurcation and Stability

In this section, dynamic harmonic excitation is set to zero and static excitation is
selected as the controlling parameter to analyze the bifurcation and stability of the CFRP
laminated cylindrical shell. The Newton-Raphson method is applied to numerically analyze
the equilibrium points. Then, by solving the eigenvalues of the Jacobian matrix, the stability
of the equilibrium point is obtained.

Equations (45) and (46) can be rewritten as a first-order system as follows:

71 = qo1 (47)

s = — 2 = 2 3 - 2 = 2 - 3
Jo1 = —H1q01 — miq1 — Mopoq1 — Maqy — M3q1q2 — Maqy — Msqy — Meq1qy — M7q1q; — Mg, (48)
9 = qo2 (49)
Gop = —Thpfo2 — M2 — NopPoda — Maq; — aq1q2 — a3 — s — Teqid, — M7q145 — s> (50)

—TigP, g2 cos QT

Setting the left parts of Equations (47)—(50) to zero, the nonlinear algebraic equations
are expressed as

qo1 = 0 (51)

— Fiyqor — g1 — Topoq1 — gt — Tiiaq1q2 — Maqs — Tisq] — Tieqiq, — Mizq145 — gy = O (52)
go2 = 0 (53)

— a0z — 42 — Tiopoda — g} — a1z — g — Tisqy — Tedrd, — Ti71q3 — gy = O (54)

The Jacobian matrix is indicated as

0 1 0 0
38%1 g’?i aa%l ?J
— q1 01 q2 702 55
J 0 0 0 1 (55)
dq1  dgo1 992 9qp

where
a pa o o . . . . J—
901 -
01 57
S 7 (57)
o7 _ _ _ _ _
% = —M3q) — M4y — meq% — Mmzq192 — m8’1§ (58)
Y
d _ (59)

9902
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¢ _ _ _ _ _
% = Mg — Ti3q2 — s} — T 149, — Tizds (60)
g, _
102 61
9q01 2 (61)
¢ L _ _ _ _ _
% = —Ty —Topy — T3q1 — Mafly — e} — Tizq1q, — Ngq3 (62)
9op
—= =0 63
3400 (63)

By calculating the equilibrium points of Equations (51)—(54), critical static in-plane
load p.r, which has nonzero equilibrium points, is found. The stability of the equilibrium
point is determined by examining the maximum real part of the eigenvalue of the Jacobian
matrix expressed in Equation (55).

In following analysis, a N;-layer, antisymmetric angle-ply shell (45/—45)s with length
L = 1mis considered, and the shell’s material properties E; = 140 x 10> MPa, E, = 10 x
10 MPa, G = 7 x 10° MPa, Gi3 = 7 x 10° MPa, Gp3 = 7 x 10° MPa, v = 0.25,
2y = —03x10°m/Kand ay = 28 x 107® m/K are utilized. The temperatures of inner
surfaces of the shell is 300 K.

In order to validate the present results, the dimensionless natural frequencies
(Qn = wuyR\/(1—12)p/E) are compared with the results of Zhang et al. [47] and
Song et al. [48] in Table 1, taking into account simply supported isotropic cylindrical
shells with L/R = 20, m = landv = 0.3. As shown, the calculated results are in
good agreement with existing ones. In addition, the dimensionless axial static buckling
load P.rL?/ (Eg2h®) of the simply supported orthotropic cylindrical shell is calculated and
compared with the results of Lee et al. [49] and Gao et al. [50] in Table 2. The geometric
parameters and material properties are as follows: 1 = 0.00254 m, R/h = 100,L/R = 2,
Eo; = 275.8 x 10° Pa, Egp = 27.58 x 10° Pa, Gy = 10.34 x 10° Pa, v1p = 0.25,1v5; = 0.025
and p = 1619.27 kg/m>. As can be seen, the results compare reasonably well.

Table 1. Comparison of the frequency parameters (), = w,R+/(1 —v2)p/E) for a simply supported
isotropic cylindrical shell with L/R = 20,m = landv = 0.3.

h/IR n Zhang et al. [47]  Song et al. [48] Present Study
0.05 0 0.0929586 0.0929392 0.0929465
1 0.0161065 0.0161299 0.0151185
2 0.0393038 0.0393231 0.0393236
3 0.1098113 0.1097653 0.1096523
4 0.1098113 0.1097653 0.1098103
0.002 0 0.0929296 0.0929296 0.0929236
1 0.0161011 0.0161011 0.01610032
2 0.0054532 0.0054536 0.0054532
3 0.0050418 0.0050424 0.0050423
4 0.0085340 0.0085344 0.0085354

Table 2. Comparison of a dimensionless axial static buckling load P.;L?/ (Epxh?) on a simply sup-
ported orthotropic cylindrical shell.

(m,n) Lee et al. [49] Gao et al. [50] Present Study
(1,1 78,139.72 78,145.73 78,151.26
1,2) 29,556.79 29,580.83 29,578.52
(1, 3) 13,850.67 13,904.75 13,895.28
2,1 32,341.27 32,347.28 32,343.52
(2,2) 19,852.90 19,876.93 19,856.36

(2,3) 12,046.73 12,100.82 12,089.65
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Figure 2 shows the effects of the ratio of radius to thickness and temperature field on
the critical static in-plane load. It is observed that with an increase of the ratio of radius
to thickness, the critical static in-plane load decreases monotonically. On the other hand,
with an increase of temperature difference between the inner and outer surface, the critical
static in-plane load decreases. This is because increasing the ratio of radius to thickness
and the temperature field can lead to a decrease in the stiffness of the system. The curves of
critical in-plane load versus the ratio of length to thickness L/h with different temperature
fields are shown in Figure 3. One can find that the critical static in-plane load decreases
while the ratio of length to thickness or the temperature field increases. Figure 4 shows
that the curves for a critical in-plane load versus the number of layers N; when the outer
surface temperature Tj is set at 400, 500 and 600, respectively. As in Figures 2 and 3, with
the increase of temperature field, the critical static in-plane load decreases. In addition,
we observe that as the number of layers increases, the stiffness of the system increases
monotonously, as does the critical in-plane load.

40
—a— I"’:-ﬂ)()K
35| —e— 7 =500K
—4— T =600K
30}
3 25f
£
20}
15 F
10 L v L
0 10 20 30 40

R/h

Figure 2. Critical in-plane load versus the ratio of radius to thickness R/ with different temperature
fields.

40
—=— 7 =400K
35 —e— 7/ =500K
—A— T =600K
30
=
;’E
= 25}
£
20
15
10 1 1 1
80 90 100 110 120

L/h

Figure 3. Critical in-plane load versus the ratio of length to thickness L/h with different temperature
fields.
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Figure 4. Critical in-plane load versus the number of layers Ns with different temperature fields.

Now, the nonlinear static bifurcations and the stabilities of equilibrium points will be
investigated. In this regard, point (L/2, 7r,0) on the CFRP laminated cylindrical shell is the
referential location. Figure 5 illustrates the solution curves of the transverse displacement
of the CFRP laminated cylindrical shell with different temperature fields when Ny = 8,
L/h = 120 and R/h = 30. As noted in Figure 5a—c, the outer surface temperatures
T, are set at 400, 500 and 600, respectively. Here, the solid line is the stable equilibrium
solution and the dashed line is the unstable equilibrium solution. Three solutions, i.e., two
stable nonzero solutions and one unstable zero solution, occur when the in-plane load
is greater than the critical load. By contrasting Figure 5a—c, we see that with an increase
in the outer surface temperature, the critical static load increases, as does the nonzero
equilibrium displacement of the referential location. The solution curves for the transverse
displacement of the CFRP laminated cylindrical shell versus the static in-plane load with
different numbers of layers Ns when L/h = 120, R/h = 30and T, = 400 K are shown
in Figure 6. As shown, the static bifurcation point are 31.6, 28.4 and 24.6 when the number
of layersissetas Ny = 8, N; = 6and Ny = 4, respectively. With an increase in the
numbers of layers N;, the critical static load increases. Figure 7 illustrates the effects of the
static in-plane load and the ratio of radius to thickness on the nonlinear static bifurcations
and the stabilities of the equilibrium points of the CFRP laminated cylindrical shell when
Ns; = 8, R/h = 20and T, = 400 K. As shown in Figure 7a—c, the values of the ratios
of length to thickness are set at 80, 100 and 120, respectively. As the static in-plane load
increases, nonlinear static bifurcation occurs in the system. Additionally, static bifurcation
occurs earlier when the ratio of length to thickness is bigger. Figure 8 shows the solution
curves for the transverse deflection of the CFRP laminated cylindrical shell versus the static
in-plane load with different ratios of radius to thickness R/h when Ny = 6, L/h = 80
and T, = 400 K. Increasing the ratio of radius to thickness R/h may cause nonlinear static
bifurcation to occur sooner.
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Figure 5. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different temperature fields: (a) T, = 400K, (b) T, = 500K, (c) T, = 600 K.
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Figure 6. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different numbers of layers Ns: (a) Ns = 8,(b) Ns = 6,(c) Ns = 4.
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Figure 7. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different ratios of length to thickness L/h: (a) L/h = 80, (b) L/h = 100, (c) L/h = 120.
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Figure 8. The transverse deflection of the CFRP laminated cylindrical shell versus the static in-plane
load with different ratios of radius to thickness R/h: (a) R/h = 10,(b) R/h = 20,(c) R/h = 30.

4. Dynamic Stability Analysis

In this section, the dynamic stabilities of the CFRP laminated cylindrical shell are
investigated. As noted in Equations (45) and (46), dynamic harmonic excitation is selected
as the controlling parameter to investigate the dynamic stability of the system. Based on
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the Liapunov principle and studies [51,52], the dynamic unstable region of the nonlinear
dynamic system can be determined by its linear parts.

The Mathieu equations, obtained by omitting all the nonlinear terms in Equations (45)
and (46), can be written in the following form:

Gy + g1 + MoaoPerg1 + Mg pergr cos QT = 0 (64)

éz + 1192 + NgoPerq + N9l Perga COS Qr =0 (65)

where &g and «; are the static and dynamic in-plane load factors, respectively. The static
and dynamic loads can be expressed as pg = agpr and p1 = «&1pcr, respectively. B
Using the Bolotin method, the approximated solutions with period T = 27t/() are

assumed to be o -
g1 = awm(% > +b1cos<gr> (66)

g2 = azsin<QZT> +b2cos<(;r> (67)

Substituting Equation (27) into Equation (26), and combining the coefficients of the
sine and cosine function, we obtain the following equations:

( %ﬁ + 1y + Mg per — zmgtxlpc,) a sm(Q—) + %ﬁgtxlpcrm s1n(%)
+

2
_ - 7 (68)
+( %Q + 1y + Mongper + mgocl pcr) by cos(%) %Wgocl Perby cos(%)
- _ . (0 _ . (30
(—%Q + 71 + ngwoper — %nglepcr)az sm({) + %ﬂg(’élpcrﬂz sm(%) )
72 o _ o =
+<_}IQ + 11 + Hotoper + %7’190&1]757)1’12 cos(% +% g1 Perby cos(mT) =0

Setting the coefficients of sin ( QT) and cos (%) of Equation (28) to zero, we obtain a
series of algebraic equations which can be written as

11— _ 1_

— ZQ + my + mongpPer — §m9“1pcr =0 (70)
1—o _ _

- ZQ T+ Tgoper + STgt per = 0 (71)
1— _ 1_

- ZQ + i1+ Tgtoper — STott1per = 0 (72)
11— _ _ 1_

- EQ i1+ Tgtoper + STott1per = 0 (73)

Based on Equation (29), the dynamic stability of the CFRP laminated cylindrical shell
subjected to axial excitation may be analyzed numerically. The unstable regions are plotted
by the dynamic load factor against the excitation frequency on the plane (a1, Q) for the
first two modes.

The present dynamic unstable regions of the laminated composite cylindrical shell
(L/R = 1,R/h = 100) are compared with those of Ganapathi et al. [53] and Dey et al. [54]
in Figure 9. In this regard, a laminated composite cylindrical shell with the following
material properties is considered: E11/Ey = 25, Gps = 0.2Ep», Gip = Gi3 = 0.5Exp and
vip = 0.25. The present results agree well with the results reported by Ganapathi et al. [53]
and Dey et al. [54].
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Figure 9. The dynamic unstable regions of a cross-ply laminated composite cylindrical shell
(L/R = 1,R/h = 100) subjected to uniform periodic in-plane loading.

Figure 10 illustrates the effect of the temperature fields on the dynamic unstable
regions of the CFRP laminated cylindrical shell when Ny = 8, L/h = 120, R/h = 30
and oy = 0. Figure 10 show the dynamic unstable regions of the first and second modes,
respectively. The part between the two lines is the dynamic unstable region. Inside the
dynamic unstable region, the CFRP laminated cylindrical shell vibrates with unbounded
amplitudes, and as such, unstable behavior occurs. Outside the dynamic unstable region,
the amplitudes of the CFRP laminated cylindrical shell are bounded, i.e., the shell is stable.
One can observe that all the dynamic unstable regions become wider with an increase of
dynamic in-plane load factor ;. Furthermore, with an increase of the temperature field, the
unstable regions of both modes are translated to the lower parametric excitation frequency.

55

—e— 7 ~400K

—e—T ~500K

— I” 600K

2l

—e—T ~400K
—e— 17 ~500K

—a—T_=600K

Ol
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Figure 10. The dynamic unstable regions of the CFRP laminated cylindrical shell with different
temperature fields: (a) first mode, and (b) second mode.
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Figure 11 shows the linear response for the CFRP laminated cylindrical shell with an ex-
citation frequency in the unstable region. It may be observed that the linear response of the
CFRP laminated cylindrical shell grows exponentially and the shell becomes unstable. Fig-
ure 12 shows the nonlinear response of the CFRP laminated cylindrical shell with the same
parameters. The amplitude of the nonlinear response is the same as that of the assumed
initial amplitude, so we may consider this shell to also be unstable. Figures 13 and 14
show the linear and nonlinear responses for the CFRP laminated cylindrical shell with an

excitation frequency in the stability region. The frequency of the nonlinear response is
higher than that of the linear response.

40 20

N I ;. _\\
20 N 10 / \
N M f f\

\ [ : [
woF——/ |\ [ | [ [l #oO H v |

-40 -20 —
0o 1 2 3 4 b5 -50 0 50
T W
(a) '127 )

Figure 11. The linear response for the CFRP laminated cylindrical shell with an excitation frequency
in the unstable region: (a) the time history on the plane (7, @), and (b) the phase portrait on the plane

(W, D).
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W0 \“ lﬂl” '”I}Iﬂ H‘ W 0

H |L MV'!’W \ \

-0.05 -1

-0.1 -2

0 2r0 40 -0.1 0 0.1
(a) [c‘;ll

Figure 12. The nonlinear response for the CFRP laminated cylindrical shell with an excitation

frequency in the unstable region: (a) the time history on the plane (7, @), and (b) the phase portrait
on the plane (@, @).
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Figure 13. The linear response for the CFRP laminated cylindrical shell with an excitation frequency

in the stable region: (a) the time history on the plane (7, @), and (b) the phase portrait on the plane
(W, D).
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Figure 14. The nonlinear response for the CFRP laminated cylindrical shell with an excitation
frequency in the stable region: (a) the time history on the plane (7, @), and (b) the phase portrait on
the plane (0, @).

The dynamic unstable regions are shown in Figure 15; these illustrate the effect of the
ratio of length to thickness L/h on the CFRP laminated cylindrical shell with T, = 400K,
Ns = 8 R/h = 30and «y = 0. Itis found that with an increase of L/h, the dynamic
unstable regions in both modes shift downward. The dynamic unstable regions of the
CFRP laminated cylindrical shell with R/h = 10, R/h = 20and R/h = 30 are depicted
in Figure 16 when T, = 400K, Ns = 8,L/h = 100 and &y = 0. As shown, the value
of the unstable frequency decreases with an increase in the ratio of radius to thickness.
Figure 17 shows the effect of number of layers N; on the dynamic unstable regions of the
CFRP laminated cylindrical shell with T, = 400K, L/h = 100, R/h = 30and oy = O.
The number of layers was set at 8, 6, and 4, respectively. It is well known that when N;
decreases, the unstable regions of the system begin at a lower frequency.
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Figure 15. The dynamic unstable regions of the CFRP laminated cylindrical shell with different L/h:
(a) the first mode, and (b) the second mode.
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Figure 16. The dynamic unstable regions of the CFRP laminated cylindrical shell with different R/h:

(a) the first mode, and (b) the second mode.
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Figure 17. The dynamic unstable regions of the CFRP laminated cylindrical shell with different N;:
(a) the first mode, and (b) the second mode.

5. Conclusions

This paper presents static and dynamic stability analyses of a carbon fiber reinforced
polymer (CFRP) laminated cylindrical shell under axial excitation. Non-normal boundary
conditions were applied, i.e., both ends of the cylindrical shell were free and one generatrix
of the shell was clamped. Based on von-Karman-type nonlinear relationships, first-order
shear deformation theory and the Hamilton principle, the partial differential motion control
equation of CFRP laminated cylindrical shells was derived. Using the Galerkin method, the
nonlinear ordinary differential motion equation of the shell along the radial displacement
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was obtained. The newton-Raphson method was used to numerically analyze the equilib-
rium point, and the local stability was obtained by the eigenvalues of the Jacobian matrix.
The Mathieu equation describes the dynamic unstable behavior of the CFRP laminated
cylindrical shell. The correctness of the results in this paper was verified by comparisons
with existing results. A parametric study was conducted to investigate the effects of the
radial line load, the ratio of radius to thickness, the ratio of length to thickness, the number
of layers and the temperature field on the static and dynamic stability of a CFRP laminated
cylindrical shell. It can be concluded that:

(1) Bifurcation phenomena might occur when the static in-plane load is greater than the
critical load.

The ratio of radius to thickness, the ratio of length to thickness, the number of layers
and the temperature field have significant effects on static bifurcation characteristics
of a CFRP laminated cylindrical shell.

With an increase of ratio of radius to thickness, the ratio of length to thickness and
the temperature field, the unstable regions in both modes are translated to a lower
parametric excitation frequency.

When the number of layers decreases, the unstable regions of the system begin at a
lower frequency.
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Appendix A
The coefficients obtained in Equations (42) and (43) are presented as follows
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by = —144.4460509 A4/ L — 0.7841786683L A /R? — 3.136714672KL Ay /R?,

by = —0.1641087045LA /R3, by = 58.03431294A,4/R?,
bs = —118.4772154A14/ L% — 49.61690248 A2/ R?,

be = 2185.537826A16/L2 + 171.2842070A5/R?,
c1 = —31.00835726B11 /L — 7.871121054LBes / R?,
co = —3.141803460LAs5K — 31.00835727D11 /L — 7.871121053LDgg / R?,
c3 = —1.316898663LBys/R3, cy = 0.05435034702LBos/ R3,
c5 = —629.3381897B1; /L% + 11.58524211Bgs/ R? — 11.58524380B1,/ R?,
c6 = —3130.142024B1;/L? — 56.62296171Bgs/ R? + 95.01717948B1, / R?,
c; = —1642.614350B11 /L% + 5.21998492B¢s / R? — 47.79767769B1,R?,
di = —144.4460509B¢ /L — 0.7841786683LByy/ R? — 3.136714672KLBas / R?,
dy = —0.5428190419B1¢/L — 0.01374966901 LBy / R?,
d3 = —0.1641087045LBy,/R3, dy = 58.03431294B,/ R?,
ds = —118.4772154B4/L? — 49.61690248B,4/ R?,
d¢ = 2185.537826B14/ L% 4 171.2842070By5 /R?, 1 = 25.09540907,
er = 288.9114871/L, e3 = —6.273850301L7, e, = —6.273850303LI,,
es = —288.9114871A55K/L — 6.273850307L Ay, / R* — 15.71779897L A4 K/ R?
—288.9114871N1 /L — 15.71779897LN], / R?,
e6 = —39.72963636A/R3, e; = —165.6765179A5/R3, eg = —103.2852305A4/R3,
e9 = 545.8105948A11 /L% — 6.64989922 A4/ R? + 6.649896554 A1, / R?,
e10 = —58.03431074A5¢/R?, e1p = —58.03431074B,4/R?,
e11 = 545.8105948B11 /L% — 6.64989922B¢s/ R? + 6.649896554B1, / R?,
e13 = —182.5445517A11 /L% — 143.4703132A¢¢/ R? — 8.169858374 A1,/ R?,

e14 = —640.3323995A16/L? + 17.60816090A2 / R?,
e15 = —182.5445517By; /L — 143.4703132Bgs / R? — 8.169858374B1, / R?,
e16 = —640.3323995B;6/L? + 17.60816090Bs / R?,
e17 = —18183.70969 A1, /L3 — 18.0373938L A /R* + (197.449892 A1, + 394.89978 Ags ) / LR?,

15 = 1209.128345A11 /L + 5.069883616L A5, / R* — (242.5993347 A1, + 485.19867 Ags ) LR,
e19 = 74011.22204A1; /L® — 59.75908863L A3y / R* — (356.845848 A1, + 2841.38288 A4 )/ LR2,
ey = 9504.768786A11 /L3 4+ 1.592447035LApy / R* — (21.736372 A1, + 43.4727439 Ags ) / LR2,

g1 = 25.0954091, g, = 1078.441452/L, g3 = —6.285173437Ly, g4 = —6.285173437LI,,
g5 = —1078.441451As5K/ — 6.285173436L A5y / R? — 42.00198451L Ag4K/R?
—1078.441451N], /L — 42.00198451LN}, /R?,
g6 = —49.75797336A55/R3, g7 = —165.6765179A24/R3, g5 = —62.58299370A24/R5,

g9 = —182.5480497 A1/ L? —27.31625097 Ags / R* + 8.169718595A1, / R?,
§10 = —120.4374000A5/R?, g1, = —120.4374000B/ R?,
g1 = —182.5480497By1 /L* —27.31625097Bgs/ R? + 8.169718595B1,/ R?,
13 = 1188.606609A1; /L2 — 3.31779223 Ags / R? + 30.35534344 A1/ R,
g1u = —1536.656782A14/L% — 120.4374000 A6/ R2,
g15 = 1188.606609B11/L* —3.31779223B4s/ R? + 30.35534344B1, / R?,
16 = —1536.656782B14/L% — 120.4374000B5 / R?,
§17 = —180.6408093A11 /L3 + 1.690008865LAzy / R* — (33.432213 A1, + 66.864426 As) / LR?,
918 = —14810.2121A1; /L3 — 59.7583037LAgy / R* — (1241.088955A1, + 2482.1779 Ag) / LR?,

(A2)
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919 = 1585.526437A11 /L3 + 4.777494122L Ayy / R* — (291.12256 A1y + 581.5127135A¢6) / LR?,

820 = 723540.79961/111/143 — 119.1995LA22/R4 — (119.3011A12 + 238.602231466)/LR2 (A2)
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