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Abstract: The firefly algorithm (FA) is a meta-heuristic swarm intelligence optimization algorithm.
It simulates the social behavior of fireflies with their flash and attraction characteristics. Numerous
researches showed that FA can successfully deal with some problems. However, too many attractions
between the fireflies may result in high computational complexity, slow convergence, low solution
accuracy and poor algorithm stability. To overcome these issues, this paper proposes an enhanced
firefly algorithm with dual-population topology coevolution (DPTCFA). In DPTCFA, to maintain
population diversity, a dual-population topology coevolution mechanism consisting of the scale-free
and ring network topology is proposed. The scale-free network topology structure conforms to
the distribution law between the optimal and potential individuals, and the ring network topology
effectively reduces the attractions, and thereby has a low computational complexity. The Gauss map
strategy is introduced in the scale-free network topology population to lower parameter sensitivity,
and in the ring network topology population, a new distance strategy based on dimension difference
is adopted to speed up the convergence. This paper improves a diversity neighborhood enhanced
search strategy for firefly position update to increase the solution quality. In order to balance the
exploration and exploitation, a staged balance mechanism is designed to enhance the algorithm
stability. Finally, the performance of the proposed algorithm is verified via several well-known
benchmark functions. Experiment results show that DPTCFA can efficiently improve the existing
problems of FA to obtain better solutions.

Keywords: firefly algorithm; dual-population; coevolution; neighborhood enhanced search; staged
balance

MSC: 68W50

1. Introduction

Many scholars were inspired by the behavioral characteristics of certain things in
the natural world (e.g., biological systems) to simulate and use computation thinking to
solve practical problems. However, as practical problems become more and more complex,
traditional optimization algorithms (e.g., genetic algorithms) have difficulty in solving
these problems [1]. In recent decades, some new metaheuristic optimization algorithms that
simulate the intelligent characteristics of biological populations have been proposed [2],
namely swarm intelligence optimization algorithms (SIOAs) [3]. Various studies show that
SIOAs can solve the problems of the traveling salesman [4], path planning [5], workshop
scheduling [6], and dynamic storage [7]. There are several popular SIOAs, e.g., particle
swarm optimization (PSO) [8], ant colony optimization (ACO) [9], the firefly algorithm
(FA) [10], cuckoo search (CS) [11], and artificial bee colony (ABC) [12].

Compared with other algorithm in SIOAs, FA has a short development history. It was
first proposed by Yang in 2008. The idea of FA comes from simulating the flash courtship
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behavior of the fireflies [13]. Due to the simple concept, easy implementation, and good
optimization performance, it is widely used to solve various optimization problems. Com-
pared with other algorithms among SIOAs, FA has better performance advantages in
continuous numerical optimization problems such as benchmark functions and CEC func-
tions, the same as discrete practical optimization problems such as vehicle path planning
and the flexible job-shop scheduling problem (FJSP). The search process of FA mainly relies
on the attraction between the fireflies to generate movement. A firefly with a better fitness
value (brighter) has greater attractiveness, and it attracts fireflies with worse fitness values
(darker) to move for finding a better solution. In the standard FA, a full attraction model
is proposed, and the current selected firefly in a population can be attracted by all of the
remaining fireflies. This model can effectively enhance the algorithm exploitation ability,
but it will result in a higher computational complexity, and too many attractions among the
fireflies cause search oscillation, and thereby lead to problems such as slow convergence,
low solution accuracy and poor algorithm stability. In addition, the performance of FA is
affected by parameter settings.

To tackle these issues, many scholars attempted to improve FA, and contributed
various variants of FA. Fister et al. adaptively adjusted the step factor α in FA and used
it to solve the image three-coloring problem. Experiments showed that the adaptive
parameter strategy can greatly improve the solution accuracy in [14]. Similarly, 12 different
chaos map functions were adopted to update the step factor α and the attractiveness β. It
indicated that adding a chaos map strategy on the basis of FA can reduce the parameter
sensitivity [15]. Furthermore, Wang et al. proposed a random attraction (RA) model to
reduce the attractions in fireflies and lower the algorithm computational complexity [16].
The current selected firefly was compared with another randomly chosen one. Thence, each
firefly only needed to move at most once. However, the RA model sometimes caused the
individual not to move, thus falling into a local optimal value. Subsequently, Wang et al.
designed a neighborhood attraction (NA) model based on the characteristics of the firefly
population. This paper proved that compared with RA, NA obtained better results in the
algorithm performance and stability [17]. Recently, Yu et al. improved the neighborhood
search on the basis of the NA model. Unlike the NA model, when there was a better
neighborhood individual than the current selected firefly, the individual moved towards a
better neighborhood individual, and ended the iteration [18].

In the real world, there are a large number of multi-objective optimization problems
(MOPs), and FA is mainly used to solve single-objective problems in continuous optimiza-
tion problems [19]. It was a great challenge in finding a set of the pareto front for FA [20].
Therefore, Yang et al. extended the FA model from multiple strategies to solve MOPs. The
results on the multi-objective function sets revealed that FA is capable of solving MOPs [21].
Lv et al. overcame the population constraint by introducing an iterative method of the
compensation factor, so that FA obtained the pareto optimal solution in a short time [22].
Marichelvam et al. extended a new discrete FA to solve a two-objective hybrid flow shop
scheduling problem, and verified that the algorithm was superior to other metaheuristic
algorithms [23]. Then, for the FJSP, Karthikeyan et al. constructed a continuous function
conversion mechanism, and combined with local search strategies to improve the infor-
mation sharing between the fireflies. It was validated that the algorithm was an effective
method to solve FJSP [24].

Although scholars have made an effort in the improvement of FA and applied it
to solve practical optimization problems, there were still problems such as low solution
accuracy and poor algorithm stability. In order to make full use of the learning experience
of the optimal individual in the firefly population and balance the algorithm exploration
and exploitation in the search process, this paper proposes an enhanced firefly algorithm
with dual-population topology coevolution (DPTCFA). In DPTCFA, to maintain the popu-
lation diversity, a scale-free network (SN) [25] and a ring network (RN) [26] neighborhood
topology population coevolution mechanism is proposed, the SN topology conforms to the
distribution law between the optimal and potential individuals of the firefly, and the RN



Mathematics 2022, 10, 1564 3 of 24

topology effectively reduces the attractions, and the algorithm thereby has a low computa-
tional complexity. The Gauss map strategy is introduced in the SN topology population
to lower parameter sensitivity, and in RN topology population, a new distance strategy
based on dimension difference is adopted to speed up the convergence. This paper im-
proves a diversity neighborhood enhanced search strategy for firefly position update to
strengthen the global optimization ability, and then to increase the solution quality. We
designed a staged balance for the algorithm exploration and exploitation mechanism to
ensure the global and local optimization abilities in the search process, thereby enhancing
the algorithm stability [27]. Simulation results show that the proposed algorithm can
fully maintain the population diversity, reduce attractions among the fireflies, lower the
algorithm computational complexity, and effectively improve the algorithm performance
and search ability. The main contributions of this paper are summarized as follows:

(1) Propose a dual-population topology coevolution mechanism. It can increase
population diversity via constructing two different network topology populations. Simul-
taneously, the neighborhood topology structure can reduce attractions in fireflies, and then
lower the algorithm computational complexity. Among them, the SN topology is a complex
network structure with a power-law distribution, and this network characteristic just con-
forms to the distribution law between the optimal individual and the potential individual
in the firefly population. In addition, the RN topology is a ring-shaped closed link, and each
node is connected to its left and right neighboring nodes. In RN, all fireflies are arranged
in a ring topology, and the improved NA search strategy is used to search and optimize.
When the firefly population is initialized, the SN and the RN topology are used to construct
sub-populations, i.e., the SN topology population and the RN topology population. Then
the two sub-populations adopt the corresponding optimization strategy to synchronously
iteratively evolve according to each network topology characteristic. After the optimization
stage, the two sub-populations are merged to share information, and the roulette method is
used to select some firefly individuals to complete the coevolution process.

(2) Improve a diversity neighborhood enhanced search strategy for firefly position
update. In the SN and RN topology populations’ coevolution process, when there are
no other better individuals in the neighborhood of the current selected individual, the
selected individual executes a location update operation based on the improved diversity
neighborhood enhanced search strategy. This strategy can reduce the probability of the
population falling into the local optimum and improve the global optimization ability.

(3) Design a staged balance mechanism. In DPTCFA, it is divided into the global and
local optimization stages. The global optimization stage adopts a dual-population topology
coevolution mechanism, and the local optimization stage introduces the Nelder–Mead
simplex method (NMSM) to perform the fireflies’ local fine-tuning to enhance the algorithm
exploitation ability. The staged balance of the algorithm exploration and exploitation
mechanism can sufficiently solve low solution accuracy problems for FA.

The rest of the paper is structured as follows: Section 2 summarizes the related work of
this study. Section 3 introduces in detail an enhanced firefly algorithm with dual-population
topology coevolution proposed in this paper. In Section 4, we analyze the experiment results
and verify the optimized performance of the proposed algorithm. Relevant conclusions are
discussed in Section 5.

2. Related Work
2.1. The Standard FA

Like other SIOAs, FA first starts with the population initialization. Each firefly individ-
ual in the population denotes a candidate solution, and it is in the decision variable range.
Let N and D be the population size and the problem dimension, respectively. Then, each
initial solution Xi = (x1

i , x2
i , . . ., xD

i ) can be produced as below [28]:

xd
i = Lbd + rndd

1 × (Ubd − Lbd) (1)
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where d = 1, 2, . . ., D, i = 1, 2, . . ., N. [Lbd, Ubd] is the lower and upper bounds on the
problem dimension. rndd

1 ∈ [0, 1] is a uniform random number.
The attractiveness between the fireflies is determined by the light intensity, and the

light intensity is generally measured by the objective function value. For a pair of fireflies
Xi and Xj, the attractiveness is calculated as follows [28]:

β(rij) = β0e−γr2
ij (2)

rij =
∥∥Xi − Xj

∥∥ =

√√√√ D

∑
d=1

xd
i − xd

j (3)

where rij is the Euclidean distance between two fireflies. The parameter β0 is the attrac-
tiveness of the firefly individual Xi and Xj when the distance r = 0. γ represents the light

absorption coefficient; it is set to
1

Γ2 , where Γ is the length of the decision variable.
The current selected firefly individual Xi will be compared with all other individuals

Xj, where j = 1, 2, . . ., N ∧ i 6= j. When the fitness value of the individual Xj is better than
the individual Xi, the current selected individual Xi will move toward Xj due to attracting.
According to the related literature, the movement equation of Xi is defined as follows [28]:

xd
i (t + 1) = xd

i (t) + β0e−γr2
ij(xd

j (t)− xd
i (t)) + αεi (4)

Equation (4) is mainly composed of three parts: The first part represents the d-
dimension position of the selected individual Xi under the current iteration. The second
part is called the attraction term; it is related to the attractiveness between two firefly
individuals. The third part denotes the random item, where α is the step factor and is a
fixed value in the range [0, 2]. εi ∈ [−0.5, 0.5] is a uniform random number.

In this paper, the following minimum problem is mainly solved:

min
x∈[Lb,Ub]

f (x)

where f (x) is the objective value of the individual x, and represents the light intensity of
each firefly.

FA implementation steps are as follows: (1) Randomly initialize all firefly individuals
within the search space. (2) Evaluate the fitness value of each individual according to the
objective function. (3) Each current selected individual Xi compares its fitness value with
the remaining individuals Xj in the population. If the fitness value of Xj is better than Xi,
then Xi updates its position according to Equation (4) and evaluates the fitness value of
the new Xi. (4) Repeat step (3) until the termination condition is satisfied. Finally, sort
according to the fitness value to find the global optimal solution of the firefly population.

To better explain the full attraction model of the standard FA, let us use a simple
minimization problem to make an instruction. Suppose there are six individuals in the fire-
fly population, [X1, X2, X3, X4, X5, X6]. The objective function values of these individuals
are respectively f (X1) = 10.2, f (X2) = 2.3, f (X3) = 5.6, f (X4) = 3.6, f (X5) = 4.8, and
f (X6) = 12.8. According to the objective function value, the fireflies can be sorted as: X2,
X4, X5, X3, X1, and X6. Figure 1 shows the full attraction mechanism of the standard FA.
As seen, the individual X1 moves towards X2, X3, X4, and X5. X3 moves towards X2, X4,
and X5. X4 is only attracted by X2. X5 is attracted by X2 and X4. Among them, X2 and X6
are the best and worst individuals in the population, respectively. All firefly individuals
are attracted by X2, and X6 moves towards the remaining individuals in the population.
The mechanism of attracting each other is called the full attraction model. Obviously, too
many attractions make the algorithm higher computational complexity, and easily lead to
search oscillations, thereby reducing the solution accuracy.



Mathematics 2022, 10, 1564 5 of 24

Figure 1. The full attraction mechanism.

In this paper, to tackle these issues, an SN and RN neighborhood topology populations
coevolution mechanism is proposed, and it is used to solve the problems caused by the full
attraction model. The diversity neighborhood enhanced search strategy is improved to
increase the position disturbance for enhancing the global search ability. A staged balance
of the algorithm exploration and exploitation mechanism is designed to maintain the
consistency of the global and local search abilities.

2.2. Scale-Free Network

Scale-free networks (SNs) were first discovered by the physicist Barabási as network
structural features [29]. The distribution of each node connection numbers in the network
shows a power-law distribution, and its probability distribution function is as follows [30]:

P(k) = k−λ (5)

where k is the node degree, P(k) represents the probability distribution of the node degree,
and the power exponent λ is a parameter describing the network structure characteristic.
Figure 2 is the function image of Equation (5). As seen, the node degree k increases, and
P(k) decreases, that is, a few nodes in the SN have a larger degree.

The biggest advantage of FA is to update the position by fireflies attracting each other.
Figure 3 shows the SN topology. A few hub nodes (blue nodes) have a larger degree and are
called optimal nodes, and most nodes (black nodes) have a smaller degree and are called
potential nodes. Corresponding to FA, a small number of optimal individuals are in the hub
position of the population, and have a greater impact on guiding the evolution direction.
For the potential individuals, they have less impact on the algorithm performance.

Barabási et al. proposed a concise SN construction model (i.e., B-A model). The process
mainly includes two parts: First, select some optimal individuals in the population to form
a fully-connected network. Then, the remaining individuals are respectively connected to
the network through loops, and the individuals with larger node degrees can be connected.
Figure 4 shows the construction process of the SN topology population. The detailed steps
are described as follows: (1) Evaluate the fitness value after population initialization, and
sort the population according to the fitness value; (2) select some better individuals from
the population as the optimal individual, and these better individuals will be connected to
a fully-connected network; (3) in the iteration, the remaining potential individuals use a
roulette selection algorithm to connect to the fully-connected network. The proportion of
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the node degree to the total node degree is called the degree ratio. The degree ratio and
cumulative probability are defined as follows:

P(ki) =
ki

n
∑

j=1
k j

(6)

C(ki) =
i

∑
j=1

P(k j) (7)

where ki in Equation (6) indicates the individual i degree is k. n denotes the individual
numbers in the completed network. P(ki) represents the proportion of the individual i
degree to the total network degree, and Equation (7) is the cumulative probability.

Figure 2. Power-law distribution function.

Figure 3. The SN topology.
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Figure 4. The SN topology population construction process.

After constructing the SN topology population, the population starts to search for
the optimal. The current selected firefly individual uses the roulette selection algorithm
to choose several firefly individuals from the SN neighborhood topology populations for
attracting operation according to the fitness value. Similarly, the fitness value ratio and
cumulative probability are described as follows:

P(xi) =
f (xi)

n
∑

j=1
f (xj)

(8)

C(xi) =
i

∑
k

P(xk) (9)

where P(xi) represents the fitness value ratio of individual xi, and C(xi) is the cumula-
tive probability.

Compared with the full attraction model in FA, the SN topology population optimiza-
tion method effectively reduces attractions among the fireflies. In addition, the population
structure with the power-law distribution is more in line with the natural biological evolu-
tion law, thereby maintaining adequately the population diversity.

2.3. Ring Network

Recently, Yu et al. proposed a modified neighborhood attraction (MNA) model based
on the NA model [18]. Simulation experiments showed that the MNA model effectively
reduces attractions between the fireflies. Based on this work, we construct a ring network
(RN) topology.

In RN, all firefly individuals in the population are arranged in a ring topology. If
the firefly individuals’ indexes are adjacent to each other, they will be directly connected
in the RN topology. However, this stipulates that the first individual is connected with
the last individual for the special condition. The K-neighborhood of each individual Xi
contains 2k + 1 fireflies, i.e., X(i−k), X(i−k+1), . . ., X(i−1), Xi, X(i+1), . . ., X(i+k−1), X(i+k).
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The NA model was first proposed by Wang, and the attraction among the fireflies only
occurred in their K-neighborhood. The current selected firefly individual is compared
with the remaining individuals in the K-neighborhood, and if the fitness value in the
remaining individuals is better, the movement is carried out. Figure 5 clearly shows the
mechanism of the NA model. However, in the RN topology population, other individuals’
Xj indexes are set to i− k, i− k + 1, . . ., i− 1, i, that is, the individual Xi needs to compare
with k individuals. However, the average attractions of each firefly are ((N − 1))/2 in the
standard FA, while the RN topology population only has k/2 at most. It can be seen that
the RN topology population attraction mechanism effectively lowers the computational
complexity. Figure 6 is the attraction model in the RN topology population.

Figure 5. The NA model.

Figure 6. The attraction model in the RN topology population.

2.4. Adaptive Parameter

(1) Attractiveness with the Gauss map strategy

In FA, the attractiveness among the fireflies is calculated by Equation (2). The algorithm
running time is too long due to the need to calculate the Euclidean distance rij between the
individuals Xi and Xj. Therefore, a chaos map is used to generate the sequence instead of
the attractiveness value calculated by Equation (2). The attractiveness with the Gauss map
is defined as follows:

β(t + 1) =
{

0, β(t) = 0
mod(µ/β(t), 1), β(t) 6= 0

(10)
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when t = 0, the initial attractiveness β0 ∈ [0, 1] is a uniform random number, and µ is
usually set to 1. Correspondingly, the firefly movement can be calculated as follows:

xd
i (t + 1) = xd

i (t) + β(t + 1)(xd
j (t)− xd

i (t)) + αεi (11)

Experiments have proved that the chaos sequence generated by the Gauss map can
reduce the time consumed by calculating the Euclidean distance. Compared with a pseudo-
random number, the chaos sequence can achieve better performance [15]. Therefore, the
attractiveness with the Gauss map strategy is used to update the attractiveness of the SN
topology population dynamically.

(2) Step factor dynamic update

According to the related literature, the step factor α is dynamically updated as fol-
lows [31]:

α(t + 1) = α(t)× (1/9000)
1
t (12)

when t = 0, the initial step factor α0 is set to 0.5.
The fixed step factor causes the disturbance term of Equation (4) to not change, thereby

leading to a poor algorithm performance [32]. Numerous studies showed that an adaptive
parameter strategy can improve the algorithm performance and solution accuracy [33].
Thus, in this work, the step factor α of the SN and RN topology populations adopts
Equation (12) to update dynamically.

2.5. New Distance Strategy

In standard FA, the attractiveness between the fireflies is related to the Euclidean
distance. As seen from Equation (3), the Euclidean distance calculation will consume more
running time due to the power calculation in the equation. Yu et al. designed a new
equation for expressing distance based on the dimension difference [34].

rd
ij =

∣∣∣xd
i − xd

j

∣∣∣
Maxd −Mind (13)

where
[

Mind, Maxd
]

represents each dimension range in the current population, and
d = 1, 2, . . ., D. The attractiveness is redefined as follows:

β(rij) = rnd2e−r2
ij (14)

where rnd2 ∈ [0, 1] is a uniform random number. Compared with the standard FA, the
firefly movement equation is changed as follows:

xd
i (t + 1) = xd

i (t) + β(rij)(xd
j (t)− xd

i (t)) + αεiΓ (15)

where Γ is the problem spatial range.
The distance strategy based on the dimension difference removes the power calculation

of the Euclidean distance. It greatly reduces the algorithm running time. In this work,
according to the structural characteristics of the RN topology population, Equation (13) is
used to represent the distance between the fireflies.

2.6. Nelder–Mead Simplex Method

The Nelder–Mead Simplex Method (NMSM) was first proposed by Nelder and Mead
in 1965 [35]. This method mainly uses operations such as reflection, expansion, inner
contraction, and outer contraction to find a better solution and replace the worst individual
in the population. This process is repeated until the termination condition is met, where
Xbest and Xworst represent the best individual and the worst individual in the population,
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respectively. X1 is the second-worst individual in the population. Xcent
Worst is the center point

of all points except Xworst. Xre f
Worst, Xe

Worst, Xic
Worst, and Xoc

Worst represent the reflection point,
expansion point, and inner and outer contraction points, respectively. Figure 7 shows the
location of different points in the NMSM.

Figure 7. The location of different points in NMSM.

Except for the best individual Xbest, the center of all other individuals Xcent
best is calculated

as follows:

Xcent
best =

1
N − 1

(
N

∑
i=1

(Xi − Xbest)) (16)

The local fine-tuning of each individual in the population is defined as follows:

Xi(t + 1) = δ0Xi(t) + δ1(Xbest(t)− Xi(t)) + δ2(Xcent
best (t)− Xi(t)) (17)

where Xi(t) represents the individual Xi of the t− th iteration. δ is the reflection, expansion
and contraction coefficient. δ0 is usually set to 1, and δ1 and δ2 respectively are calculated
by the following equations:

δ1 = 3σ
N−1

δ2 = 3σ− 1
(18)

where σ ∈ [0, 1] is a uniform random number.
The NMSM is mainly used for local fine-tuning of the firefly individuals to enhance

the exploitation ability of the algorithm. In this work, the NMSM is used in the local
optimization stage of the algorithm to balance the exploration and exploitation.

3. The Proposed Algorithm (DPTCFA)

In this section, an enhanced FA (DPTCFA) is proposed based on a dual-population
topology coevolution mechanism, a staged balance mechanism, and an improved diversity
neighborhood enhanced search strategy. In the proposed algorithm, in order to maintain
the population diversity, an SN and RN neighborhood topology populations coevolution
mechanism is proposed, that is, constructing two network topology populations, the SN and
RN topology populations. The SN characteristics conform to the distribution law between
the optimal and potential individuals, and RN effectively reduces attractions among the
fireflies. To enhance the global search ability of FA, we improved the diversity neighborhood
and enhanced the search strategy for the firefly position update. We designed a staged
balance mechanism to keep the consistency of the global and local search capabilities. The
whole algorithm process is divided into the global and local optimization stages. The global
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optimization stage adopts the dual-population topology coevolution mechanism, and the
local optimization stage introduces the NMSM to fine-tune the firefly individuals.

3.1. Diversity Neighborhood Enhanced Search Strategy

In addition to the adaptive parameter strategy and the distance strategy based on
dimension difference described in related work, for the firefly position update operation,
this paper improves the diversity neighborhood enhanced search strategy. In the full
attraction model of the standard FA, if the fitness value of the remaining firefly individuals
Xj in the population is not better than the current selected individual Xi, then Xi will
not execute any operation [10]. Inspired by the related literature [36], in the SN and RN
topology populations, when the individual Xi index is equal to another individual Xj index,
Xi will move towards the global optimal individual Xbest, and generate the trial individual
LXi, which is defined as follows:

LXi = r1Xi + r2Xbest + r3(Xc − Xd) (19)

where c, d ∈ [1, N] ∧ c 6= d 6= i. r1, r2, r3 ∈ [0, 1] are uniform random numbers and
r1 + r2 + r3 = 1. If the fitness value of the test individual LXi is better than Xi, replace Xi
with LXi.

3.2. Dual-Population Topology Coevolution Mechanism

The SN and RN neighborhood topology populations’ coevolution mechanism mainly
allows the SN and RN topology populations to iteratively optimize under corresponding
strategies. In the SN topology population, the Gauss map strategy is used to calculate
the attractiveness and reduce the parameter sensitivity. In the RN topology population, a
new distance strategy based on dimension difference is designed to decrease the running
time caused by calculating the Euclidean distance. In addition, the neighborhood search
strategy based on the preset probability pns is carried out in the RN topology popula-
tion. The strategy is mainly divided into two parts: Opposition-based learning (OBL)
and Cauchy mutation (CM). The OBL and CM mainly perturb the position of firefly in-
dividuals to enhance the algorithm exploration ability [34]. Finally, both the SN and RN
topology populations adopt the diversity neighborhood enhanced search strategy. When
the firefly population is initialized, the SN and the RN topologies are used to construct sub-
populations. Then, the two sub-populations adopt the corresponding optimization strategy
to synchronously iteratively evolve. After the optimization stage, the two sub-populations
are merged to share information, and the roulette method is used to select some firefly
individuals to complete the coevolution process.

The detailed process of the SN and RN topology population optimizations is seen in
the pseudo-code Algorithms 1 and 2.

3.3. Staged Balance Mechanism

In DPTCFA, in order to balance the algorithm exploration and exploitation, a staged
balance mechanism is designed. The whole algorithm process is divided into global and
local optimization stages. Among them, the global optimization stage mainly uses the
dual-population topology coevolution mechanism for optimization. After this stage, merge
the population and select N individuals. Subsequently, NMSM is mainly adopted for local
fine-tuning of individuals. For the detailed implementation of NMSM, see the pseudo-code
Algorithm 3.
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Algorithm 1 Pseudo-code of the SN topology population optimization
1 Begin
2 Initialization: Population size N, the SN initial node number N0, minimum number of nodes

connected Nc, Initial value of chaotic attractiveness β0;
3 Select N0 optimal individuals as the initial nodes in the network;
4 Calculate the degree of each initial node in the current network: degree = N0 − 1;
5 for i = N0 + 1 : N do
6 for j = 1 : Nc do
7 The insertion node is connected to the network using the roulette selection algorithm;
8 Update the degree of nodes to be inserted and connected;
9 end

10 end
11 for m = 1 : N do
12 The roulette selection algorithm is used to select N1 individuals from the neighborhood of

individual Xm;
13 for n = 1 : N1 do
14 if f (Xn) < f (Xm) then
15 Update the chaotic attractiveness using Equation (10);
16 Move Xm toward Xn according to Equation (11);
17 Process the boundary of the new Xm;
18 Calculate the fitness value of the new Xm;
19 end
20 else
21 Generate trial individuals LXm according to Equation (19);
22 Calculate the fitness values of Xm and LXm;
23 Select the better of the two and replace Xm;
24 end
25 end
26 end
27 End

Algorithm 2 Pseudo-code of the RN topology population optimization
1 Begin
2 Initialization: Population size N, k-neighborhood size K, neighborhood search probability Pns;
3 for i = 1 : N do
4 for j = i− K : i do
5 j = (j + N)%N;
6 if f (Xj) < f (Xi) then
7 Update the attractiveness according to Equation (14);
8 Move Xi toward Xj according to Equation (15);
9 Process the boundary of the new Xi ;

10 Calculate the fitness value of the new Xi ;
11 end
12 else
13 Generate trial individuals LXi according to Equation (19);
14 Calculate the fitness values of Xi and LXi ;
15 Select the better of the two and replace Xi ;
16 end
17 end
18 end
19 if random < Pns then
20 Execute neighborhood search: Opposition-based learning (OBL) and Cauchy mutation (CM) [34];
21 end
22 End

3.4. Implementation

From the above description of the proposed algorithm, in the DPTCFA, the algorithm
is divided into two stages, i.e., the global search stage and the local search stage. To enhance
the exploration, two topology populations are constructed in the global search stage—the
SN and RN topology populations. According to dual-population topology characteristics,
design and improve related strategies for optimization. After this stage, in order to balance
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the algorithm exploration and exploitation, NMSM is used to enhance the local search
ability in the second stage. The pseudo-code of DPTCFA is seen in Algorithm 4.

Algorithm 3 Pseudo-code of NMSM

1 Begin
2 Initialization: Population size N, maximum number of iterative search

MaxSearch, current iterations ms, reflection coefficient δ0;
3 while ms < MaxSearch do
4 Calculate the fitness value of the population;
5 Find the best individual Xbest in the population;
6 Calculate Xcent

best according to Equation (16);
7 for i = 1 : N do
8 Calculate δ1 and δ2 according to Equation (18);
9 Update firefly individual position according to Equation (17);

10 Process the boundary of the new individual;
11 Calculate the fitness value of the new individual;
12 end
13 ms = ms + 1;
14 end
15 End

Algorithm 4 Pseudo-code of DPTCFA

1 Begin
2 Initialization: The SN topology and RN topology population initialization, and

parameter initialization, population size N, maximum number of iterations
MaxIt, current iterations t, step factor α;

3 Calculate the fitness values of the SN topology and RN topology population
according to the objective function;

4 while t < MaxIt do
5 Execute Algorithm 1;
6 Record the optimal value of the SN topology population;
7 Execute Algorithm 2;
8 Record the optimal value of the RN topology population;
9 Update the step factor α according to the Equation (12);

10 t = t + 1;
11 end
12 if the optimal value is not met then
13 Execute Algorithm 3;
14 end
15 End

4. Experiment Study

In this section, the simulation experiment is mainly divided into three parts: (1) Pa-
rameter study: When constructing the SN topology population, the proper initial node
number N0 and minimum node connection number Nc can improve the algorithm perfor-
mance. (2) Algorithm comparison: To further highlight the performance of the proposed
algorithm (DPTCFA), it is compared with several other FA variants. In the experiment, the
maximum iteration number was uniformly set to 5000, each algorithm was run 30 times
and the average optimal values were recorded. (3) Strategy evaluation: In order to verify
the effectiveness of the proposed algorithm strategy, the strategy was evaluated through
ablation experiments. The experimental platform was Intel(R) Core (TM) i7-8750H CPU @
2.20 GHz, RAM 24.0 GB and MATLAB 2021a.
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4.1. Benchmark Functions

To verify the performance of the proposed algorithm (DPTCFA), 26 benchmark func-
tions were used in the experiments of this paper. Table 1 shows the basic information of the
26 benchmark functions. In addition, in order to facilitate the data observation, this paper
uses the absolute error between the solved experiment results by the algorithm and the
function optimal value as the criterion, that is, if the absolute error is 0, it means that the
optimal value was obtained [37] .

f1– f7 are unimodal functions with only one global optimal value, f8– f24 are multi-
modal functions with multiple local minima, and f25– f26 are composite functions. All
benchmark functions are used to solve the problem of min f (x). In this paper, the problem
dimension D is set to 30 and 50.

Table 1. The benchmark functions.

Function No. Function Name Search Range

f1 Brown [−1, 4]
f2 Powell Sum [−1, 1]
f3 Sum Squares [−10, 10]
f4 Step 2 [−100, 100]
f5 Schwefel 1.2 [−100, 100]
f6 Schwefel 2.22 [−100, 100]
f7 Schwefel 2.23 [−10, 10]
f8 Schwefel 2.26 [−500, 500]
f9 Griewank [−100, 100]
f10 Ridge [−5, 5]
f11 Sphere [0, 10]
f12 Zakharov [−5, 10]
f13 Alpine 1 [−10, 10]
f14 Ackley 4 [−35, 35]
f15 Periodic [−10, 10]
f16 Quartic [−1.28, 1.28]
f17 Rastrigin [−5.12, 5.12]
f18 Xin-She Yang 3 [−20, 20]
f19 Xin-She Yang 4 [−10, 10]
f20 Shubert [−10, 10]
f21 Shubert 3 [−10, 10]
f22 Shubert 4 [−10, 10]
f23 Styblinski-Tang [−5, 5]
f24 Rosenbrock [−30, 30]
f25 Penalized 1 [−50, 50]
f26 Penalized 2 [−50, 50]

4.2. Parameter Study

In DPTCFA, there are two important parameters, namely the initial node N0 and the
minimum number of connections Nc, which have a greater impact on the SN topology pop-
ulation optimization. Excessive N0 and Nc will increase the attractions of firefly individuals,
causing the algorithm to fail to achieve improved results. Too few N0 and Nc can easily
cause problems such as low accuracy and poor algorithm stability. Therefore, it is very
necessary to determine the appropriate N0 and Nc in order to improve the solution accuracy.
In the SN topology population, the population size is N = 30. Generally, N0 should not
exceed N/3, and the range of Nc is normally between [(2N0)/3, N0 − 1], Therefore, the
parameter settings of N0 and Nc can be divided into 12 groups, i.e., Pa1(10, 9), Pa2(10, 8),
Pa3(10, 7), Pa4(9, 8), Pa5(9, 7), Pa6(9, 6), Pa7(8, 7), Pa8(8, 6), Pa9(8, 5), Pa10(7, 6), Pa12(7, 5),
and Pa12(7, 4).

We set the parameters (N0, Nc) to the above 12 groups of values, respectively, and
ran them on DPTCFA. The results are shown in Tables 2 and 3. The “Mean” in the table
is the average optimal fitness value obtained by running the algorithm 10 times, and the
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optimal results are indicated in bold. It can be seen from the table that different parameter
combinations have a greater impact on the algorithm performance. On the function f4,
f7, f8, f9, f10, f11, f17, f19, and f21, the algorithm converged to the optimal function value
under 12 groups of parameters. However, on the functions f14, f15, f20, f22, and f23, Pa1
could obtain the optimal value. In addition, compared to other parameter combinations,
Pa4 had better results on the functions f16, f18, and f26. Figure 8 lists the search curves of
DPTCFA with different parameters (Pa1–Pa12).

Table 2. Results of the parameter analysis of DPTCFA (N0 = 10 and N0 = 9).

Problems
Pa1

(10, 9)
Mean

Pa2
(10, 8)
Mean

Pa3
(10, 7)
Mean

Pa4
(9, 8)
Mean

Pa5
(9, 7)
Mean

Pa6
(9, 6)
Mean

f1 1.36×10−142 5.92×10−132 1.25×10−146 9.15×10−141 2.30×10−141 3.79×10−150

f2 2.09×10−156 4.97×10−164 1.12×10−148 3.94×10−155 2.08×10−166 7.56×10−165

f3 1.18×10−139 1.86×10−140 1.30×10−144 1.14×10−141 8.41×10−136 6.30×10−134

f4 0 0 0 0 0 0
f5 1.83×10−146 3.17×10−139 6.37×10−137 4.47×10−145 1.90×10−135 1.43×10−135

f6 6.73×10−72 7.27×10−73 3.37×10−70 7.76×10−71 1.09×10−65 7.43×10−68

f7 0 0 0 0 0 0
f8 0 0 0 0 0 0
f9 0 0 0 0 0 0
f10 0 0 0 0 0 0
f11 0 0 0 0 0 0
f12 4.15×10−143 2.49×10−131 1.81×10−136 2.48×10−145 8.25×10−138 7.13×10−130

f13 6.97×10−69 2.69×10−72 1.28×10−68 8.20×10−73 1.04×10−73 1.83×10−77

f14 0 0 3.87×10−03 7.65×10−05 4.16×10−03 0
f15 0 0 0 0 0 0
f16 5.33×10−07 3.29×10−07 6.26×10−07 8.66×10−08 3.59×10−07 1.85×10−06

f17 0 0 0 0 0 0
f18 1.36×10−04 2.28×10−03 3.31×10−06 3.04×10−08 1.36×10−04 9.01×10−07

f19 0 0 0 0 0 0
f20 0 1.45×10−12 1.03×10−10 6.34×10−12 0 0
f21 0 0 0 0 0 0
f22 0 0 0 0 0 0
f23 0 0 0 9.85×10−09 0 0
f24 2.89×10+01 2.90×10+01 2.89×10+01 2.90×10+01 2.90×10+01 2.89×10+01

f25 8.01×10−01 7.10×10−01 4.86×10−01 6.96×10−01 8.49×10−01 7.69×10−01

f26 2.99×10+00 2.99×10+00 2.72×10+00 2.66×10+00 2.99×10+00 2.99×10+00

The optimal value is in bold.

It is clear from Tables 2 and 3 and Figure 8 that the setting of the parameter Pa1(10,
9) can obtain the optimal value in most cases, but to further verify the validity of the
parameter settings, Table 4 gives the Friedman and Wilcoxon results of 12 groups of
parameter settings, listing the mean rank of DPTCFA under different parameters. The
Friedman test and Wilcoxon test can be used to represent the algorithm difference for
problem solving the benchmark function to verify the algorithm stability. The larger the
test result, the greater the difference in the algorithm’s ability to solve the problem, and
the worse the algorithm stability [38]. As seen, the mean rank of Pa1(10, 9) is the smallest,
so Pa1(10, 9) is the best choice for the inspection test. Based on the non-parametric test,
Pa1(10, 9) was set to (N0, Nc) in the next experiment.
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(a) Problem f5 (b) Problem f20

Figure 8. Search curves of DPTCFA with different parameters f5 and f20 (D = 30).

Table 3. Results of the parameter analysis of DPTCFA (N0 = 8 and N0 = 7).

Problems
Pa7

(8, 7)
Mean

Pa8
(8, 6)
Mean

Pa9
(8, 5)
Mean

Pa10
(7, 6)
Mean

Pa11
(7, 5)
Mean

Pa12
(7, 4)
Mean

f1 3.52×10−136 1.13×10−144 3.33×10−138 2.71×10−144 6.32×10−140 3.07×10−137

f2 8.83×10−158 9.75×10−159 4.45×10−158 1.78×10−147 3.87×10−164 4.47×10−158

f3 8.88×10−142 9.84×10−132 8.22×10−138 3.08×10−136 8.07×10−138 1.09×10−141

f4 0 0 0 0 0 0
f5 5.69×10−142 1.43×10−141 6.39×10−141 3.21×10−141 1.23×10−140 1.88×10−141

f6 3.44×10−72 3.27×10−69 5.78×10−67 4.11×10−64 7.32×10−72 1.42×10−69

f7 0 0 0 0 0 0
f8 0 0 0 0 0 0
f9 0 0 0 0 0 0
f10 0 0 0 0 0 0
f11 0 0 0 0 0 0
f12 9.03×10−138 7.69×10−141 1.05×10−131 1.98×10−143 1.44×10−148 5.26×10−138

f13 1.24×10−72 7.34×10−71 1.18×10−73 3.45×10−70 3.62×10−72 5.80×10−68

f14 0 0 0 6.61×10−03 0 0
f15 0 0 0 0 0 0
f16 4.12×10−07 2.23×10−06 1.20×10−06 7.58×10−07 2.94×10−06 5.68×10−07

f17 0 0 0 0 0 0
f18 4.48×10−06 8.55×10−05 6.32×10−04 3.70×10−05 2.14×10−04 3.73×10−04

f19 0 0 0 0 0 0
f20 0 1.26×10−10 5.68×10−14 2.84×10−14 3.90×10−03 5.68×10−14

f21 0 0 1.19×10−07 0 0 0
f22 0 0 0 0 0 5.59×10−12

f23 0 0 0 0 0 0
f24 2.89×10+01 2.89×10+01 2.89×10+01 2.90×10+01 2.90×10+01 2.90×10+01

f25 5.88×10−01 8.53×10−01 4.15×10−01 3.36×10−01 4.68×10−01 7.44×10−01

f26 2.99×10+00 2.99×10+00 2.99×10+00 2.99×10+00 3.00×10+00 3.00×10+00

The optimal value is in bold.



Mathematics 2022, 10, 1564 17 of 24

Table 4. The Friedman and Wilcoxon results in different parameters.

Parameters Friedman Wilcoxon Rank

Pa1(10, 9) 6.08 3.42 1
Pa2(10, 8) 6.88 4.92 4
Pa3(10, 7) 6.38 4.81 3
Pa4(9, 8) 5.77 4.73 7
Pa5(9, 7) 6.83 6.12 2
Pa6(9, 6) 6.27 6.00 6
Pa7(8, 7) 5.46 5.73 5
Pa8(8, 6) 6.67 7.38 8
Pa9(8, 5) 6.77 7.85 9
Pa10(7, 6) 6.77 8.35 10
Pa11(7, 5) 6.79 8.92 11
Pa12(7, 4) 7.33 9.77 12

The optimal result is in bold.

4.3. Algorithm Comparison

In the second part of the experiment, DPTCFA was compared with some other FA
variants. The considered algorithms are listed below:

I Standard FA (FA) [10].
I FA with chaos (CFA) [15].
I FA with adaptive parameter strategy (ApFA) [39].
I Random attraction for FA (RaFA) [16].
I Neighborhood attraction for FA (NaFA) [17].
I Modified neighborhood search for FA (MFANS) [18].
I The poposed algorithm (DPTCFA).

For the above seven algorithms, the population size N and the maximum iteration
number MaxIt were set to 30 and 5000, respectively. For the standard FA and ApFA, the
parameters α, β0, and γ were set to 0.5, 1.0, and 1

Γ2 , respectively. The parameter settings
of CFA, RaFA, and NaFA can be found in the relevant literature [15–17]. In MFANS, the
neighborhood size k and the preset probability pns were set to 2 and 0.05, respectively.
N0, Nc, k, and pns were respectively set to 10, 9, 6, and 0.05 in DPTCFA. Finally, each
algorithm was run 30 times in the same environment, and the average optimal fitness value
was recorded. Table 5 shows the comparison results of DPTCFA and other FA variants
on D = 30. The “Mean” in the table represents the average optimal fitness value, and
the optimal results are indicated in bold. Obviously, the proposed algorithm (DPTCFA)
obtained better results on most benchmark functions. Especially in 14 functions including
f4, f7, f9– f11, f14, f15, and f17– f23, the function optimal value was obtained. On the function
f24, the result of DPTCFA was slightly insufficient compared to ApFA. In addition to the
above functions, DPTCFA received a poor result on the composite functions f25 and f26.
However, the CFA using the chaos map achieved better results. Furthermore, CFA, ApFA,
RaFA, NaFA, and MFANS achieved 6, 4, 4, 6, and 6 function optimal values, respectively.
Due to space limitations, Figure 9 only shows the convergence images of DPTCFA and the
other six comparison algorithms on some functions (D = 30).

Figure 9 gives the convergence images of the seven algorithms on the six test functions
f2, f5, f6, f12, f13, and f14. The abscissa and ordinate respectively represent the iteration
number and the logarithmic form of the optimal fitness value. In the image of the function
f2, FA, CFA, ApFA, and RaFA fall into the local optimum, and finally obtain poor results.
NaFA and MFANS only jump out of the local optimum after 4000 iterations, and the conver-
gence speed is slow. DPTCFA shows better exploration ability in the global optimization
stage (i.e., 1 to 4000 iterations), and the optimization ability level ranges from 100 to 10−100.
The local optimization stage enters after 4000 iterations, and the exploitation optimization
ability level ranges from 10−100 to 10−150. In the functions f5, f6, f12, f13, and f14, CFA
did not fall into the local optimal value, and it is sufficient to prove the effectiveness of
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the chaotic strategy. On the function f14, DPTCFA found the optimal value after about
500 iterations. It can be seen that the dual-population topology enhances the exploration
ability. The convergence rate of NaFA on various functions was relatively slow; after
4000 iterations, this algorithm showed search oscillation, and the local optimal solution
emerged. In comparison, the proposed approach considers the exploration and exploitation
capabilities of FA. Therefore, DPTCFA achieved better results in 26 benchmark functions.

Figure 9. Search curves of DPTCFA and other FA variants (D = 30).

Table 5. Comparison of results obtained by DPTCFA and other FA variants (D = 30).

Problems
FA

Mean
CFA

Mean
ApFA
Mean

RaFA
Mean

NaFA
Mean

MFANS
Mean

DPTCFA
Mean

f1 4.79×10−01 7.27×10−43 1.72×10−88 4.83×10−40 1.91×10−60 1.78×10−63 7.14×10−134

f2 1.74×10−05 2.96×10−09 9.18×10−08 1.07×10−07 6.16×10−82 5.78×10−80 4.67×10−142

f3 3.87×10+00 8.92×10−41 4.38×10−08 9.78×10−02 2.17×10−63 2.26×10−60 8.01×10−131

f4 2.23×10+01 3.33×10−02 3.07×10+03 6.67×10−02 0 0 0
f5 5.06×10−01 2.28×10−39 5.81×10+02 1.85×10+03 2.18×10−66 8.75×10−67 4.39×10−126

f6 6.77×10+10 2.73×10+00 3.36×10+02 6.50×10+01 8.93×10−32 1.37×10−31 1.26×10−65

f7 2.64×10−07 1.99×10−210 7.46×10−199 1.23×10−194 2.38×10−316 0 0
f8 8.51×10+03 4.00×10+03 9.92×10+03 3.12×10+03 8.00×10+03 1.18×10−01 4.32×10−02

f9 2.12×10−02 3.78×10−03 5.00×10−01 7.39×10−04 0 0 0
f10 1.77×10−07 0 0 0 1.35×10−06 5.32×10−06 0
f11 3.24×10−02 1.05×10−42 4.94×10−85 4.50×10−40 0 0 0
f12 4.42×10−01 1.10×10−41 7.16×10−01 3.01×10+01 1.15×10+00 1.37×10−02 7.13×10−128

f13 1.46×10+00 7.00×10−03 5.99×10−02 1.51×10−02 5.19×10−35 2.14×10−32 6.91×10−66

f14 3.00×10+01 0 3.07×10+01 0 1.88×10−03 3.37×10−03 0
f15 3.58×10−01 1.00×10−01 1.00×10−01 1.00×10−01 0 0 0
f16 1.30×10−01 3.21×10−03 1.61×10−02 1.91×10−02 8.55×10−05 2.33×10−04 1.05×10−06

f17 7.60×10+01 4.08×10+01 2.49×10+01 2.32×10+01 0 0 0
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Table 5. Cont.

Problems
FA

Mean
CFA

Mean
ApFA
Mean

RaFA
Mean

NaFA
Mean

MFANS
Mean

DPTCFA
Mean

f18 1.00×10+00 1.00×10+00 1.00×10+00 1.00×10+00 3.20×10−05 6.33×10−04 0
f19 1.00×10+00 1.00×10+00 1.00×10+00 1.00×10+00 0 2.81×10−16 0
f20 1.40×10−02 0 2.84×10−15 9.47×10−15 1.23×10+00 1.83×10+01 0
f21 1.15×10−05 0 0 1.18×10−16 1.22×10−03 3.31×10−03 0
f22 5.24×10−06 0 0 0 4.63×10−04 1.45×10−03 0
f23 8.63×10−06 0 0 0 3.76×10−03 8.27×10−03 0
f24 6.63×10+01 4.05×10+01 2.83×10+01 1.55×10+02 2.90×10+01 2.90×10+01 2.89×10+01

f25 7.93×10+00 1.57×10−32 8.74×10+00 3.57×10−03 8.75×10−01 8.54×10−01 6.72×10−01

f26 4.67×10−02 1.37×10−32 3.36×10+01 7.32×10−04 2.92×10+00 2.97×10+00 2.86×10+00

The optimal value is in bold.

To further verify the effectiveness of the algorithm, in this work, DPTCFA and other
FA variants were tested from two aspects.

(1) Increasing the problem dimension: In addition to the 30-dimension experiment,
the 7 algorithms were also tested with a 50-dimension condition. Table 6 lists the experiment
results of the 7 algorithms on the 50-dimension. Figure 10 is the convergence image of
DPTCFA and other FA variants in the case of D = 50. Similar to the convergence of D = 30,
the increase in dimensionality did not make the DPTCFA effect worse, which verifies that
the proposed algorithm has strong stability.

Table 6. Comparison results obtained by DPTCFA and other FA variants (D = 50).

Problems
FA

Mean
CFA

Mean
ApFA
Mean

RaFA
Mean

NaFA
Mean

MFANS
Mean

DPTCFA
Mean

f1 1.37×10+00 1.82×10−42 2.75×10+00 5.31×10−05 2.88×10−65 8.36×10−65 5.38×10−133

f2 4.87×10−02 5.04×10−09 1.30×10−07 7.00×10−08 3.24×10−83 9.12×10−79 1.09×10−145

f3 1.98×10+01 6.71×10−40 3.43×10−02 6.97×10+00 5.71×10−62 2.61×10−57 3.22×10−132

f4 2.83×10+00 6.67×10−02 7.81×10+03 5.43×10+00 0 0 0
f5 2.69×10+00 6.82×10−38 7.28×10+03 9.54×10+03 3.46×10−59 8.17×10−63 3.29×10−131

f6 5.22×10+25 7.16×10+01 6.38×10+02 2.96×10+02 2.46×10−32 1.56×10−32 1.33×10−65

f7 1.51×10−05 6.02×10−209 8.07×10−79 1.03×10−04 1.90×10−307 5.72×10−313 0
f8 1.28×10+04 7.75×10+03 1.75×10+04 6.29×10+03 1.51×10+04 1.63×10−01 5.05×10−02

f9 3.76×10−02 1.48×10−03 1.67×10+00 6.33×10−03 0 0 0
f10 1.85×10−07 0 0 0 4.92×10−09 1.63×10−06 0
f11 2.33×10−01 4.07×10−42 9.06×10+00 1.65×10+01 0 0 0
f12 1.40×10+00 6.93×10−41 2.27×10+02 1.52×10+02 1.48×10+01 1.16×10+00 4.14×10−131

f13 4.37×10+00 3.66×10−02 3.76×10−01 4.09×10−01 1.02×10−35 9.50×10−33 4.85×10−67

f14 6.54×10+01 0 7.35×10+01 1.48×10−17 3.56×10−03 6.97×10−03 0
f15 8.45×10−01 1.00×10−01 1.00×10−01 6.73×10−01 0 0 0
f16 7.14×10−01 1.08×10−02 7.02×10−02 6.06×10−02 7.41×10−05 2.23×10−04 9.76×10−07

f17 1.84×10+02 8.71×10+01 6.71×10+01 4.72×10+01 0 0 0
f18 1.00×10+00 1.00×10+00 1.00×10+00 1.00×10+00 4.21×10−05 1.59×10−03 0
f19 1.00×10+00 1.00×10+00 1.00×10+00 1.00×10+00 0 6.21×10−12 0
f20 2.64×10−01 0 2.84×10−15 2.84×10−15 2.10×10+00 3.92×10+01 0
f21 1.90×10−05 0 0 0 1.18×10−03 3.90×10−03 0
f22 5.30×10−06 0 0 0 1.00×10−03 3.12×10−03 0
f23 2.21×10−05 0 0 0 3.03×10−03 8.03×10−03 0
f24 1.42×10+02 7.37×10+01 9.18×10+01 6.97×10+02 4.90×10+01 4.90×10+01 4.89×10+01

f25 9.12×10+00 4.15×10−03 1.11×10+01 6.25×10−01 1.07×10+00 1.16×10+00 8.09×10−01

f26 1.48×10−01 1.39×10−32 8.99×10+01 1.08×10+01 4.91×10+00 4.99×10+00 4.99×10+00

The optimal value is in bold.
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(2) Friedman and Wilcoxon test: We used the 30-dimension and 50-dimension experi-
ment results for a non-parametric test to obtain the algorithm mean rank. Tables 7 and 8
are the non-parametric test results in the 30-dimension and 50-dimension conditions, re-
spectively. As seen, the experiment results of DPTCFA were almost the same in the case of
D = 50 and D = 30, and they all achieved good results. The mean rank of the Friedman test
and Wilcoxon test also confirmed the stability of DPTCFA.

Table 7. Friedman and Wilcoxon test results in different algorithms (D = 30).

FA CFA ApFA RaFA NaFA MFANS DPTCFA

Friedman 5.69 3.48 5.38 4.83 3.29 3.62 1.71
Wilcoxon 5.58 3.15 5.35 5.04 3.08 3.62 2.19

Rank 7 5 2 6 4 3 1
The optimal result is in bold.

Table 8. The Friedman and Wilcoxon results in different algorithms (D = 50).

FA CFA ApFA RaFA NaFA MFANS DPTCFA

Friedman 5.69 3.48 5.38 4.83 3.29 3.62 1.71
Wilcoxon 5.58 3.15 5.35 5.04 3.08 3.62 2.19

Rank 7 5 2 6 4 3 1
The optimal result is in bold.

Figure 10. Search curves of DPTCFA and other FA variants (D = 50).

4.4. Strategy Evaluation

In this part, the corresponding work is mainly carried out from the following two
aspects: (1) Evaluation of the SN topology population optimization ability: In DPTCFA,
the SN and RN topology populations are used. The effectiveness of the RN topology
was confirmed in [15]. Therefore, to ensure the SN topology population optimization
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ability, we recorded the times of the SN and RN topology populations achieving the global
optimal value in the population evolution process. (2) Evaluation of the effectiveness of
the staged balance mechanism: In the proposed algorithm, the optimization is divided
into two stages, i.e., the global and local optimization stages. Therefore, we maintained the
global optimization stage the same, and verified the effectiveness of the NMSM in the local
optimization stage.

(1) Evaluation of the SN topology population optimization ability

From the above description, the proposed algorithm DPTCFA was divided into two
stages: global optimization and local optimization stages. Among them, the iteration
numbers in the global optimization stage were 4000. In the global optimization stage, the
SN and RN topology populations co-evolve. In order to evaluate the optimization ability of
the SN topology population, Table 9 gives the statistical times of the SN and RN topology
populations achieving the better value during the 4000 iterations in the global optimization
stage. As seen, the SN topology population was better than or equal to the RN topology
population on the 17 benchmark functions. Therefore, the global optimization ability of the
SN topology population was stronger than the RN topology population. However, on the
benchmark functions, such as f1– f3, f8, f10, and f12– f14, the optimization ability of the SN
topology population is bad. Thus, the dual-population topology coevolution mechanism
effectively compensates for the defects of the SN and RN topology.

Table 9. The statistical times of two populations achieving the optimal value.

Problems SN Topology Population RN Topology Population

f1 58 3942
f2 526 3474
f3 902 3098
f4 4000 3992
f5 2352 1468
f6 2440 1560
f7 3330 670
f8 18 3982
f9 4000 4000
f10 1738 2262
f11 4000 3990
f12 734 4000
f13 966 3034
f14 592 3408
f15 4000 3900
f16 3954 46
f17 3968 4000
f18 4000 4000
f19 4000 3390
f20 4000 0
f21 4000 0
f22 4000 0
f23 4000 3944
f24 3994 6
f25 4000 0
f26 3998 2

Total 17 11
The optimal value is in bold.

(2) Evaluation of the effectiveness of the staged balance mechanism

For the evaluation of the staged balance mechanism’s effectiveness, since the global
optimization ability has been evaluated in the previous work, it was only needed to evaluate
the NMSM next. The comparison algorithm is listed as follows:
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I Not contain NMSM (Not-NMSM).
I Contain NMSM (DPTCFA).

Table 10 shows the experiment results of the two algorithms (D = 30). Non-NMSM
achieved better results in 16 benchmark functions; however, DPTCFA achieved better
results in 23 benchmark functions. In terms of quantity, NMSM effectively improved the
solution accuracy to achieve better results.

Table 10. Comparison of results obtained by DPTCFA and non-NMSM (D = 30).

Problems Not-NMSM DPTCFA

f1 2.91×10−84 1.13×10−144

f2 2.82×10−88 9.75×10−159

f3 1.52×10−78 9.84×10−132

f4 0 0
f5 5.95×10−77 1.43×10−141

f6 1.50×10−39 3.27×10−69

f7 0 0
f8 3.91×10−02 2.43×10−02

f9 0 0
f10 0 0
f11 0 0
f12 5.99×10−87 7.69×10−141

f13 3.53×10−41 7.34×10−71

f14 0 0
f15 0 0
f16 2.23×10−06 1.73×10−06

f17 0 0
f18 1.00×10+00 8.55×10−05

f19 0 0
f20 2.84×10−14 1.26×10−10

f21 0 0
f22 0 0
f23 0 0
f24 2.89×10+01 2.89×10+01

f25 4.94×10−01 8.53×10−01

f26 2.81×10+00 2.99×10+00

Total 16 23
The optimal value is in bold.

5. Conclusions

In this paper, an enhanced FA with dual-population topology coevolution (DPTCFA)
is proposed. In DPTCFA, a two-neighborhood topology is mainly used for optimization;
it conforms to the evolutionary law of fireflies in nature, and enhances the population
diversity and the global search ability. In addition, the main contributions of this paper
are summarized as follows: First, the chaos map strategy is used in the SN topology
population to reduce the parameter sensitivity. A new distance strategy for calculating
attractiveness is designed based on the dimension difference in the RN topology population.
Second, the diversity neighborhood enhanced search strategy is improved for the firefly
position update. Third, NMSM is adopted to enhance the algorithm exploitation, so as to
obtain a balance between the algorithm exploration and exploitation. In order to verify the
performance of DPTCFA, 26 benchmark functions are used to test this algorithm and other
FA variants. The experimental results show that the effect of DPTCFA is significantly better
than other algorithms. Finally, ablation experiments were performed for the evaluation
of the SN topology population optimization ability and NMSM. The experiment results
verify the effectiveness of DPTCFA. Furthermore, this paper also compares other state-of-
the-art algorithms other than FAs, such as PSO, DE, and their variants, and the experiment
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results show that the performance of the proposed DPTCFA algorithm far exceeds these
algorithms, making the conclusion more persuasive.

However, there are still some shortcomings in this work: (1) Compared with ApFA,
RaFA, and NaFA, DPTCFA has a longer running time, but it is much better than FA and
CFA. (2) On most functions, the effect of DPTCFA is better than the other algorithms, but on
the composite functions f25 and f26, CFA achieves the best results. The above shortcomings
will be the focus of follow-up work, and the application of theoretical research (DPTCFA)
to practical optimization problems is of great significance.
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