
Citation: Lv, K.; Pei, X.; Chen, C.; Xu,

J. A Safe and Efficient Lane Change

Decision-Making Strategy of

Autonomous Driving Based on Deep

Reinforcement Learning. Mathematics

2022, 10, 1551. https://doi.org/

10.3390/math10091551

Academic Editors: Heui Seok Lim,

Sanghyuk Lee, Yeongwook Yang and

Imatitikua Aiyanyo

Received: 29 March 2022

Accepted: 29 April 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Safe and Efficient Lane Change Decision-Making Strategy of
Autonomous Driving Based on Deep Reinforcement Learning
Kexuan Lv, Xiaofei Pei, Ci Chen * and Jie Xu

School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China;
lkx1996@whut.edu.cn (K.L.); peixiaofei7@whut.edu.cn (X.P.); xujie305305@whut.edu.cn (J.X.)
* Correspondence: chenc1520@whut.edu.cn

Abstract: As an indispensable branch of machine learning (ML), reinforcement learning (RL) plays
a prominent role in the decision-making process of autonomous driving (AD), which enables au-
tonomous vehicles (AVs) to learn an optimal driving strategy through continuous interaction with
the environment. This paper proposes a deep reinforcement learning (DRL)-based motion planning
strategy for AD tasks in the highway scenarios where an AV merges into two-lane road traffic flow
and realizes the lane changing (LC) maneuvers. We integrate the DRL model into the AD system
relying on the end-to-end learning method. An improved DRL algorithm based on deep deterministic
policy gradient (DDPG) is developed with well-defined reward functions. In particular, safety rules
(SR), safety prediction (SP) module and trauma memory (TM) as well as the dynamic potential-based
reward shaping (DPBRS) function are adopted to further enhance safety and accelerate learning
of the LC behavior. For validation, the proposed DSSTD algorithm is trained and tested on the
dual-computer co-simulation platform. The comparative experimental results show that our proposal
outperforms other benchmark algorithms in both driving safety and efficiency.

Keywords: autonomous driving; decision-making; lane changing; reinforcement learning; DDPG; safety

MSC: 68T07

1. Introduction

In a report by the WHO, about 1.35 million people worldwide die in road traffic
accidents every year, which is equivalent to one traffic accident death every 24 s, and
about 20 million to 50 million people suffer non-fatal injuries [1]. Statistics have also
shown that almost 94% of fatal traffic accidents are caused by driver errors. Autonomous
vehicles (AVs), as promising solutions to road traffic challenges, can not only help reduce
accidents, but also significantly relieve traffic congestion [2]. For instance, if 90% of cars on
American roads become driverless, the number of car accidents will fall from six million to
1.3 million [3]. The major challenge for the decision-making of autonomous driving (AD) is
how to ensure safer and more efficient driving behavior according to the characteristics of
surrounding dynamic objects.

The earliest autonomous vehicle projects can be traced back to the 1980s which were
presented by Carnegie Mellon University and the University of Bundeswehr Munich [4].
After that, the opening of the DARPA grand challenge has been an effective catalyst
for further prompting the development of automated driving [5]. In these competitions,
manually tuned methods were successfully applied to AVs who participated [6,7]. Since
the release of a taxonomy for AD by the SAE in 2014, car and software companies have
actively developed their own advanced driver assistance systems such as adaptive cruise
control (ACC) to exert efforts toward full automation drive. As mentioned, in the early
stage of AD, rule-based methods were widely adopted to elaborate a driving strategy based
on prior human knowledge and mathematical models [8]. However, the deficiencies within

Mathematics 2022, 10, 1551. https://doi.org/10.3390/math10091551 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091551
https://doi.org/10.3390/math10091551
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3916-4972
https://doi.org/10.3390/math10091551
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091551?type=check_update&version=2

Mathematics 2022, 10, 1551 2 of 24

those tactics are also noteworthy: (1) in a highly interactive and complex environment, the
modeling itself is very difficult; (2) when the environment has changed or is unknown,
the model needs to be redesigned and lacks generalization ability. The lack of the ability
to interact with the changing road environment and traffic participants gives rise to the
advancement in the application of machine learning (ML) for the AD decision-making
problem.

Deep learning (DL) methods, with little dependency of the manual tuning facility,
can learn the desired behavior through training, and thus are well suited for the vehicle
control problem in a dynamic environment [9]. The key drawback of these methods lies
in the fact that there is a lack of adequate traceability and interpretation for the decision
execution process. With the exception of the traditional modular method, the driving
strategy can also be learned end-to-end, directly mapping observations to actions, with
the aid of reinforcement learning (RL) [10]. Through trial and error, RL aims to learn the
optimal behavior in the corresponding observation by interaction with the environment,
though with very limited availability to low-dimensional state–action spaces. Recently, to
deal with high-dimensional space problems, deep reinforcement learning (DRL) provides a
satisfying solution by further exploiting the characteristics of DL. In implementing DRL to
AD tasks associated with different scenarios, the design of appropriate reward function
and the incorporation of safety rule as well as training efficiency are still open issues for
further study [11].

Being widely adopted in the DRL algorithm architecture, the actor–critic (AC) method
utilizes single-step updating of the value function, thus can achieve faster update speed
and higher learning efficiency. Specifically, it has been proven to be efficient in solving
decision-making problems in AD systems. However, there still remain some open issues
to tackle. Firstly, how to integrate the DRL algorithm model into the AD system and
make it work with other modules to improve the overall performance becomes a major
challenge. Some researchers have attempted to integrate DRL model into motion planning
or behavior planning modules [12,13]. However, as the number of learned behavior models
increases, the training costs and demand for driving data will accordingly be increased,
and simultaneously, the overall convergence speed of the learning model will be decreased.
To this end, this paper adopted the AC method and integrated the DRL model into the
low-level control module of the AD system, thus realizing end-to-end decision-making
architecture, which optimizes the actions directly to the low-level actuator based on the
perception information.

Second, safety is the primary consideration in accomplishing AD tasks [14,15]. There-
fore, the design of the safety-related reward in the MDP model is indispensable to ensure
the safety of the agent behavior. However, the low sampling rate and the deviation existing
in the reward function design will significantly threaten the driving safety of an AV. Some
efforts have been made in the agent training process to increase the probability of traversing
dangerous events. For example, the dual experience pool replay strategy has been proved
to be successful in an automated braking system design [16]. It also becomes natural to
incorporate some hard constraints for a safer exploration process (i.e., directly on the actions
before interaction with the environment) [17]. Even so, it could place excessive constraints
on the vehicle’s driving efficiency. To compensate for this shortage, a prediction model
was adopted to predict and reward the future multi-step states. According to the above
analysis, we will not only introduce a dual experience pool replay method during training
process, but also utilize an explicit safety checker combined with a prediction learner for
a safe exploration process. It is believed that with the aid of such methods, safer driving
behaviors can be guaranteed when facing unexpected imminent events for lane change
tasks.

Finally, in the real environment, with the demand for continuous control of the AV,
a large state–action space is required, and the number of optimization iterations for the
agent’s learning will increase exponentially. To improve the learning efficiency, knowledge-
based methods [18,19] are utilized. However, when the driving environment is highly

Mathematics 2022, 10, 1551 3 of 24

uncertain, it is difficult to manually evaluate the optimal trajectory or strategy. Besides,
humans may not have the relevant knowledge and skills themselves. Consequently, we
implemented the reward shaping method, which can introduce additional reward signals
to supplement rewards from the environment. This will enable us to ameliorate the sparsity
and uninformativeness of rewards [20], thus greatly improving the efficiencies of training.

In this article, the improved DRL algorithm is proposed to manipulate the continuous
actions of the AV for LC requests in a lane-decreasing highway environment. Our proposal
is simulated and tested on a dual-computer co-simulation platform to validate its driving
safety, efficiency, and comfort performance. The main contributions of this paper are in the
following two aspects:

(1) For AD tasks such as lane-changing in highway scenarios, the DRL model is integrated
to optimize the continuous actions into the low-level vehicle control module, and a
dual-computer co-simulation platform is built for verification.

(2) The Safety Rules module and the Safety Prediction module are both deployed ex-
plicitly and implicitly to impose some constraints on the output actions of the AV
to enhance driving safety. During the agent training process, the trauma memory
method is adopted to learn safer driving behavior when encountering emergencies
in highway scenarios. Moreover, dynamic potential-based reward shaping is also
implemented to improve the learning efficiency of the agent.

The remainder of this paper is organized as follows. A comprehensive literature
review on the implementation of DRL method for AD tasks is presented in Section 2.
Section 3 describes the DRL and the benchmark algorithm. The LC task and the MDP
model in highway scenarios are described in Section 4. In Section 5, the DRL-based LC
decision-making methodology is proposed. The simulation setup and results are discussed
in Section 6, followed by our conclusions in Section 7.

2. Related Work

As one of the classic AC methods in the DRL algorithm, the deep deterministic strategy
gradient (DDPG) [21] can use the function approximation based on deep neural network to
learn continuous actions. This provides us with an effective way to solve the continuous
action space problem in AD [22,23]. In addition, for scenarios with high environmental
complexity and the requirements for large state–action space, the integration of the DRL
model into the control module is regarded as a more feasible solution. Bojarski et al. [24]
trained a nine-layer CNN by supervised learning to establish the steering policy and
proposed an end-to-end AD control framework. However, their model could only be
adapted for the lane keeping task. Tang et al. [25] utilized environmental information
such as environment rasterization coding as the input to learn the driving behavior of
the low-level control module through proximal policy optimization (PPO). In their work,
the DRL model was integrated into the action control module in AD. Particularly, DDPG
was utilized to evaluate continuous controls so that the continuous behavior decision was
accessible to the low-level controller.

To improve driving safety, probability-directed exploration is an effective research
direction. In [26], the Bayesian belief network-based approach was utilized to estimate
the collision probability during driving, and safer actions were selected based on the
evaluated safety strategy. Ref. [27] combined a model-checker with a RL policy to determine
efficient policies with probabilistic safety guarantees. On the other hand, a considerable
amount of research has focused on risk-directed exploration. Ref. [28] proposed the parallel
constrained policy optimization algorithm (PCPO) to develop the expected risk function
with safety constraints for relatively simple AD tasks. Similarly, ref. [29] proposed a risk-
aware method to enable DQN to learn driving behaviors with lower risk coefficients,
especially in high-risk environments. However, the above-mentioned methods all have
challenges of utilizing learning-based methods to ensure functional safety. Therefore, it is
necessary to request a low-level safety checker explicitly on the agent’s actions for driving
safety. At the same time, there has been extensive research on the implementation of

Mathematics 2022, 10, 1551 4 of 24

prediction model methods to RL. The authors in [30] proposed a prediction model based on
dynamic graphs to achieve stable and effective long-term predictions of traffic flow. In [31],
the original image data were utilized and partially processed as the input of the neural
network to have a good predictive ability of the surrounding environment information
during the navigation task. In contrast, we exploit the long short-term memory (LSTM)
based prediction model to make up for the shortage of hard constraints on the actions.
Furthermore, it is also necessary to enhance the driving safety by increasing the traversing
probability of disastrous events. Ref. [32] proposed an automated braking system through
training and testing with natural datasets so that the speed could be smoothly controlled in
response to emergencies. When such emergency braking failed, [33] turned to detecting
the pedestrians’ intentions in advance and performed evasive actions. Meanwhile, [34]
proposed a threat-assessment algorithm suitable for multiple vehicle types, and the rear-
end collisions were greatly reduced through the appropriate regulation of braking time.
Inspired by [17,35], we adopted the trauma memory (TM) method to solve our highway LC
decision problem to construct a separate experience pool for storing memories of dangerous
emergencies, aiming to increase the traversal probability of such events in the agent training
process.

The major influential factor for learning efficiency is highly related to the reward
design. As a basic approach for enriching rewards [36], reward shaping has been extensively
studied. Ref. [37] proved that the learning strategy of belief reward shaping (BRS) based on
the Bayesian method was consistent with the optimal strategy of the original MDP. Demir
et al. [38] utilized the difference in hidden states between landmarks to build the abstract
model and solve the POMDP problems by reward shaping. In [39], the sub-goals obtained
through the expert trajectory were utilized for reward shaping. To the above analysis, we
introduce the DPBRS to shape the reward function to improve the learning efficiency of
the agent.

3. Background

In this section, we introduce the basics of DRL and the essential framework of the
benchmark DDPG algorithm. The main abbreviations are listed in Table 1.

Table 1. Main abbreviations.

Abbreviation Explanation

ML Machine Learning
RL Reinforcement Learning
DL Deep Learning
AD Autonomous Driving
AV Autonomous Vehicle
AC Actor–Critic
LC Lane Change

DRL Deep Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
DPBRS Dynamic Potential-Based Reward Shaping

ETA Estimated Time of Arrival
SORL Survival-Oriented Reinforcement Learning

SR Safety Rules
SP Safety Prediction

LSTM Long Short-Term Memory
TM Trauma Memory

MDP Markov Decision Process
DQN Deep Q-network
IDM Intelligent Driver Model

MOBIL Minimizing Overall Braking Induced by Lane changes
TTC Time-To-Collision
PPO Proximal Policy Optimization
DST DDPG + SR + TM

DSTD DDPG + SR + TM + DPBRS
DSSTD DDPG + SR + SP + TM + DPBRS

Mathematics 2022, 10, 1551 5 of 24

3.1. Deep Reinforcement Learning

The Markov decision process (MDP) is a mathematical model of sequential decision. In
the simulation of MDP, the agent perceives the current state of the system and implements
actions on the environment according to the strategy, thereby changing the state of the
environment and obtaining rewards. The accumulation of rewards over time is called return.
RL is used to describe and solve problems in which agents learn strategies to maximize
the return or achieve specific goals in the process of interacting with the environment. The
two are similar in terms of maximizing the cumulative reward of the agent, so RL often
uses MDP as the standard model. As shown in Figure 1, almost all RL problems can be
transformed into MDP, which basically consists of a four-tuple {S, A, R, P}: state S, action A,
reward R, and state transition probability P. The transition function P contains three
variables, which represents the dynamic transition process of the environment denoted
by p(s′|s, a) . For any current state s ∈ S, the agent first chooses the action a ∈ A, and
then generates the next state by s′ = P(S′ = s|S = s, A = a) . The reward value R under
the current state–action pair (s, a) is calculated by the reward function r(s, a), that is,
r : S′ × A× S→ R . The state–action pair (s, a) is composed of the current state s of the
agent and the corresponding action a taken. The agent will evaluate the pros and cons of
behavioral strategies through the reward values corresponding to different state–action
pairs. RL is the process of running an agent through a sequence of state–action pairs and
modeling complex probability distributions of a large number of state–action pairs and
their associated rewards.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 25

MDP Markov Decision Process
DQN Deep Q-network
IDM

MOBIL
TTC
PPO
DST

DSTD
DSSTD

Intelligent Driver Model
Minimizing Overall Braking Induced by Lane changes

Time-To-Collision
Proximal Policy Optimization

DDPG + SR + TM
DDPG + SR + TM + DPBRS

DDPG + SR + SP + TM + DPBRS

3.1. Deep Reinforcement Learning
The Markov decision process (MDP) is a mathematical model of sequential decision.

In the simulation of MDP, the agent perceives the current state of the system and imple-
ments actions on the environment according to the strategy, thereby changing the state of
the environment and obtaining rewards. The accumulation of rewards over time is called
return. RL is used to describe and solve problems in which agents learn strategies to max-
imize the return or achieve specific goals in the process of interacting with the environ-
ment. The two are similar in terms of maximizing the cumulative reward of the agent, so
RL often uses MDP as the standard model. As shown in , almost all RL problems can be
transformed into MDP, which basically consists of a four-tuple{ , , , }S A R P : state S, action
A, reward R, and state transition probability P. The transition function P contains three
variables, which represents the dynamic transition process of the environment denoted
by (| ,)p s s a′ . For any current state s S∈ , the agent first chooses the action a A∈ , and
then generates the next state by (| ,)s P S s S s A a′ ′= = = = . The reward value R under the
current state–action pair (,)s a is calculated by the reward function (,)r s a , that is,

:r S A S R′ × × → . The state–action pair (,)s a is composed of the current state s of the
agent and the corresponding action a taken. The agent will evaluate the pros and cons of
behavioral strategies through the reward values corresponding to different state–action
pairs. RL is the process of running an agent through a sequence of state–action pairs and
modeling complex probability distributions of a large number of state–action pairs and
their associated rewards.

Figure 1. Markov decision process.

The ultimate goal of the agent in RL is to obtain the optimal behavior strategy
through continuing trial and error. In other words, we can maximize cumulative reward
Gt, which can be expressed as: 1(|) (|)t ta s P A a S s−= = = , through continuing trial and
error. In other words, we can maximize cumulative reward Gt, which can be expressed as:

2 3 1
1 2 3 4

-1

1
0

+... T
t t t t t t T

T
k

t k
k

G R R R R R

R

γ γ γ γ

γ

−
+ + + + +

+ +
=

= + + + +

=

(1)

where t represents the current time and [0,1]γ ∈ (usually set between 0.9 and 1) repre-
sents the discount factor that is used to measure the future reward value in the cumulative

Figure 1. Markov decision process.

The ultimate goal of the agent in RL is to obtain the optimal behavior strategy through
continuing trial and error. In other words, we can maximize cumulative reward Gt, which
can be expressed as: (a|s) = P(At = a|St−1 = s) , through continuing trial and error. In
other words, we can maximize cumulative reward Gt, which can be expressed as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . . + γT−1Rt+T

=
T−1
∑

k=0
γkRt+k+1

(1)

where t represents the current time and γ ∈ [0, 1] (usually set between 0.9 and 1) represents
the discount factor that is used to measure the future reward value in the cumulative
reward of the current time. T is the duration of the training trajectory. Moreover, the state
value function vπ(s) and state–action value function Qπ(s, a), which are used to evaluate
whether the strategy function is optimal, can be calculated by:

vπ(s) = E[Gt|St = s]
Qπ(s, a) = E[Gt|St = s, At = a]

(2)

From Equation (1), the above two value functions can be reformulated recursively by:

vπ(s) = ∑a π(s|a)∑s′ Pa
ss′ [G

a
ss′ + γvπ(s′)]

Qπ(s, a) = ∑s′ Pa
ss′ [G

a
ss′ + γ∑a′ Qπ(s′, a′)]

(3)

Mathematics 2022, 10, 1551 6 of 24

The Bellman optimality equation can be synthesized by using the above two relations
and the optimal strategy can then be expressed as:

v∗(s) = maxa∑s′ Pa
ss′ [G

a
ss′ + γ∑a′ Qπ(s′, a′)] (4)

3.2. DDPG Algorithm

Recently, Q-learning based RL methods have been extensively adopted to deal with
decision-making problems [40,41]. However, they are only applicable to discrete action
space and cannot effectively handle high-dimensional conditions.

Unlike DQN, which deals with discrete, low-dimensional actions, DDPG combines
AC and DQN [42] algorithms to treat continuous action space problems. This is due to
the fact that the output is not the probability distribution of the action behavior, but the
specific mechanism of the deterministic continuous action value. Here, we utilized DDPG
as the benchmark for realizing smoother driving behavior. In general, it has four neural
networks, in which the Actor and the Critic have the same network structure and both
have target-net and eval-net. According to the current state–action pair (s, a), the Critic
network can yield the estimated Q(s, a) value. The agent adjusts the prediction level of the
Q function by observing the reward value caused by the state–action pair (s, a) until it can
accurately predict the optimal strategy the agent should take. The Actor target network
can yield A′ from the next state S′, and the Critic target network can evaluate the A′ by the
output Q′(s′, a′) value. The TD-error between the Q and Q′ values is ultimately minimized,
and the gradient ascent approach is exploited to update the Actor network to evaluate the
action that can maximize the Q(s, a) value. The DDPG algorithm flowchart is illustrated in
Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 25

reward of the current time. T is the duration of the training trajectory. Moreover, the state
value function ()v sπ and state–action value function (,)Q s aπ , which are used to eval-
uate whether the strategy function is optimal, can be calculated by:

() [|]
(,) [| ,]

t t

t t t

v s G S s
Q s a G S s A a

π

π

= =
= = =

E
E

 (2)

From Equation (1), the above two value functions can be reformulated recursively
by:

() (|) [()]

(,) [(,)]

a a
ss ssa s

a a
ss sss a

v s s a P G v s

Q s a P G Q s a
π π

π π

π γ

γ
′ ′′

′ ′′ ′

′= +

′ ′= +

 (3)

The Bellman optimality equation can be synthesized by using the above two relations
and the optimal strategy can then be expressed as:

() [(,)]a a
a ss sss a

v s max P G Q s aπγ∗
′ ′′ ′

′ ′= + (4)

3.2. DDPG Algorithm
Recently, Q-learning based RL methods have been extensively adopted to deal with

decision-making problems [40,41]. However, they are only applicable to discrete action
space and cannot effectively handle high-dimensional conditions.

Unlike DQN, which deals with discrete, low-dimensional actions, DDPG combines
AC and DQN [42] algorithms to treat continuous action space problems. This is due to the
fact that the output is not the probability distribution of the action behavior, but the spe-
cific mechanism of the deterministic continuous action value. Here, we utilized DDPG as
the benchmark for realizing smoother driving behavior. In general, it has four neural net-
works, in which the Actor and the Critic have the same network structure and both have
target-net and eval-net. According to the current state–action pair (,)s a , the Critic net-
work can yield the estimated (,)Q s a value. The agent adjusts the prediction level of the
Q function by observing the reward value caused by the state–action pair (,)s a until it
can accurately predict the optimal strategy the agent should take. The Actor target net-
work can yield A’ from the next state S’, and the Critic target network can evaluate the A’
by the output (,)Q s a′ ′ ′ value. The TD-error between the Q and Q′ values is ulti-
mately minimized, and the gradient ascent approach is exploited to update the Actor net-
work to evaluate the action that can maximize the (,)Q s a value. The DDPG algorithm
flowchart is illustrated in .

Figure 2. DDPG algorithm flowchart.

The “soft” update method ensures that the target network of DDPG can be updated
in each iteration. The parameter change of the target network is small, and the update is

Figure 2. DDPG algorithm flowchart.

The “soft” update method ensures that the target network of DDPG can be updated
in each iteration. The parameter change of the target network is small, and the update is
relatively stable. Updating the Critic target and Actor target networks can be represented
by:

θϕ′ ← τθϕ + (1− τ)θϕ′

θµ′ ← τθµ + (1− τ)θµ′ (5)

where τ is an update parameter and can be set as τ « 1. ϕ and µ represent the current critic
network and the current actor network, respectively. ϕ′ and µ′ represent the target critic
network and the target actor network, respectively. θ represents the updated parameter
of the corresponding network. To increase the randomness of the action and improve the
exploration ability, Ornstein–Uhlenbeck (OU) noise N is added to the output action of the
Actor by:

µ(s) = π(s|θµ) + N (6)

where π is the policy adopted by the Actor network in the current state s. Through the
optimization process, the parameters of the current Critic network are updated by using

Mathematics 2022, 10, 1551 7 of 24

the gradient backpropagation of the neural network. The loss function to be minimized
can be formulated in terms of mean square error (MSE) by:

yi = Ri + γQ′(s′ i, a′ i|θϕ′) (7)

L =
1
M∑i (yi −Q(si, ai|θϕ))2 (8)

where yi is the target Q value of the current critic network. Ri is the reward return value in
the target Q value of the current critic network, where i represents the ith sample collected
from the experience pool, and γ is the attenuation factor, usually set 0.9. The loss L can
be evaluated by MSE with the current Q value, where M is the total number of samples
collected from the experience pool. Note that for the current network of Actors, we used
a deterministic strategy. The Q value generated by the Critic is used to determine the
output action. According to the policy gradient criteria, the loss gradient of the current
actor network can be defined by:

∇θµ J =
1
M ∑i∇a ϕ(si, ai|θϕ)∇θµ µ(si|θµ) (9)

where J is the loss function of the current actor network with θµ as the parameter, and ∇
represents the loss gradient update for θµ in J.

4. Problem Formulation

In this section, we first depict the specific lane-changing task considered in this paper.
Then, a MDP model is exploited to formulate this LC decision making problem in the
highway scenarios.

4.1. Lane-Changing Task

As shown in Figure 3, the LC behavior of the AV can be realized by a DDPG-based
strategy. The driving strategy should ensure that the AV can adapt the trajectory charac-
terized by the driving behavior of the surrounding vehicles while the intelligent driver
model [43] (IDM) and minimizing overall braking induced by lane changes [44] (MOBIL)
strategy can be employed to control the lateral and longitudinal motion of the surrounding
vehicles. In this way, a training environment with high complexity will be close to real
driving situations faced by human drivers. The final LC task to be solved is to avoid AV
collisions with the surrounding vehicles and achieve high driving efficiency with smoothly
executed maneuvers.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 25

collisions with the surrounding vehicles and achieve high driving efficiency with
smoothly executed maneuvers.

(a) AV (red vehicle) lane changes into the two-lane

(b) AV lane changes from L2 to L1

(c) AV lane changes from L1 to L2

Figure 3. AV lane changing process.

4.2. State and Action Space
We consider the state of four vehicles involved in the lane change decision and exe-

cution process as shown in Figure 4: (1) the ego vehicle; (2) the surrounding vehicles 1 and
3 in the same lane; and (3) the surrounding vehicle 2 in the target lane.

Figure 4. Training scenario.

The state space sets of the RL model is an important basis for long-term returns
evaluation and can directly affect the convergence of the algorithm. In this work, it is con-
structed by the state information of the target vehicle and surrounding vehicles, which
can be expressed as:

1,2,3

{ , }
{ , , , , , , , , , , }

{ , , , }

set e ov

e e e ttc steer throttle brake

ov i i i i i

s s s
s x y v a d l t A A A

s v v x y
θ

=

=
= Δ

= Δ Δ Δ
 (10)

where es represents the driving state information of the target vehicle including posi-
tion x, y, velocity v, acceleration ea , compass heading angle eθ , lane centerline deviation

dΔ , the relative distance l between the AV and the leading vehicle in the same lane in the
longitudinal direction. Time-To-Collision (TTC) is ttct = xΔ / vΔ , where xΔ and vΔ rep-
resent the relative distance and relative speed, respectively, between the AV and the front
vehicle in the same lane in the longitudinal direction (x-direction). ovs designates the
state information of three surrounding vehicles including relative position information

ixΔ , iyΔ and velocity information iv , ivΔ . i is the number of the surrounding vehicles,

and ivΔ represents the relative speed value between the AV and the all surrounding

Figure 3. AV lane changing process.

Mathematics 2022, 10, 1551 8 of 24

4.2. State and Action Space

We consider the state of four vehicles involved in the lane change decision and execu-
tion process as shown in Figure 4: (1) the ego vehicle; (2) the surrounding vehicles 1 and 3
in the same lane; and (3) the surrounding vehicle 2 in the target lane.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 25

with the surrounding vehicles and achieve high driving efficiency with smoothly exe-
cuted maneuvers.

(a) AV (red vehicle) lane changes into the two-lane

(b) AV lane changes from L2 to L1

(c) AV lane changes from L1 to L2

Figure 3. AV lane changing process.

4.2. State and Action Space
We consider the state of four vehicles involved in the lane change decision and exe-

cution process as shown in : (1) the ego vehicle; (2) the surrounding vehicles 1 and 3 in the
same lane; and (3) the surrounding vehicle 2 in the target lane.

Figure 4. Training scenario.

The state space sets of the RL model is an important basis for long-term returns
evaluation and can directly affect the convergence of the algorithm. In this work, it is con-
structed by the state information of the target vehicle and surrounding vehicles, which
can be expressed as:

1,2,3

{ , }
{ , , , , , , , , , , }

{ , , , }

set e ov

e e e ttc steer throttle brake

ov i i i i i

s s s
s x y v a d l t A A A

s v v x y
θ

=

=
= Δ

= Δ Δ Δ
 (10)

where es represents the driving state information of the target vehicle including posi-
tion x, y, velocity v, acceleration ea , compass heading angle eθ , lane centerline deviation

dΔ , the relative distance l between the AV and the leading vehicle in the same lane in the
longitudinal direction. Time-To-Collision (TTC) is ttct = xΔ / vΔ , where xΔ and vΔ rep-
resent the relative distance and relative speed, respectively, between the AV and the front
vehicle in the same lane in the longitudinal direction (x-direction). ovs designates the
state information of three surrounding vehicles including relative position information

ixΔ , iyΔ and velocity information iv , ivΔ . i is the number of the surrounding vehicles,

and ivΔ represents the relative speed value between the AV and the all surrounding

Figure 4. Training scenario.

The state space sset of the RL model is an important basis for long-term returns
evaluation and can directly affect the convergence of the algorithm. In this work, it is
constructed by the state information of the target vehicle and surrounding vehicles, which
can be expressed as:

sset = {se, sov}
se = {x, y, v, ae, θe, ∆d, l, tttc, Asteer, Athrottle, Abrake}

sov = {vi, ∆vi, ∆xi, ∆yi}i=1,2,3

(10)

where se represents the driving state information of the target vehicle including position
x, y, velocity v, acceleration ae, compass heading angle θe, lane centerline deviation ∆d,
the relative distance l between the AV and the leading vehicle in the same lane in the
longitudinal direction. Time-To-Collision (TTC) is tttc = ∆x/∆v, where ∆x and ∆v represent
the relative distance and relative speed, respectively, between the AV and the front vehicle in
the same lane in the longitudinal direction (x-direction). sov designates the state information
of three surrounding vehicles including relative position information ∆xi, ∆yi and velocity
information vi, ∆vi. i is the number of the surrounding vehicles, and ∆vi represents the
relative speed value between the AV and the all surrounding vehicles. Asteer, Athrottle, and
Abrake are the normalized values of steering wheel angle, throttle, and brake, respectively. It
should be noted that all state quantities in the state space in the MDP are simply normalized,
and the values are mapped between (0, 1), which is also to make the reward value easier to
converge during subsequent agent training.

Based on the end-to-end low-level action control strategy, the action space of the RL
model contains three ingredients, the steering wheel angle steer, the percentage of maxi-
mum throttle throttle, and brake pressure brake, which are specified as Asteer ∈ (−20, 20),
Athrottle ∈ (0, 100), Abrake ∈ (0, 20). We utilized Asteer to control the lateral motion of the
AV, and Athrottle and Abrake to maneuver the longitudinal motion of the AV. The advantage
of the end-to-end learning method lies in the fact that the training datasets can be either
obtained from, or applied to the real world.

The lower-level controller receives the three action values from the output of the RL
algorithm and converts them into appropriate wheel angles in conjunction with the 2D
simple dynamics model to control the vehicle states.

4.3. Reward Function

The development of the reward function is another crucial part in the RL algorithm
design. The externalization and numeralization of the task objective will determine whether
the agent can learn the desired optimal LC driving strategy. Lane changing is a time
sensitive task that needs to be completed as soon as possible once it is initiated. Taking into
account various influential factors related to driving efficiency and safety, the construction
of the reward function should consider the following aspects:

(1) Efficiency-related reward Re: This contributor aims to allow the AV to drive as fast as
possible if permitted until the desired velocity is maintained. Simultaneously, if the

Mathematics 2022, 10, 1551 9 of 24

vehicle’s departure from the lane centerline becomes larger, more penalties should be
granted. For these reasons, the efficiency-related reward can be formulated by

Re = α1 ·min(
v− vd

vd
, 0)− α2 ·max(

v− vd
vd

, 0)− ∆d2

3
(11)

where α ∈ R+ are the weighting parameters and v and vd represent the real velocity
and the desired velocity of the AV, respectively.

(2) Comfort-related reward Rc: This dedicator intends to enable the learning of smoother
and more comfortable driving behavior by reducing the comfort deterioration due to
excessive sudden changes in the vehicle state:

Rc = −(α3 ·max(| .ae| −
.
acmax, 0) + α4 ·max(|ae| − acmax, 0)

+α5 ·max(|∆θe| − 10, 0))
(12)

where ae is the acceleration; acmax is the maximum comfortable acceleration;
.
ae is

the derivative of acceleration (also called Jerk [45]),
.
ae = ∆ae/∆t; and

.
acmax is the

maximum Jerk. Here, we let acmax = 5 m/s2 and | .acmax| = 2 m/s3. The third term in
Rc limits the rate of change of the compass heading angle change |∆θe| to control the
yaw motion caused by large angle changes in the driving direction.

(3) Safety-related reward Rs: To ensure driving safety, the AV should learn to keep a
safe distance from the leading vehicle in the same lane in the longitudinal direction
(x-direction) to reduce collision. Thus, the safety-related reward can be adopted by

Rs = −(α6 ·max(2.5−tttc
2.5 , 0) + α7 ·min(l−ld

l , 0)
+α8 ·max(l−ld

l , 0))
(13)

It can be shown that tttc and reward have a negative correlation. Since the tttc value is
not expected to be small, it is believed that when tttc < 2.5 [46], a small tttc yields a small
reward. The latter two terms in Equation (13) rely on the difference between the relative
distance l between the AV and the leading vehicle in the same lane in the longitudinal
direction and the desired relative distance ld to achieve safe distance control.

(4) Terminal-related reward Rt: When the AV meets the required conditions during
the simulation, the whole process will be terminated. We divid the termination
requirements into two parts: positive reward value and negative reward value (for
penalty use), which can be represented by

Rt =

−α9 · P1 i f collision or o f f road
α10 · P2 i f completes the desired goal
0 otherwise

(14)

where P1, P2 is set to have large positive values. If the AV collides or leaves the lane, a
larger negative penalty will be utilized. Instead, whenever it successfully completes
the expected LC task and drives to the desired target position, a larger positive reward
is deployed.

Overall, the final reward function can be formulated by the summation of the weighted
sum of the above sub-goals and the constant term c in the following way

R = w1Re + w2Rc + w3Rs + w4Rt + c (15)

where c motivates the vehicle to drive forward; wi represents the weight value of the four
reward items, usually set between (0, 1), and the size of the weight value symbolizes the
proportion of the corresponding reward item in the total reward formula, which needs to
be manually set and adjusted.

Mathematics 2022, 10, 1551 10 of 24

5. Methodology

We first describe the algorithm architecture of the proposed LC strategy in this section.
Then, we introduce methods to improve the driving safety from the external (SR + SP) and
internal (TM) aspects of the agent. Finally, we describe the method (DPBRS) to improve the
agent learning and driving efficiency.

5.1. Decision-Making Strategy Algorithm Architecture

The algorithm architecture of the proposed autonomous LC decision-making strategy
is illustrated in Figure 5. Through the sensor data in Prescan/Simulink, the real-time states
xov and xe of all vehicles in the environment can be evaluated. The agent first initiates
continuous actions (such as steer, throttle, and brake) at each time step, which will go
through the inspection of the SR module. If driving safety is assured, these actions will be
executed, or will be otherwise replaced with the prescribed safer actions. In addition, the
SP model developed with LSTM will predict the future multi-step state vectors according
to the current state action pair of the agent. By judging the dangerous situations (collision
or offroad) of the future state vectors, a negative reward value is penalized in the reward
function in the agent. The reward, as the result of the interaction of the environment, is
then fed back to the agent after the implementation of DPBRS. The agent next combines the
normalized states with the action and reward to establish a mini-batch of each time step,
and employs the DDPG algorithm along with the TM method for data storage and training.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 25

the normalized states with the action and reward to establish a mini-batch of each time
step, and employs the DDPG algorithm along with the TM method for data storage and
training.

Figure 5. System architecture of the proposed RL algorithm.

5.2. Safety Enhancement
5.2.1 Safety Rules (SR) + Safety Prediction (SP) Module

During the training process, the agent will learn to keep trying interactions with the
environment. However, in real driving situations, leaving the lane and colliding are risky
behaviors that must be avoided at all times. Even in training, it is necessary to prevent
these from happening. Improving the driving safety of the agent from the perspective of
improving the learning process cannot obtain sufficient trust. In order to ensure safer driv-
ing behavior, it is necessary to introduce SR related to hard constraints as a low-level
safety layer. When the current state of the ego vehicle meets the constraints of the estab-
lished safety layer, it will execute the constraint action in the SR module. Otherwise, it will
directly execute the output action of the neural network. We design the following SR mod-
ule [47,48] by considering two aspects of collision and offroad. The chart flow of the SR
module is illustrated in .

Figure 6. Safety Rules module.

1) The minimum safe distance from the leading vehicle _leading mind
: When the speed of

the AV exceeds that of the leading vehicle driving in the same lane and the minimum
safety distance between the two vehicles is breached, it is highly probable that a col-
lision will occur if a certain deceleration maneuver is not performed. To avoid this,

the minimum safe time interval mint can be introduced to satisfy:

min

2()
: front

dmax

v v
t inf t t

a
−

= >

 (16)

where v and frontv represent the speeds of the AV and the leading vehicle in the same

lane, respectively, and dmaxa implies the maximum deceleration of the AV. Correspond-

ingly, the minimum safety distance leading_mind should also satisfy:

Figure 5. System architecture of the proposed RL algorithm.

5.2. Safety Enhancement
5.2.1. Safety Rules (SR) + Safety Prediction (SP) Module

During the training process, the agent will learn to keep trying interactions with the
environment. However, in real driving situations, leaving the lane and colliding are risky
behaviors that must be avoided at all times. Even in training, it is necessary to prevent
these from happening. Improving the driving safety of the agent from the perspective
of improving the learning process cannot obtain sufficient trust. In order to ensure safer
driving behavior, it is necessary to introduce SR related to hard constraints as a low-
level safety layer. When the current state of the ego vehicle meets the constraints of the
established safety layer, it will execute the constraint action in the SR module. Otherwise, it
will directly execute the output action of the neural network. We design the following SR
module [47,48] by considering two aspects of collision and offroad. The chart flow of the
SR module is illustrated in Figure 6.

(1) The minimum safe distance from the leading vehicle dleading_min: When the speed of
the AV exceeds that of the leading vehicle driving in the same lane and the minimum
safety distance between the two vehicles is breached, it is highly probable that a

Mathematics 2022, 10, 1551 11 of 24

collision will occur if a certain deceleration maneuver is not performed. To avoid this,
the minimum safe time interval tmin can be introduced to satisfy:

tmin = in f

{
t : t >

2(v− v f ront)

admax

}
(16)

where v and v f ront represent the speeds of the AV and the leading vehicle in the
same lane, respectively, and admax implies the maximum deceleration of the AV.
Correspondingly, the minimum safety distance dleading_min should also satisfy:

dleading_min = (v− v f ront)× tmin (17)

∆dleading = |xav − xleading| (18)

where xleading, xav represent the horizontal coordinates of the leading vehicle in the
same lane and the AV, respectively. When the relative distance between the two
vehicles ∆dleading is less than the minimum safe distance dleading_min, the AV will
attain the maximum deceleration −admax. Otherwise, the AV will directly execute the
throttle and brake pressure output by the neural network to accelerate and decelerate.

(2) The minimum safe distance from the vehicle in the target lane dtarget_min: When the
AV attempts to change lanes, it is essential to determine whether the relative distance
between itself and the front vehicle or the behind vehicle in the target lane meets
the minimum safe distance requirement. Similarly, the minimum safe time interval
between the AV and the front and behind vehicles in the target lane are t f ront_min and
tbehind_min, respectively:

t f ront_min = in f

{
t : t >

2(v− vtarget_ f ront)

admax

}
(19)

tbehind_min = in f

{
t : t >

2(vtarget_behind − v)
admax

}
(20)

where vtarget_ f ront, vtarget_behind represent the speed of the front and behind vehicles in
the target lane, respectively. Correspondingly, the minimum safe distance between
the vehicle in the target lane and the AV dtarget_min can be described as:

dtarget_min = min
{

(v− vtarget_ f ront)× t f ront_min,
(vtarget_behind − v)× tbehind_min

}
(21)

∆dtarget = min
{
|xav − xtarget_ f ront|, |xav − xtarget_behind|

}
(22)

where xtarget_ f ront, xtarget_behind represent the horizontal coordinates of the front and
behind vehicles in the target lane, respectively. If the distance between the vehicle in
the target lane and the AV ∆dtarget is less than the minimum safety distance dtarget_min,
the steering wheel angle is maintained for lane keeping. Otherwise, the AV will
perform lane changing actions according to the steering wheel angle output by the
neural network.

(3) Avoid leaving the road: Besides collision, leaving the road is also a dangerous driving
behavior in real traffic scenarios. When the AV is about to leave the road, the maximum
reverse angle is exploited to keep it driving in the same lane at the same speed.
Inherently, similar operations will be implemented when the AV is in the opposite
lane. The corresponding formula is described as follows:

Asteer_sa f e =

{
min{Asteer} i f leave the le f t road line

max{Asteer} i f leave the right road line
(23)

Mathematics 2022, 10, 1551 12 of 24

where min{Asteer}, max{Asteer} represent the minimum and maximum steering
wheel angles taken by the AV when it is about to leave the left and right road lanes,
respectively. According to the description of the MDP model action space, min{Asteer}
and max{Asteer} are equal to −20 degrees and 20 degrees.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 25

the normalized states with the action and reward to establish a mini-batch of each time
step, and employs the DDPG algorithm along with the TM method for data storage and
training.

Figure 5. System architecture of the proposed RL algorithm.

5.2. Safety Enhancement
5.2.1 Safety Rules (SR) + Safety Prediction (SP) Module

During the training process, the agent will learn to keep trying interactions with the
environment. However, in real driving situations, leaving the lane and colliding are risky
behaviors that must be avoided at all times. Even in training, it is necessary to prevent
these from happening. Improving the driving safety of the agent from the perspective of
improving the learning process cannot obtain sufficient trust. In order to ensure safer driv-
ing behavior, it is necessary to introduce SR related to hard constraints as a low-level
safety layer. When the current state of the ego vehicle meets the constraints of the estab-
lished safety layer, it will execute the constraint action in the SR module. Otherwise, it will
directly execute the output action of the neural network. We design the following SR mod-
ule [47,48] by considering two aspects of collision and offroad. The chart flow of the SR
module is illustrated in .

Figure 6. Safety Rules module.

1) The minimum safe distance from the leading vehicle _leading mind
: When the speed of

the AV exceeds that of the leading vehicle driving in the same lane and the minimum
safety distance between the two vehicles is breached, it is highly probable that a col-
lision will occur if a certain deceleration maneuver is not performed. To avoid this,

the minimum safe time interval mint can be introduced to satisfy:

min

2()
: front

dmax

v v
t inf t t

a
−

= >

 (16)

Figure 6. Safety Rules module.

Due to the diversity of the driving behavior of the surrounding vehicles, the longi-
tudinal restrictions by the SR module may not be enough to avoid the occurrence of the
collision. On the other hand, it may over-constrain an AV’s transient motions [17]. In order
to further improve safety and accelerate the learning process of the agent, we trained a
LSTM network model to predict the future state of the AV. By judging the unsafe future
states within the specified step size, the reward function of the RL model is granted by a
corresponding penalty.

(1) LSTM training: We utilize the state–action data of the RL model in 3000 rounds with
the SR module in the test set as the training data of the LSTM prediction model in
Figure 7. The state–action pairs in the last five simulation steps are employed as the
input of the LSTM prediction model, and its output predicts the state vectors of the
next five steps.

(2) Judgment of the future states: If there are any dangerous states (collision or offroad)
in the next five steps predicted by the LSTM prediction model, we store the state
information of the next step in the TM and offer the reward function a larger penalty
value of −RLSTM

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 25

where min{ }steerA , max{ }steerA represent the minimum and maximum steering wheel angles
taken by the AV when it is about to leave the left and right road lanes, respectively. Ac-
cording to the description of the MDP model action space, min{ }steerA and max{ }steerA are
equal to −20 degrees and 20 degrees.

Due to the diversity of the driving behavior of the surrounding vehicles, the longitu-
dinal restrictions by the SR module may not be enough to avoid the occurrence of the
collision. On the other hand, it may over-constrain an AV’s transient motions [17]. In order
to further improve safety and accelerate the learning process of the agent, we trained a
LSTM network model to predict the future state of the AV. By judging the unsafe future
states within the specified step size, the reward function of the RL model is granted by a
corresponding penalty.
1) LSTM training: We utilize the state–action data of the RL model in 3000 rounds with

the SR module in the test set as the training data of the LSTM prediction model in .
The state–action pairs in the last five simulation steps are employed as the input of
the LSTM prediction model, and its output predicts the state vectors of the next five
steps.

Figure 7. Safety Prediction module.

2) Judgment of the future states: If there are any dangerous states (collision or offroad)
in the next five steps predicted by the LSTM prediction model, we store the state
information of the next step in the TM and offer the reward function a larger penalty
value of LSTMR−

5.2.2 Trauma Memory (TM)
In the typical DDPG method, the replay memory experience pool will store the re-

lated sample 1(, , ,)t t t ts a r s + in each time step for training. Since vehicle collisions rarely
occur with regard to SR, there are only a few collision-related state sets in the pool. As a
result, these data will be adopted with a small probability during training. This can lead
to insufficient learning opportunities in the training for collision avoidance. When faced
with emergencies such as collisions, rule-based safety constraints are difficult in making
reasonable and effective safety decisions. Therefore, to improve the safety, the learning
efficiency, and the convergence speed, the TM [16] method was employed. When a colli-
sion occurs during training, the sample 1(, , ,)t t t ts a r s +′ ′ ′ ′ in the current time step is stored
in a separate experience pool (named the “Trauma Memory Experience Pool”) to construct
“dual experience pools” for sampling training. During this training, parts of samples are
randomly selected from the replay memory pool while a fixed number are chosen from
the TM related to imminent events. The corresponding loss function can be described as
follows:

2 2

2 21
(((, |)) ((, |)))

i i

i i i

replay trauma

replay trauma

i B i B

i i ii B i B

L

y Q s a y Q s a
M

ϕ ϕ

δ δ

θ θ

∈ ∈

∈ ∈

= +

= − + −

 (24)

where replayB and traumaB denote the original replay and the TM experience pool, re-

spectively. iδ denotes the time difference error; M denotes the number of samples for

Figure 7. Safety Prediction module.

5.2.2. Trauma Memory (TM)

In the typical DDPG method, the replay memory experience pool will store the related
sample (st, at, rt, st+1) in each time step for training. Since vehicle collisions rarely occur
with regard to SR, there are only a few collision-related state sets in the pool. As a result,
these data will be adopted with a small probability during training. This can lead to
insufficient learning opportunities in the training for collision avoidance. When faced
with emergencies such as collisions, rule-based safety constraints are difficult in making
reasonable and effective safety decisions. Therefore, to improve the safety, the learning
efficiency, and the convergence speed, the TM [16] method was employed. When a collision

Mathematics 2022, 10, 1551 13 of 24

occurs during training, the sample (s′t, a′t, r′t, s′t+1) in the current time step is stored in
a separate experience pool (named the “Trauma Memory Experience Pool”) to construct
“dual experience pools” for sampling training. During this training, parts of samples are
randomly selected from the replay memory pool while a fixed number are chosen from
the TM related to imminent events. The corresponding loss function can be described as
follows:

L = ∑i∈Breplay
δ2

i + ∑i∈Btrauma δ2
i

= 1
M (∑i∈Breplay

(yi −Q(si, ai|θϕ))2 + ∑i∈Btrauma (yi −Q(si, ai|θϕ))2)
(24)

where Breplay and Btrauma denote the original replay and the TM experience pool, respec-
tively. δi denotes the time difference error; M denotes the number of samples for batch
gradient descent; and yi denotes the current target Q value. The collision-related sets are
then randomly sampled from the dual pools of a fixed number (64 and 20, respectively) for
training. This can continuously remind the agent of collision-related memories, especially
for those dangerous emergencies in the experience pool that cannot be considered by
rule-based safety constraints, and help it learn to reduce the possibility of such events with
reasonable and effective actions. Eventually, through such accurate and effective evaluation
of collision avoidance behaviors, driving efficiency and safety can be greatly strengthened.

5.3. Efficiency Improvement

When implementing the manually tuned reward functions, it has to face a sparsity
problem of rewards, which inevitably results in slow convergence rates of the algorithm.
More precisely, the agent needs to spend plenty of time frequently interacting with the
environment for data sampling, and thus it becomes difficult to learn the optimal strategy
from those limited number of samples. If the agent is simply rendered an additional
positive reward after it approaches the final goal or accomplishes the sub-goal, it would
find “flaws” and continue to wander around the sub-goal, consequently, unable to learn
the optimal strategy.

To this end, by relying on the original reward function, we incorporat a potential-based
reward [49] to formulate a new reward criterion by R′ = R(s, a, s′) + βF(s, a, s′). More
specifically, in addition to the environment reward signals, PBRS learns a reward-shaping
function F : S× A× S′ → R to render auxiliary rewards, provided that the additional
rewards contain external knowledge to guide the agent toward better action selections.
Intuitively, the reward-shaping strategy will assign higher rewards to more beneficial
state–action pairs, which can navigate the agent to the desired trajectories. The real-valued
function F can be expressed in the form of potential difference as:

F(s, a, s′) = γφ(s′)− φ(s) (25)

where the potential function is defined as the mapping from the state to real-number
by φ : S→ R , and γ denotes the discount factor. This provides a sufficient and neces-
sary condition for guaranteeing the consistency of the optimal strategies evaluated after
(H′ = (S, A, T, γ, R + F)) and before (H = (S, A, T, γ, R)) reward shaping of the MDP model.
φ(s) is a potential function with state parameter s.

To allow for potential-based reward shaping for a dynamic potential function, we use
time t as an additional parameter of the potential function φ in Equation (25):

F(s, a, s′) = γφ(s′, t′)− φ(s, t) (26)

where t and t′ represent the time the agent to the previous state s and to the current state
s′(i.e., t <t′), respectively. Because the potential difference is calculated based on the state
potential of the agent, the introduction of the time parameter t does not change the agent’s
policy invariance or consistent Nash equilibria.

Mathematics 2022, 10, 1551 14 of 24

Moreover, the optimal Q functions Q* in the original and transformed MDP are related
by the potential function φ:

Q∗H′(s, a) = Q∗H(s, a)− φ(s, t) (27)

which draws a connection between PBRS and advantage-based learning approaches. t is
the current time.

In our case, a real potential value is assigned to each state of the vehicle in the y-
direction. For instance, a positive reward was adopted when driving from a place with
low potential energy to that with high potential energy; otherwise the negative reward
with equal size is utilized. From the perspective of momentum potential energy in physics,
this can also encourage the agent to always move to the target position with the highest
potential energy, which helps to speed up the learning process.

The detailed process of the DSSTD algorithm is shown in Algorithm 1. Its input
hyperparameters include the number of training episodes E, learning rate τ, etc., and the
output is the LC control policy. In the initial phase of each round of agent training, the
reinforcement learning algorithm randomizes parameters (such as θϕ, θµ, etc.) in order to
make the agent explore the environment state space more uniformly during the training
process and reduce the correlation of the collected samples, which is conducive to learning
the effective strategy distribution.

Algorithm 1. DSSTD Algorithm.

1: Initialize the weights θϕ and θµ

2: Initialize the weights θµ′ ← θµ and θϕ′ ← θϕ

3: Initialize buffers:Breplay, Btrauma
4: For episode = 1, E do
5: Initialize noise value N
6: Obtain state–action information
7: Receive initial state s1
8: For t = 1, T do
9: Select the output action at
10: If the conditions are met

at = asa f er
11: Execute action at and obtain reward rt and next state st+1
12: Store transitions (st, at, rt, st+1) and (s′ t, a′ t, r′ t, s′ t+1) in Breplay and Btrauma
13: Use LSTM to predict st+2, st+3, . . . , st+k
14: If conditions are met

rt ←−RLSTM
15: Store transition (s′ t, a′ t,−RLSTM , s′ t+1) in Btrauma
16: Sample minibatchs (st, at, rt, st+1) and (s′ t, a′ t, r′ t, s′ t+1) from Breplay and Btrauma
17: Calculate loss function and Q value Q(si , ai |θϕ)
18: Update critic network
19: Update output strategy
20: Update AC networks
21: end for
22: end for
23: end while

6. Experimental Evaluation

In this section, the performance of the proposed LC decision-making strategy is
verified on the dual-computer co-simulation platform by comparative simulations. We first
present the simulation setup and the corresponding hyperparameter value settings. Then,
we describe the initial setup of the scenario and the driving model of surrounding vehicles.
Finally, we discuss the training result and test result in terms of driving safety, learning
efficiency, and comfort.

6.1. Simulation Setup

Our proposed algorithm is implemented on a self-built dual-computer co-simulation
platform. One host uses the Windows operating system to build the traffic training scenario

Mathematics 2022, 10, 1551 15 of 24

in Prescan and constructed the vehicle low-level control model in MATLAB/Simulink.
The other host employs the Ubuntu operating system to run the algorithm written in
TensorFlow. Both two hosts adopt User Data Protocol (UDP) command and are connected
via the Ethernet to establish communication, which can realize their data transmission. The
diagram of the simulation platform is shown in Figure 8.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 25

in TensorFlow. Both two hosts adopt User Data Protocol (UDP) command and are con-
nected via the Ethernet to establish communication, which can realize their data transmis-
sion. The diagram of the simulation platform is shown in .

Figure 8. RL co-simulation platform.

The state information in the Prescan traffic scenario is transmitted in real-time to the
proposed algorithm in Ubuntu as the input value of the neural network. Then, the action
value evaluated by the network is fed back to the vehicle low-level control module in
MATLAB/Simulink. The corresponding actions are executed in the Prescan environment
of host 1 based on the control demand transmitted from host 2. Thereby, the state of the
next step of the AV is updated and cyclic transition can be realized. The single step time
of the simulating episode is illustrated in . At the beginning of the episode, there is a
slightly longer feedback time, and the average single step time for the entire episode was
0.045s.

Figure 9. Single step time of the co-simulation platform.

Note that RL algorithms are adopted to only manipulate the driving behaviors for
the AV. For the simulation setup, the maximum simulation time is set to 20s, and the step
size is set to 0.1s. Fully considering the model complexity and the computation costs, the
three hidden layers and their corresponding node numbers are selected as (64, 64, 32). The
learning rates of the Actor and Critic are set to 0.001 and 0.002, respectively. The discount
factor and soft updating rate are set to 0.99 and 0.001, respectively. For the implementation

of the TM method, we set the mini-batch to have a 64 batch size from replayB and 20 batch

size from traumaB during training. Due to the limitation of the computational cost, most
hyperparameters are not adjusted systematically, but selected so that the satisfying train-
ing results could be met. The key hyperparameters set for the RL training process are
listed in Table 2.

Figure 8. RL co-simulation platform.

The state information in the Prescan traffic scenario is transmitted in real-time to the
proposed algorithm in Ubuntu as the input value of the neural network. Then, the action
value evaluated by the network is fed back to the vehicle low-level control module in
MATLAB/Simulink. The corresponding actions are executed in the Prescan environment
of host 1 based on the control demand transmitted from host 2. Thereby, the state of the
next step of the AV is updated and cyclic transition can be realized. The single step time of
the simulating episode is illustrated in Figure 9. At the beginning of the episode, there is a
slightly longer feedback time, and the average single step time for the entire episode was
0.045 s.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 25

in TensorFlow. Both two hosts adopt User Data Protocol (UDP) command and are con-
nected via the Ethernet to establish communication, which can realize their data transmis-
sion. The diagram of the simulation platform is shown in .

Figure 8. RL co-simulation platform.

The state information in the Prescan traffic scenario is transmitted in real-time to the
proposed algorithm in Ubuntu as the input value of the neural network. Then, the action
value evaluated by the network is fed back to the vehicle low-level control module in
MATLAB/Simulink. The corresponding actions are executed in the Prescan environment
of host 1 based on the control demand transmitted from host 2. Thereby, the state of the
next step of the AV is updated and cyclic transition can be realized. The single step time
of the simulating episode is illustrated in . At the beginning of the episode, there is a
slightly longer feedback time, and the average single step time for the entire episode was
0.045s.

Figure 9. Single step time of the co-simulation platform.

Note that RL algorithms are adopted to only manipulate the driving behaviors for
the AV. For the simulation setup, the maximum simulation time is set to 20s, and the step
size is set to 0.1s. Fully considering the model complexity and the computation costs, the
three hidden layers and their corresponding node numbers are selected as (64, 64, 32). The
learning rates of the Actor and Critic are set to 0.001 and 0.002, respectively. The discount
factor and soft updating rate are set to 0.99 and 0.001, respectively. For the implementation

of the TM method, we set the mini-batch to have a 64 batch size from replayB and 20 batch

size from traumaB during training. Due to the limitation of the computational cost, most
hyperparameters are not adjusted systematically, but selected so that the satisfying train-
ing results could be met. The key hyperparameters set for the RL training process are
listed in Table 2.

Figure 9. Single step time of the co-simulation platform.

Note that RL algorithms are adopted to only manipulate the driving behaviors for
the AV. For the simulation setup, the maximum simulation time is set to 20 s, and the step
size is set to 0.1 s. Fully considering the model complexity and the computation costs, the
three hidden layers and their corresponding node numbers are selected as (64, 64, 32). The
learning rates of the Actor and Critic are set to 0.001 and 0.002, respectively. The discount
factor and soft updating rate are set to 0.99 and 0.001, respectively. For the implementation
of the TM method, we set the mini-batch to have a 64 batch size from Breplay and 20 batch
size from Btrauma during training. Due to the limitation of the computational cost, most
hyperparameters are not adjusted systematically, but selected so that the satisfying training
results could be met. The key hyperparameters set for the RL training process are listed
in Table 2.

Mathematics 2022, 10, 1551 16 of 24

Table 2. Parameter setting of the DRL process.

Parameters Values

Discount factor 0.99
Actor network learning rate 0.001
Critic network learning rate 0.002

Size of hidden layers (64, 64, 32)
Optimization algorithm type Adam

Size of replay memory 1e5
Size of trauma memory 1e3

Batch size of replay memory 64
Batch size of trauma memory 20

Soft updating rate 0.001
Exploration 0.1

6.2. Initial Scenario and Surrounding Vehicles Driving Model

In the simulation scenario, the initial velocity of the AV (in red) is 10 m/s and the
speeds of the surrounding vehicles (in blue) are randomly selected between 8 m/s and
12 m/s. The desired velocity of the AV is 23 m/s, and the velocity of the surrounding
vehicles is limited to 20 m/s. The length and width of each vehicle are 4 m and 1.96 m,
respectively. At the beginning, the AV drives in lane L3 with a length of 20 m, and the three
surrounding vehicles drive in lanes L1 and L2, each with a length of 100 m.

As described previously, the surrounding vehicles use a driving model that combined
IDM and MOBIL. IDM is used to evaluate the longitudinal acceleration for car-following
and adaptive cruise controls of AVs, which can be written as:

..
x = amax[1− (

.
x

.
xsur

)
λ

− (
g0 + Tgap

.
x +

.
x∆

.
x

2
√

amaxb

g
)

2

] (28)

where x is the displacement in the longitudinal direction of the vehicle;
.
x and

..
x are the

longitudinal velocity and acceleration of the vehicle, respectively;
.
xsur is the expected

velocity of the surrounding vehicles; and g is the relative distance between AV and the
leading vehicle in the same lane. Note that the model parameters λ, g0, Tgap, amax, and b are
given within reason.

MOBIL is deployed to generate the LC command by evaluating the feasibility of the
LC intention. It controls the LC behavior of the surrounding vehicles in the lateral direction,
which can be realized by satisfying:

..
xn ≥ −bsa f e

..
xc −

..
xc + ε(

..
xn −

..
xn +

..
xo −

..
xo) > ∆ath

(29)

where
..
x and

..
x represent the current state and the transition state of the vehicle LC, respec-

tively. The subscript c indicates the vehicle that will execute the LC action. The subscripts
n, o indicate the following vehicles after and before the LC, respectively. The model param-
eters ε and ∆ath were set within the reasonable range. The detailed parameter setting of
IDM and MOBIL and the traffic scenario [45] are listed in Table 3.

Mathematics 2022, 10, 1551 17 of 24

Table 3. Parameter setting of the scenario and the motion model of the surrounding vehicles.

Symbol Parameters Values

Length of three-lane l1 80 m
Length of two-lane l2 100 m

Length of converging-lane l3 20 m
Width of road w 3.5 m

Length of vehicle lv 4 m
Width of vehicle wv 1.96 m

Initial velocity of the AV v0 10.0 m/s
Desired velocity of the AV vd 23.0 m/s

Initial velocity of surrounding vehicles v′0 [8~12] m/s
Limit velocity of surrounding vehicles vmax 20.0 m/s

Actual acceleration of the AV
..
x /

Actual velocity of the AV
.
x /

Desired velocity of surrounding vehicles
.
xsur 15.0 m/s

Actual relative velocity ∆
.
x /

Desired time gap Tgap 1.0 s
Minimum relative distance g0 10.0 m

Actual relative distance g /
Maximum acceleration amax 2.0 m/s2

Desired deceleration b (−)1.0 m/s2

Acceleration in transition state ..
x /

Safe deceleration limit bsa f e 1.0 m/s2

Acceleration argument λ 4
the vehicle that will execute the LC c /
the following vehicles after the LC n /

the following vehicles before the LC o /
Politeness factor ε 0.001

Acceleration threshold ∆ath 0.2 m/s2

6.3. Training Results

In our simulation, the agent is trained for 10,000 episodes.
In the training, we implemented and compare five algorithms including traditional

DDPG, PPO, improved DDPG + SR + TM (DST), DDPG + SR + TM + DPBRS (DSTD), and
DDPG + SR + SP + TM + DPBRS (DSSTD). We evaluated the stability of the proposed
DSSTD model as shown in Figure 10. The average rewards obtained by the agent under
different tactics are compared in Figure 11.

(1) Evaluation of the proposed DRL model: To evaluate the stability of the proposed
DRL model, we investigated the average Q value of the Actor network and the
loss value of the Critic network in the DSSTD model during training. As shown
in Figure 10a, the average Q value finally converged to the maximum value (9.86)
around 4000 episodes. It could also be observed from Figure 10b that the loss values
converged to the minimum value (0.33) around 4000 episodes. The result of the above
converging phenomenon was well consistent with the stability performance of the
DSSTD model, as shown in Figure 11. This demonstrated that our DSSTD model had
good stability, and furthermore, the trained Actor network could output the action
with the largest expected Q value and attain considerable cumulative returns. It is
necessary to explain that the curve often experiences fluctuation in a smaller range
after it converges, which could also be found on other studies [22].

(2) Discussion on reward function: From Figure 11, it can be seen that as the training
simulation progressed, the cumulative average rewards of the traditional DDPG or
PPO algorithms gradually increased and eventually converged to be stable around
8000 episodes. If more training episodes are available, the traditional RL rewards
tend to have fewer fluctuations after convergence, but may experience the divergence
problem. Prior to being stabilized, they are prone to relatively large fluctuations
around 7000 episodes and their convergence speeds were almost the same. The fact

Mathematics 2022, 10, 1551 18 of 24

that a higher reward of PPO is granted indicates that its driving strategy outperformed
traditional DDPG in safety and speed.

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 26

(a)

(b)

Figure 10. The evaluation of the proposed DRL model. (a) the average Q value curve for evaluat-
ing the stability of DSSTD model. (b) the loss value curve for evaluating the stability of DSSTD
model.

Figure 10. The evaluation of the proposed DRL model. (a) the average Q value curve for evaluating
the stability of DSSTD model. (b) the loss value curve for evaluating the stability of DSSTD model.

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 26

Figure 11. The average reward curve of the proposed RL algorithm and the traditional RL algo-
rithm.

1) Evaluation of the proposed DRL model: To evaluate the stability of the proposed
DRL model, we investigated the average Q value of the Actor network and the loss
value of the Critic network in the DSSTD model during training. As shown in Figure
10a, the average Q value finally converged to the maximum value (9.86) around 4,000
episodes. It could also be observed from Figure 10b that the loss values converged to
the minimum value (0.33) around 4,000 episodes. The result of the above converging
phenomenon was well consistent with the stability performance of the DSSTD model,
as shown in Figure 11. This demonstrated that our DSSTD model had good stability,
and furthermore, the trained Actor network could output the action with the largest
expected Q value and attain considerable cumulative returns. It is necessary to ex-
plain that the curve often experiences fluctuation in a smaller range after it converges,
which could also be found on other studies [22].

1) Discussion on reward function: From Figure 11, it can be seen that as the training
simulation progressed, the cumulative average rewards of the traditional DDPG or
PPO algorithms gradually increased and eventually converged to be stable around
8000 episodes. If more training episodes are available, the traditional RL rewards
tend to have fewer fluctuations after convergence, but may experience the divergence
problem. Prior to being stabilized, they are prone to relatively large fluctuations
around 7000 episodes and their convergence speeds were almost the same. The fact
that a higher reward of PPO is granted indicates that its driving strategy outper-
formed traditional DDPG in safety and speed.
To prevent dangerous incidents as much as possible, SR and TM approaches were

next implemented. Under the setting of fixed-length episodes, the rewards of DST con-
verged faster than the traditional ones. Additionally, they stabilized around 5,500 epi-
sodes and the corresponding values were also much higher.

Finally, with the DPBRS technique, the result showed that DSTD had a faster conver-
gent rate than DST and eventually stabilized around 4,000 episodes with less fluctuation.
The resulting cumulative return was also higher than the other three. In addition, DSSTD
also tended to converge around 4,000 episodes and the average reward value (around 110)
was greater than DSTD (around 90). Hence, it can be concluded that the DSSTD algorithm

Figure 11. The average reward curve of the proposed RL algorithm and the traditional RL algorithm.

Mathematics 2022, 10, 1551 19 of 24

To prevent dangerous incidents as much as possible, SR and TM approaches were next
implemented. Under the setting of fixed-length episodes, the rewards of DST converged
faster than the traditional ones. Additionally, they stabilized around 5500 episodes and the
corresponding values were also much higher.

Finally, with the DPBRS technique, the result showed that DSTD had a faster conver-
gent rate than DST and eventually stabilized around 4000 episodes with less fluctuation.
The resulting cumulative return was also higher than the other three. In addition, DSSTD
also tended to converge around 4000 episodes and the average reward value (around 110)
was greater than DSTD (around 90). Hence, it can be concluded that the DSSTD algorithm
could have the most efficiency and the maximum long-term rewards in solving LC decision
making problem.

6.4. Test Result

The training associated with the above five algorithms was performed for 500 rounds.
The traditional DDPG and PPO used the MATLAB/Simulink RL toolbox for training and
testing on the standalone computer simulation platform. DST and DSSTD were trained and
tested on the proposed dual-computer co-simulation platform, in which the algorithm could
be optimized flexibly and conveniently and the trained agent can probably be implemented
for the actual vehicle experiment. The overall test results were compared in Table 4.

Table 4. Comparison of different methods in the test.

Algorithm DDPG PPO DST DSTD DSSTD

Lane change success rate (%) 87.6 90 98.8 98.4 100
Collision or off-road counts 59 48 6 8 0

Average speed (m/s) 22.3 22.62 22.48 23.12 23.03

Next, the analysis of the simulation results is presented in the following three respects:
safety, driving efficiency, and comfort.

(1) Safety: Here, four indicators including LC success rate, collision or off-road counts,
the minimum distance to the leading vehicle, and the TTC, were utilized to evaluate
the safety of AV during LC in the test round.

From Table 4, it can be shown that the traditional DDPG and PPO did not perform
well in the test rounds. For example, DDPG achieved an 87.6% LC success rate, and
had 59 collisions or offroad. In the other hand, the performance of PPO was slightly
improved since the LC success rate and collision/offroad counts were 90% and 48 times,
respectively. It is worth noting that most of the dangerous events such as collisions that
occurred during the test round also took place during the lane-changing process. This
indicates that the decision-making strategy that the agent has learned must not be optimal.
Once encountering the situations with small vehicles gap and relative high speed, the agent
may fail to make appropriate adjustment measures. In particular, excessive LC behavior or
not slowing down could easily bring about a collision accident. Therefore, a LC success rate
of about 90% was far from enough for real driving behavior. Comparing the traditional RL
algorithm, the LC success rate of DST increased up to 98.8%. Collision or offroad counting
dropped to six times. Obviously, DST with SR + TM achieved a great improvement in
driving safety. Using DSTD, a 98.4% lane change success rate and eight collisions could
be achieved. This result shows that DPBRS had no effect on driving safety. However, the
DSSTD with SP model could guarantee 100% lane change success rate and 0 collisions.
Compared with DSTD, the prediction method of the SP model greatly improved the driving
safety and the lane change success rate during the test.

In the test round, the minimum relative distances of the five candidates were compared
and are presented in Table 5. The minimum relative distances specified to surrounding
vehicle 3 by DDPG and surrounding vehicle 1 by PPO were 7.8 m and 8.6 m, respectively,
which were far below the safety margin (10 m). In contrast, the minimum relative distance

Mathematics 2022, 10, 1551 20 of 24

designated to surrounding vehicle 3 by DSTD and DSSTD were 12.0 m and 12.2 m, respec-
tively, which were 0.8% and 1.6%, respectively, higher than 12.1 m regarding the distance
specified to surrounding vehicle 2 by the DST. The proposed DSSTD algorithm allowed the
AV to have sufficient space for optimal LC maneuvers.

Table 5. Minimum relative distance to the leading vehicle.

Relative Distance (m) DDPG PPO DST DSTD DSSTD

Surrounding vehicle 1 9.5 8.6 14.5 14.7 15.0
Surrounding vehicle 2 9.2 10.1 12.1 12.6 14.8
Surrounding vehicle 3 7.8 9.9 12.8 12.0 12.2

TTC (Time-to-Collision) often serves as one of the indicators for safety evaluation
during driving. Van et al. [47] analyzed the relationship between TTC information and
collision probability to evaluate an empirical value of 1.5 s. When TTC is less than 1.5 s,
the collision probability will be greatly increased. From observing the TTC distribution in
Figure 12 (excluding the data with TTC greater than 8.5 s), it can be found that nearly 5.63%
of the TTC distribution by DDPG were between 0 s and 1.5 s, which was larger than the
result of PPO 4.48%. In contrast, the minimum values of TTC by DST and DSSTD were both
around 1.8 s, which was much bigger than the red line of 1.5 s. Therefore, our proposed
DST and DSSTD performed better in reducing the overall collision risk when faced with an
emergency than the traditional DRL algorithms.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 26

Surrounding vehicle 1 9.5 8.6 14.5 14.7 15.0
Surrounding vehicle 2 9.2 10.1 12.1 12.6 14.8
Surrounding vehicle 3 7.8 9.9 12.8 12.0 12.2

TTC (Time-to-Collision) often serves as one of the indicators for safety evaluation
during driving. Van et al. [47] analyzed the relationship between TTC information and
collision probability to evaluate an empirical value of 1.5 s. When TTC is less than 1.5 s,
the collision probability will be greatly increased. From observing the TTC distribution in
Figure 12 (excluding the data with TTC greater than 8.5 s), it can be found that nearly
5.63% of the TTC distribution by DDPG were between 0 s and 1.5 s, which was larger than
the result of PPO 4.48%. In contrast, the minimum values of TTC by DST and DSSTD were
both around 1.8 s, which was much bigger than the red line of 1.5 s. Therefore, our pro-
posed DST and DSSTD performed better in reducing the overall collision risk when faced
with an emergency than the traditional DRL algorithms.

Figure 12. Distribution of the TTC of the proposed RL algorithm and the traditional RL algorithm.

2) Driving efficiency: The test rounds with an initial speed of 10 m/s were used and the
results of changes in their vehicle speeds during testing are shown in Figure 13. We
regarded the average speed of the ego vehicle as an indicator to evaluate driving
efficiency. The gray dotted line in Figure 13 represents the standard line for the de-
sired speed (also the optimal speed). We hope that the average speed of the ego ve-
hicle can reach the set desired speed value of dv = 23.0 m/s as quickly as possible,
and maintain this stable speed. Among the five strategies, it can be seen that the
speed of the traditional DDPG behaved more fluctuant, and finally stabilized at
about 22 m/s with the lowest driving efficiency. Compared to PPO, the driving effi-
ciency of PPO was slightly higher, and the speed fluctuation was smaller. This shows
that the speed reward item of the traditional algorithm did not finally converge to
the optimal value during the training process, resulting in a difference between the
average speed and the desired speed.

Figure 12. Distribution of the TTC of the proposed RL algorithm and the traditional RL algorithm.

(2) Driving efficiency: The test rounds with an initial speed of 10 m/s were used and
the results of changes in their vehicle speeds during testing are shown in Figure 13.
We regarded the average speed of the ego vehicle as an indicator to evaluate driving
efficiency. The gray dotted line in Figure 13 represents the standard line for the desired
speed (also the optimal speed). We hope that the average speed of the ego vehicle
can reach the set desired speed value of vd = 23.0 m/s as quickly as possible, and
maintain this stable speed. Among the five strategies, it can be seen that the speed of
the traditional DDPG behaved more fluctuant, and finally stabilized at about 22 m/s
with the lowest driving efficiency. Compared to PPO, the driving efficiency of PPO

Mathematics 2022, 10, 1551 21 of 24

was slightly higher, and the speed fluctuation was smaller. This shows that the speed
reward item of the traditional algorithm did not finally converge to the optimal value
during the training process, resulting in a difference between the average speed and
the desired speed.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 25

DDPG behaved more fluctuant, and finally stabilized at about 22 m/s with the lowest
driving efficiency. Compared to PPO, the driving efficiency of PPO was slightly
higher, and the speed fluctuation was smaller. This shows that the speed reward item
of the traditional algorithm did not finally converge to the optimal value during the
training process, resulting in a difference between the average speed and the desired
speed.

Figure 13. The speed curve of the AV in the test round.

It should be noted that due to the role of the SR + TM module, the driving safety of
the AV is greatly improved, and the corresponding driving efficiency will be slightly af-
fected. However, a slight decrease in the average speed of DST (0.62%) was acceptable
since the AV is more inclined to establish safety-oriented driving behaviors. The notable
increase in DSTD average speed (23.12 m/s) illustrates that the implementation of DPBRS
enhanced the training efficiency of the agent corresponding to the speed related reward
function. In addition, regarding driving efficiency, the trained average speed (23.03 m/s)
by DSSTD was also closer to the expected one (23 m/s) than the other four. It can be con-
cluded that the DSSTD algorithm is capable of meeting the LC decision expectations in
both safety and driving efficiency.
3) Comfort: For evaluating the comfort of the AV, we will mainly consider the Jerk

value, which is defined as the time rate of a change of acceleration. It is clear that a
large Jerk value implies a great decrease in driving comfort. According to the reward

function described in Section 4, the maximum Jerk was set as || cmaxa = 2 m/s3. The
result of changes in the Jerk values of the five algorithms is shown in . The maximum
Jerk value of the traditional DDPG was about 2.3 m/s3 slightly higher than the maxi-
mum limit. This indicates that the agent cannot fully learn under the specification of
the comfort-related reward. The results of PPO and DSTD were both around 2 m/s3.
In contrast, that of the DSSTD was 1.81 m/s3, and for DST, it was about 1.65 m/s3,
which was much smaller than the other four. Although DST and DSSTD can both
have steady and smooth acceleration for comfort evaluation, when considering the
testing result of driving efficiency together, the DSSTD was proven to have superior
driving performance in agent training.

Figure 13. The speed curve of the AV in the test round.

It should be noted that due to the role of the SR + TM module, the driving safety of the
AV is greatly improved, and the corresponding driving efficiency will be slightly affected.
However, a slight decrease in the average speed of DST (0.62%) was acceptable since the
AV is more inclined to establish safety-oriented driving behaviors. The notable increase in
DSTD average speed (23.12 m/s) illustrates that the implementation of DPBRS enhanced
the training efficiency of the agent corresponding to the speed related reward function. In
addition, regarding driving efficiency, the trained average speed (23.03 m/s) by DSSTD
was also closer to the expected one (23 m/s) than the other four. It can be concluded that
the DSSTD algorithm is capable of meeting the LC decision expectations in both safety and
driving efficiency.

(3) Comfort: For evaluating the comfort of the AV, we will mainly consider the Jerk
value, which is defined as the time rate of a change of acceleration. It is clear that a
large Jerk value implies a great decrease in driving comfort. According to the reward
function described in Section 4, the maximum Jerk was set as | .acmax| = 2 m/s3. The
result of changes in the Jerk values of the five algorithms is shown in Figure 14. The
maximum Jerk value of the traditional DDPG was about 2.3 m/s3 slightly higher
than the maximum limit. This indicates that the agent cannot fully learn under the
specification of the comfort-related reward. The results of PPO and DSTD were both
around 2 m/s3. In contrast, that of the DSSTD was 1.81 m/s3, and for DST, it was
about 1.65 m/s3, which was much smaller than the other four. Although DST and
DSSTD can both have steady and smooth acceleration for comfort evaluation, when
considering the testing result of driving efficiency together, the DSSTD was proven to
have superior driving performance in agent training.

Mathematics 2022, 10, 1551 22 of 24
Mathematics 2022, 10, x FOR PEER REVIEW 24 of 26

Figure 14. The Jerk curve of the AV in the test round.

7. Conclusions
In this paper, a safe and efficient DRL-based autonomous LC decision-making strat-

egy was proposed. We designed an autonomous LC system based on the traditional
DDPG algorithm and established a corresponding MDP model. In particular, for driving
safety consideration, the Safety Rules (SR) module was adopted to restrict the agent’s ac-
tions and the safety prediction (SP) module was used to predict the future states of the
AV. Trauma memory (TM) was incorporated to the experience replay, so that the occur-
rence of collision events in highway scenarios could be reduced. In addition, we devel-
oped the reward function by utilizing DPBRS to speed up the optimal strategy learning
process. For validation, the proposed method was trained and tested on the dual-com-
puter co-simulation platform. The final simulation results showed that the proposed
DSSTD algorithm enabled the AV to achieve 100% LC success rate and 0 collisions/leave
the road in the preset LC traffic scenario, which yielded better outcomes than other bench-
mark algorithms. The minimum distance to the leading vehicle in the same lane was 12.2
m and the minimum TTC was around 1.8 s, which demonstrates that by using the DSSTD
algorithm, the driving safety of the AV can be ensured. In addition, the average speed in
the test round was 23.03 m/s, which was closer to the desired speed of 23 m/s than other
competitors. This indicates that our approach can achieve better performance in driving
efficiency. In future work, we will deploy the “weights adjustment mechanism” for the
safety and speed related terms in the reward function. The algorithm will be further opti-
mized to improve its robustness to unknown environments and accelerate the learning
process of the agent.

Author Contributions: Conceptualization, K.L.; Investigation, X.P.; Methodology, K.L.; Software,
J.X.; Supervision, C.C.; Validation, J.X.; Writing – original draft, K.L.; Writing – review & editing,
X.P..All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding .

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Figure 14. The Jerk curve of the AV in the test round.

7. Conclusions

In this paper, a safe and efficient DRL-based autonomous LC decision-making strategy
was proposed. We designed an autonomous LC system based on the traditional DDPG
algorithm and established a corresponding MDP model. In particular, for driving safety
consideration, the Safety Rules (SR) module was adopted to restrict the agent’s actions and
the safety prediction (SP) module was used to predict the future states of the AV. Trauma
memory (TM) was incorporated to the experience replay, so that the occurrence of collision
events in highway scenarios could be reduced. In addition, we developed the reward func-
tion by utilizing DPBRS to speed up the optimal strategy learning process. For validation,
the proposed method was trained and tested on the dual-computer co-simulation platform.
The final simulation results showed that the proposed DSSTD algorithm enabled the AV
to achieve 100% LC success rate and 0 collisions/leave the road in the preset LC traffic
scenario, which yielded better outcomes than other benchmark algorithms. The minimum
distance to the leading vehicle in the same lane was 12.2 m and the minimum TTC was
around 1.8 s, which demonstrates that by using the DSSTD algorithm, the driving safety
of the AV can be ensured. In addition, the average speed in the test round was 23.03 m/s,
which was closer to the desired speed of 23 m/s than other competitors. This indicates
that our approach can achieve better performance in driving efficiency. In future work, we
will deploy the “weights adjustment mechanism” for the safety and speed related terms in
the reward function. The algorithm will be further optimized to improve its robustness to
unknown environments and accelerate the learning process of the agent.

Author Contributions: Conceptualization, K.L.; Investigation, X.P.; Methodology, K.L.; Software,
J.X.; Supervision, C.C.; Validation, J.X.; Writing—original draft, K.L.; Writing—review & editing, X.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Mathematics 2022, 10, 1551 23 of 24

Acknowledgments: This study was financially supported by the Laboratory of Hubei Key Advanced
Technology for Automotive Components (XDQCKF2021009).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Global Status Report on Road Safety 2018: Summary; World Health Organization: Geneva, Switzerland,

2018.
2. National Highway Traffic Safety Administration (NHTSA). 2016 Fatal Motor Vehicle Crashes. 2017. Available online: https:

//www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data (accessed on 27 March 2021).
3. Eno Center for Transportation. Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommenda-

tions. 2013. Available online: http://www.enotrans.org/wp-content/uploads/wpsc/downloadables/AV-paper.pdf (accessed on
15 January 2022).

4. Thorpe, C.; Herbert, M.; Kanade, T.; Shafter, S. Toward autonomous driving: The cmu navlab. ii. architecture and systems. IEEE
Expert 1991, 6, 44–52. [CrossRef]

5. Buehler, M.; Iagnemma, K.; Singh, S. (Eds.) The Darpa Urban Challenge: Autonomous Vehicles in City Traffic; Springer: Berlin,
Germany, 2009.

6. Zhang, M.; Li, N.; Girard, A.; Kolmanovsky, I. A finite state machine based automated driving controller and its stochastic
optimization. In Proceedings of the ASME 2017 Dynamic Systems and Control Conference, Tysons, VA, USA, 11–13 October 2017.

7. Li, N.; Chen, H.; Kolmanovsky, I.; Girard, A. An explicit decision tree approach for automated driving. In Proceedings of the
ASME 2017 Dynamic Systems and Control Conference, Tysons, VA, USA, 11–13 October 2017.

8. González, D.; Pérez, J.; Milanés, V. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Int. Transp.
Syst. 2015, 17, 1135–1145. [CrossRef]

9. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.
2020, 37, 362–386. [CrossRef]

10. Bojarski, M.; del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J. End to
end learning for self-driving cars. arXiv 2016, arXiv:1604.07316.

11. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Perez, P. Deep reinforcement learning for autonomous driving: A survey. IEEE
Trans. Intell. Transp. Syst. 2021, 1–18. [CrossRef]

12. Ronecker, M.P.; Zhu, Y. Deep q-network based decision making for autonomous driving. In Proceedings of the IEEE International
Conference on Robotics and Automation Sciences, Montreal, QC, Canada, 20–24 May 2019; pp. 154–160.

13. Min, K.; Kim, H.; Huh, K. Deep distributional reinforcement learning based high-level driving policy determination. IEEE Trans.
Intell. Veh. 2019, 4, 416–424. [CrossRef]

14. Fu, Y.; Li, C.; Yu, F.R.; Luan, T.H.; Zhang, Y. A decision making strategy for vehicle autonomous braking in emergency via deep
reinforcement learning. IEEE Trans. Veh. Technol. 2020, 69, 5876–5888. [CrossRef]

15. He, X.; Fei, C.; Liu, Y.; Yang, K.; Ji, X. Multi-objective Longitudinal Decision-making for Autonomous Electric Vehicle: A
Entropy-constrained Reinforcement Learning Approach. In Proceedings of the 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6.

16. Chae, H.; Kang, C.M.; Kim, B.D.; Kim, J.; Chung, C.C.; Choi, J.W. Autonomous braking system via deep reinforcement learning.
In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017; pp. 1–6.

17. Baheri, A.; Baheri, A.; Nageshrao, S.; Tseng, H.E.; Kolmanovsky, I.; Girard, A.; Filev, D. Deep Reinforcement Learning with
Enhanced Safety for Autonomous Highway Driving. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV),
Las Vegas, NV, USA, 20–23 October 2020; pp. 1550–1555.

18. Li, G.; Gomez, R.; Nakamura, K.; He, B. Human-centered reinforcement learning: A survey. IEEE Trans. Hum. Mach. Syst. 2019,
49, 337–349. [CrossRef]

19. Wang, Z.; Taylor, M. Effective transfer via demonstrations in reinforcement learning: A preliminary study. In Proceedings of the
2016 AAAI Spring Symposia, Stanford University, Palo Alto, CA, USA, 21–23 March 2016.

20. Trott, A.; Zheng, S.; Xiong, C.; Socher, R. Keeping your distance: Solving sparse reward tasks using self-balancing shaped
rewards. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December
2019; pp. 10376–10386.

21. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep
Reinforcement Learning. 2015. Available online: http://arxiv.org/abs/1509.02971 (accessed on 15 January 2022).

22. Ye, Y.; Zhang, X.; Sun, J. Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity
simulation environment. Transp. Res. C Emerg. Technol. 2019, 107, 155–170. [CrossRef]

23. Liang, X.; Wang, T.; Yang, L.; Xing, E. Cirl: Controllable imitative reinforcement learning for vision-based self-driving. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 584–599.

24. Wang, Q.; Zhuang, W.; Wang, L.; Ju, F. Lane Keeping Assist for an Autonomous Vehicle Based on Deep Reinforcement Learning.
In Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 21–24 April 2020.

https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data
https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data
http://www.enotrans.org/wp-content/uploads/wpsc/downloadables/AV-paper.pdf
http://doi.org/10.1109/64.85920
http://doi.org/10.1109/TITS.2015.2498841
http://doi.org/10.1002/rob.21918
http://doi.org/10.1109/TITS.2021.3054625
http://doi.org/10.1109/TIV.2019.2919467
http://doi.org/10.1109/TVT.2020.2986005
http://doi.org/10.1109/THMS.2019.2912447
http://arxiv.org/abs/1509.02971
http://doi.org/10.1016/j.trc.2019.08.011

Mathematics 2022, 10, 1551 24 of 24

25. Tang, Y. Towards Learning Multi-Agent Negotiations via Self-Play. 2019. Available online: https://arxiv.org/abs/2001.10208
(accessed on 15 January 2022).

26. Karaduman, O.; Eren, H.; Kurum, H.; Celenk, M. Interactive risky behavior model for 3-car overtaking scenario using joint
Bayesian network. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, Australia, 23–26 June 2013;
pp. 1279–1284.

27. Bouton, M.; Nakhaei, A.; Fujimura, K.; Kochenderfer, M.J. Safe Reinforcement Learning with Scene Decomposition for Navigating
Complex Urban Environments. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019;
pp. 1469–1476.

28. Wen, L.; Duan, J.; Li, S.E.; Xu, S.; Peng, H. Safe Reinforcement Learning for Autonomous Vehicles through Parallel Constrained
Policy Optimization. 2020. Available online: https://arxiv.org/abs/2003.01303 (accessed on 15 January 2022).

29. Kamran, D.; Lopez, C.F.; Lauer, M.; Stiller, C. Risk-Aware High-level Decisions for Automated Driving at Occluded Intersections
with Reinforcement Learning. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA,
23 June 2020; pp. 1205–1212.

30. Peng, H.; Du, B.; Liu, M.; Liu, M.; He, L. Dynamic graph convolutional network for long-term traffic flow prediction with
reinforcement learning. Inf. Sci. 2021, 578, 401–416. [CrossRef]

31. Buhet, T.; Wirbel, E.; Perrotton, X. Conditional vehicle trajectories prediction in carla urban environment. In Proceedings of the
IEEE International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019.

32. Vasquez, R.; Farooq, B. Multi-Objective Autonomous Braking System using Naturalistic Dataset. In Proceedings of the 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 4348–4353.

33. Kohler, S.; Schreiner, B.; Ronalter, S.; Doll, K.; Zindler, K. Autonomous evasive maneuvers triggered by infrastructure-based
detection of pedestrian intentions. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, Australia,
23–26 June 2013; pp. 519–526.

34. Brannstrom, M.; Coelingh, E.; Sjoberg, J. Model-based threat assessment for avoiding arbitrary vehicle collisions. IEEE Trans.
Intell. Transp. Syst. 2010, 11, 658–669. [CrossRef]

35. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529. [CrossRef] [PubMed]

36. Okudo, T.; Yamada, S. Subgoal-based Reward Shaping to Improve Efficiency in Reinforcement Learning. IEEE Access 2021, 9,
97557–97568. [CrossRef]

37. Marom, O.; Rosman, B.S. Belief reward shaping in reinforcement learning. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; AAAI Press: Palo Alto, CA, USA; pp. 3762–3769.

38. Demir, A.; Cilden, E.; Polat, F. Landmark based reward shaping in reinforcement learning with hidden states. In Proceedings of
the 18th International Conference on Autonomous Agents and Multi Agent Systems, Montreal, QC, Canada, 13–17 May 2019;
pp. 1922–1924.

39. Paul, S.; Baar, J.V.; Roy-Chowdhury, A.K. Learning from trajectories via subgoal discovery. Adv. Neural Inf. Processing Syst. 2019,
32, 8411–8421.

40. Hoel, C.J.; Driggs-Campbell, K.; Wolff, K.; Laine, L.; Kochenderfer, M.J. Combining Planning and Deep Reinforcement Learning
in Tactical Decision Making for Autonomous Driving. IEEE Trans. Int. Veh. 2020, 5, 294–305. [CrossRef]

41. Hugle, M.; Kalweit, G.; Mirchevska, B.; Werling, M.; Boedecker, J. Dynamic Input for Deep Reinforcement Learning in Au-
tonomous Driving. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau, China, 3–8 November 2019; pp. 7566–7573.

42. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforce-
ment learning. arXiv 2013, arXiv:1312.5602.

43. Treiber, M.; Hennecke, A.; Helbing, D. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev.
E 2000, 62, 1805. [CrossRef] [PubMed]

44. Kesting, A. General lane-changing model MOBIL for car-following models. Transp. Res. Rec. 2007, 1999, 86–94. [CrossRef]
45. Liu, T.; Huang, B.; Mu, X.; Zhao, F.; Cao, D. A Comparative Analysis of Deep Reinforcement Learning-Enabled Freeway

Decision-Making for Automated Vehicles. 2020. Available online: http://arxiv.org/abs/2008.01302 (accessed on 15 January 2022).
46. Treiber, M.; Kesting, A.; Thiemann, C. Traffic Flow Dynamics: Data, Models and Simulation; Springer Science & Business Media:

Berlin, Germany, 2013.
47. Van Der Horst, A.R.A. A Time-Based Analysis of Road User Behaviour in Normal and Critical Encounters; TNO Institute for Perception:

Soesterberg, The Netherlands, 1990.
48. Xu, J.; Pei, X.; Lv, K. Decision-Making for Complex Scenario using Safe Reinforcement Learning. In Proceedings of the 2020 4th

CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China, 18–20 December 2020; pp. 1–6.
49. Ng, A.Y. Policy invariance under reward transformations: Theory and application to reward shaping. In Proceedings of the

Sixteenth International Conference on Machine Learning, Bled, Slovenia, 27–30 June 1999; pp. 278–287.

https://arxiv.org/abs/2001.10208
https://arxiv.org/abs/2003.01303
http://doi.org/10.1016/j.ins.2021.07.007
http://doi.org/10.1109/TITS.2010.2048314
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1109/ACCESS.2021.3090364
http://doi.org/10.1109/TIV.2019.2955905
http://doi.org/10.1103/PhysRevE.62.1805
http://www.ncbi.nlm.nih.gov/pubmed/11088643
http://doi.org/10.3141/1999-10
http://arxiv.org/abs/2008.01302

	Introduction
	Related Work
	Background
	Deep Reinforcement Learning
	DDPG Algorithm

	Problem Formulation
	Lane-Changing Task
	State and Action Space
	Reward Function

	Methodology
	Decision-Making Strategy Algorithm Architecture
	Safety Enhancement
	Safety Rules (SR) + Safety Prediction (SP) Module
	Trauma Memory (TM)

	Efficiency Improvement

	Experimental Evaluation
	Simulation Setup
	Initial Scenario and Surrounding Vehicles Driving Model
	Training Results
	Test Result

	Conclusions
	References

