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Abstract: Traffic flow forecasting is challenging for us to analyze intricate spatial–temporal depen-
dencies and obtain incomplete information of spatial–temporal connection. Existing frameworks
mostly construct spatial and temporal modeling based on a fixed graph structure and given time
series. However, a fixed adjacency matrix is limited to learn effective spatial–temporal correlations of
the network because it represents incomplete information for missing genuine relation. To solve the
difficulty, we design a novel spatial–temporal adaptive fusion graph network (STFAGN) for traffic
prediction. First, our model combines fusion convolution layers with a novel adaptive dependency
matrix by end-to-end training to capture the hidden spatial-temporal dependency on the data to com-
plete incomplete information. Second, STFAGN could, in parallel, acquire hidden spatial–temporal
dependencies by a fusion operation and temporal trend by fast-DTW. Meanwhile, we use ReZero
connection as a simple change of deep residual networks to facilitate deep signal propagation and
faster converge. Lastly, we conduct comparative experiments on two public traffic network datasets,
whose results demonstrate the superiority of our algorithm compared to state-of-the-art baseline
types. Ablation experiments also prove the rationality of the framework of STFAGN.

Keywords: intelligent transportation system; traffic flow modeling; time series analysis; deep learn-
ing; noise-immune learning

MSC: 05C82; 68T07

1. Introduction

The number of vehicles increases on roads with the fast development of urbanization
and the improvement of people’s living standards. Ubiquitous deployment of intelligent
traffic systems (ITS) is one of the effective ways to alleviate urban traffic congestion [1].
Intelligent traffic systems are fast growing with the development of sensor technology,
which enable dynamic traffic data collection to predict the future traffic flow of a road
network [2]. Accurate traffic flow forecasting is promising in prompting urban traffic
transportation [3,4].

Traffic flow forecasting is a challenging task. The methods in traffic forecasting can
be divided into two categories: knowledge-driven methods and data-driven methods. In
the early stage, queuing theory and simulating behaviors are applied in knowledge-driven
methods [5]. With the rapid growing of traffic data collection and storage technologies, data-
driven methods become increasingly popular. The statistical and machine learning method
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belong to the data-driven method, such as auto-regressive integrated moving average
(ARIMA) [6], vector auto-regression (VAR) [7], support vector regression (SVR) [8,9] and
Kalman filtering [10,11]. However, most of these methods are limited by the stationarity
assumption of time series [12]. Thus, the performance is limited for capturing feature
representation, especially for the high nonlinear dynamic traffic flow.

Deep learning approaches are not limited by the stationarity assumption, having better
performance on time series prediction, as recurrent neural networks (RNNs) [13], long
short-term memory (LSTM) [14] networks, and gated recurrent unit (GRU) [15] are widely
applied in capturing the temporal correlations from a huge number of sequence information.
However, these methods treat the traffic flow from different roads as independent patterns
and fail to take into account the spatial information from traffic data. Different roadways
may share the same pattern at the same time due to their similar road structure, or the traffic
condition of the roadway in the previous time will have an impact on the other roadway
the next time. In a graph neural network, the graph convolutional network has been
proposed to exploit local spatial features through the Laplacian matrix [16]. For example,
the dynamic graph convolutional recurrent network (DGCRN) [17], diffusion convolutional
recurrent neural network (DCRNN) [18] and spatio-temporal graph convolutional network
(STGCN) [19] capture correlations in spatial and temporal features by combining the
recurrent neural networks and graph neural networks.

Although RNN- and GCN-based models have achieved successful performance in
the final prediction, they still have shortcomings. First, most methods use the pre-defined
adjacency or static graph structure to capture spatial and temporal dependency, and fail
to dynamically exploit spatial–temporal dependency among nodes [20,21]. Although
two nodes are connected in pre-defined graph, they have distinctive traffic features. For
example, one end of a road is a commercial area, which is usually busy, and the other end
is an industrial area, which is usually smooth [22]. On the other hand, some circumstances,
such as office areas, school areas, or marketing areas, share similar traffic conditions
although there is no connection between them in pre-defined adjacency during commuting
time. With the static graph, it is hard to model the dynamic connection property between
each traffic node. Second, exiting methods lack temporal graph construction [23]. When
applying a given spatial adjacency matrix for graph convolution, they ignore the temporal
similarity between nodes. Self-adaptive matrices are proposed to adjust the fixed spatial
adjacency matrix [22,24]. However, the learned adjacency matrix does not effectively model
the temporal graph to extract complicated spatial–temporal dependencies.

In this paper, we present a deep learning based method named the spatial–temporal
adaptive fusion graph network (STAFGN) to address these two shortcomings. To achieve
this, we propose a novel adaptive dependency matrix in the fusion convolution layer to
preserve the hidden spatial–temporal dependency in traffic data. Then, we fuse spatial
and temporal graphs in different time periods to capture in parallel the hidden spatial–
temporal dependencies. Furthermore, we formulate the temporal adjacency matrix to
measure temporal distances by fast-DTW [21] to extract the global temporal dependency
more effectively. This paper first introduces the related work of others in traffic flow,
and then proposes STAFGN. Finally, we conduct comparison and ablation experiments
to demonstrate the effectiveness of the model. The main contributions of this work are
as follows.

• We design the temporal adjacency matrix to effectively capture temporal distances of
the traffic flow, and the adaptive matrix to exploit hidden spatial dependency in the
static graph structure.

• We propose the spatial–temporal adaptive fusion graph network (STAFGN) to exploit
spatial–temporal dependencies simultaneously by fusing the spatial and temporal
graphs into a large adjacency matrix.

• We evaluate our model on two real-word traffic datasets with extensive experi-
ments. The case study demonstrates that the STAFGN outperforms the state-of-the
art methods.
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2. Related Works
2.1. Traffic Flow Forecasting

A road network can be represented as G = (V, E, A), where V is the set of nodes
|V| = N2, and E is the set of edges in the network. The spatial adjacency matrix is
represented as A ∈ RN×N . If there is an edge between vi and vj, Aij is 1 and otherwise 0.
At each time step t, Xt ∈ RN×D denotes the traffic status, e.g., road network occupancy,
traffic speed, and capacity, in the road network. Traffic flow forecasting is to learn function
f to map the historical traffic flow X(t−P+1):t to that of the future X(t+1):(t+Q).[

X(t−P+1):t, G
] f→ X̂(t+1):(t+Q), (1)

where X(t−P+1):t = (Xt−P+1, Xt−P+2, . . . , Xt) ∈ RP×N×D and X̂(t+1):(t+Q) = (X̂t+1, X̂t+2, . . .
, X̂t+Q) ∈ RP×N×D.

Traffic flow forecasting focuses on spatial–temporal forecasting [25]. The methods
in spatial–temporal forecasting are classified in two categories, RNN-based [17,26] and
CNN-based [21,24]. Now, many research studies employ the graph convolutional network
in spatial–temporal forecasting. It has prompted the development of spatial–temporal
forecasting, exploiting the spatial–temporal dependencies more effectively. The dynamic
graph convolutional recurrent network (DGCRN) [17] model, a hyper-network to generate
the dynamic adjacency matrix, was integrated with the static graph in GCN model to
train. Graph WaveNet [24] uses the self-adaptive adjacency to preserve the implicit spatial
dependencies and stacked dilated casual convolutions to exploit the temporal dependencies.
Spatial–temporal fusion graph neural networks (STFGNN) [21] construct several graphs,
which are integrated as a spatial–temporal fusion graph to explore the spatial–temporal
relationship simultaneously.

2.2. Graph Convolution Networks

Graph convolution networks can be viewed as the process of graph-based presentation
learning, aiming to utilize deep learning in structured data. It is widely applied in node
classification [27], graph classification [28], and link prediction [29]. Spectral domain based
and spatial domain based are the two main approaches in GCN. The spectral-domain-based
method uses graph Fourier transform on the graph signal to deconstruct the graph signal
in the spatial domain. The graph spectral filtering by decomposition of the Laplace matrix
to exploit irregular graph data is as follows:

γ ? g(x) = γ(L)x = Uγ(Λ)UTx, (2)

where U ∈ Rn×n is eigenvectors of the Laplacian matrix L = In − D−
1
2 = UλU ∈ Rn×n,

(In is the identify matrix, D ∈ Rn×n is the diagonal degree matrix with Dii = ∑j Wij),
Λ ∈ Rn×n is the diagonal matrix of eigenvectors of L, and γ(Λ) is the spectral filter, which
is also a diagonal matrix.

Different from the spectral domain, the spatial-based method aggregates features from
the spatial neighbor to learn a high-dimension representation. GraphSAGE [30] focuses on
node central mini-batch training by the aggregation of its neighbors, enabling distributed
training on large-scale data. GAT [31] uses the attention mechanism to aggregate neighbor
nodes, realizing adaptive allocation to different neighbor weights.

2.3. Fast-DTW

Fast dynamic time warping (fast-DTW) is the modified algorithm based on dynamic
time warping (DTW) [32]. DTW is a classical algorithm to measure the time series similarity,
as well as the Euclidean distance [33]. However, in most situations, two times series have
very similar shapes as a whole; these shapes are not aligned on the x axis. So, before
comparing time series similarity, one of the time series needs to be warped under the
timeline for better alignment. DTW is an effective way to achieve this warping distor-
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tion [34]. It calculates the similarity between two time series by extending and shortening
the time series.

Given two time series X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym), the state transition
dpn×m can be generated as follows:

dp(i, j) = min(dp(i− 1, j− 1), dp(i− 1, j), dp(i, j− 1)) + d(i, j), (3)

where d(i, j) is the distance between xi and yj. After several iterations, dp(n, m)
1
2 is the

similarity between time series X and Y.
While calculating state transition dpn×m, the warping path Φ can be generated from it.

The warping path Φ is denoted as follows:

φ = (w1, w2, . . . , wλ), max(n, m) ≤ λ ≤ n + m, (4)

where wλ means the matchup between xi and yj.
However, since the real traffic time series is large, utilizing DTW to the general series

similarity based on real traffic data is a challenging task. The computational complexity is
up to O(n2). To address this problem, STFGCN [21] limits the search length T to improve
the DTW algorithm, which is named fast-DTW. The searching range is restricted as follows:

wk = (i, j), |i− j| ≤ T (5)

In Equation (3), we can see that the computation complexity is declined from O(n2) to
O(Tn), making it possible to calculate the large and long traffic data.

2.4. ReZero

Trainability is related to dynamic isometry [35]. ReZero (residual with zero initializa-
tion) is a way to ensure initial dynamical isometry in deep networks [36]. It add learnable
parameters to the architecture of deep residual network in order to dynamically promote
well-behaved gradients and arbitrarily deep signal propagation. A skip connection and
residual weights αi are used to realize the non-trivial transformation of a layer F(x). The
propagation is shown below:

xi+1 = xi + αiF(xi) (6)

3. Methodology

As shown in Figure 1, our spatial–temporal adaptive fusion graph convolution net-
work consists of three modules, including the spatial–temporal adaptive fusion construction
module (STAFCM), the spatial–temporal adaptive fusion graph neural module (STAFM)
and the gated convolution module (GCM). First, the STAFCM constructs the spatial–
temporal fusion adjacency matrix MF to integrate spatial–temporal information. The
proposed MF contains the temporal adjacency matrix At computed by fast-DTW [21], the
spatial adjacency matrix As and the temporal connectivity graph Ac to represent given
spatial–temporal connections in the traffic graph. The combination of MF is displayed in
the STAFCM of Figure 1, with blue for As, orange for At, and gray for Ac. Second, the
STAFM completes the incomplete fusion adjacency matrix MF in the fusion self-adaptive
convolution layer for hidden spatial–temporal features in gated multiplication layers. Ba-
sically, the STAFM is composed of a fusion self-adaptive convolution layer and stacked
gated multiplication layers with a max pooling layer. The fusion self-adaptive convolution
layers learn the adjacency matrix from data through an end-to-end supervised training to
construct the self-adaptive fusion adjacency matrix M̃F. The gated multiplication layers
aggregate the spatial–temporal dependencies by matrix multiplication from M̃F. Third, the
GCM extracts long-range spatial–temporal dependencies by a large dilation rate as a gating
mechanism in recurrent neural networks. We stacked k STFAGN layers to capture hidden
spatial–temporal dependencies.
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Figure 1. The particular framework of STFAGN.

3.1. Spatial–Temporal Adaptive Fusion Convolution Layer

In this paper, we design a spatial–temporal adaptive fusion convolution layer to
extract long-term spatial–temporal dependencies in the GCM module. The layer also
can establish the self-adaptive fusion adjacency matrix to supplement spatial–temporal
connections in the STAFM module. In Figure 1, the STFAGN layer represents the spatial–
temporal adaptive fusion convolution layer. The layer mainly consists of the GCM and
STAFM module.

A fixed adjacency matrix is not relevant to prediction tasks, which may cause consid-
erable biases. However, it is pricey to collecting complete and precise road information
by sensors. To adjust the incomplete adjacency matrix, Wu et al. [24] introduced a self-
adaptive adjacency matrix to construct and complement the adjacency matrix without
prior knowledge by learnable node embedding. Given two introduced node embedding
Mi, Mj ∈ RN×D, the self-adaptive adjacency matrix is M̃ = σ(ϕ(Mi MT

j )), where σ(·). ϕ(·)
respectively denotes the softmax and ReLU activation function. Supposing that a graph is
directed, the diffusion direction is double, comprising forward and backward directions.
They gave a definition to a forward transition matrix as S f = A/ ∑n

i=0 Aij and a backward
transition matrix as Sb = AT/ ∑n

i=0 AT
ij [24]. They integrated the diffusion convolution layer

with the self-adaptive adjacency matrix and defined the diffusion self-adaptive convolution
layer as

Y =
K

∑
k=0

M̃kXWka + Sk
f XWk f + Sb

f XWkb, (7)

3.2. Spatial–Temporal Adaptive Fusion Construction Module

We present the STAFCM module to aggregate spatial–temporal dependencies in the
spatial–temporal fusion adjacency matrix. As displayed in Figure 1, the spatial–temporal fu-
sion adjacency matrix MF ∈ RKN×KN consists of the temporal adjacency matrix At ∈ RN×N

computed by fast-DTW [21], the spatial adjacency matrix As ∈ RN×N and the temporal
connectivity graph matrix Ac ∈ RN×N [21]. Fast-DTW is applied to construct the temporal
adjacency matrix At. We add the similarity of temporal trends into an adjacency matrix
with fast-DTW from Equations (3) and (4). Ac represents the connection of the same node
belonging to the recent time step. In each node l ∈ {1, 2, . . . , N}, when i = t × N + l
and j = (t + 1) × N + l, MF,ij = 1, where t is the current time step. Each node could
integrate the spatial relevance from As, temporal pattern information from At and its own
approximate correlation of the proximal time step from Ac by matrix multiplication with
MF. In this paper, K defaults to 4. Let At denote the temporal adjacency matrix to obtain
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the temporal information of the time sequence. As is given from the fixed dataset. Finally,
as Figure 1 shows, the spatial–temporal fusion adjacency matrix MF is constructed.

The input of the STAFM module is formulated into H0 =
[

X(t), X(t+1), · · · , X(t+K)
]
∈

RK×N×D×C, where X(t) is separated from all series X =
[

X(t), X(t+1), · · · , X(t+T)
]
∈

RT×N×D×C. C denotes the number of channels in the STAFM module.

3.3. Gated Convolution Module

We design the GCM module to capture the long-term spatial–temporal information
with a large dilation rate. Gating mechanisms in recurrent neural networks make a dif-
ference to extracting the long-term relevance of traffic flow with gated temporal convo-
lutions [37]. Gated TCN with dilation factor k (e.g., 1, 2, and 4) can learn complicated
temporal correlation [24]. However, because the GCM employs a larger dilation rate,
the GCM module is distinct from TCN in Graph WaveNet [24] and STGCN [38] by ex-
tracting more long-range spatial–temporal dependencies. Given the whole input data
X ∈ RT×N×d×C, it takes the following form:

Z = σ(Φ1 ∗ X + b1)� φ(Φ2 ∗ X + b2), (8)

where σ(·) and φ(·) are sigmoid and tanh functions. Importantly, Φ1 and Φ2 stand for
two 1D convolution with dilation factors = K− 1, which controls the skipping distance to
enlarge the receptive field along the time axis [24].

3.4. Spatial–Temporal Adaptive Fusion Graph Neural Module

Figure 2 displays the STAFM module serving as a deep convolution learnable model,
capturing hidden spatial–temporal features to complement the incomplete spatial–temporal
connection. The STAFM module is made up of the fusion self-adaptive convolution
layer, and stacks the gated multiplication layers followed by the max pooling layer with
ReZero connection. Li et al. [21] introduced the STFGN module in the STFGNN to capture
complicated correlations by multiplying the STFGN modules independently in parallel.
However, the STFGN module cannot adaptively complete an incomplete connection of the
graph. Compared with STFGNN, the novel STAFM module constructs the fusion adjacency
matrix of the spatial–temporal relationship to complete the incomplete spatial–temporal
adjacency matrix.

Figure 2. Construction of a layer in STAFM module, in parallel.
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Fusion Self-Adaptive Convolution layer: Based on the spatial–temporal fusion adja-
cency matrix and the diffusion self-adaptive convolution layer, we propose a fusion self-
adaptive convolution layer (FSAC) to adaptively learn the self-adaptive fusion adjacency
matrix M̃F ∈ RKN×KN by an end-to-end learnable convolution layer.
M̃F = so f tmax(ReLU(Mi MT

j )), where Mi ∈ RKN×d and Mj ∈ RKN×d are spatial–temporal
fusion node embeddings of source and target nodes. Mi and Mj are learnable parameters.
We adopt the ReLU activation function to alleviate the occurrence of overfitting. We define
that S f = MF/rowsum(MF) and Sb = MT

F /rowsum(MT
F ). Lastly, the graph convolution

layer with M̃F can be summed up as

Y =
K

∑
k=0

M̃k
FXWk

F + Sk
bXWk

f + Sb
f XWk

b . (9)

Gated Multiplication Layer: In a gated multiplication layer, we replace matrix mul-
tiplication for a spectral filter to integrate complicated spatial–temporal correlations in
the graph multiplication layer. The gated multiplication layer can capture hidden spatial–
temporal correlations by matrix multiplication. Therefore, in the STAFM layer, a graph
multiplication layer aggregates matrix multiplication and GCM. In the graph multiplication
layer, a gated linear unit can summarize global characteristics after nonlinear activation. We
introduce the parameters of GLU with W1, W2 ∈ RC×C, M̃F ∈ RKN×C and b1, b2 ∈ RC×C.
Let Hl , Hl+1 ∈ RKN×C denote the l-th hidden feature. Then, we formulate gated multipli-
cation as

Hl+1 = σ(M̃F HlW1 + b1)� (M̃F HlW2 + b2), (10)

where � is the Hadamard product in GLU and σ is the sigmoid. Different from residual
connection [39,40], stacking layers with ReZero connections [36] are fast to obtain the
complex spatial correlation of each layer. The next layer is the max pooling layer, which
concatenates each hidden state HP ∈ maxPool([H1, H2, . . . , HL]) ∈ RK×N×D×C.

As illustrated in Figure 2, after the max pooling layer, HP is cut into the shape of
R1×N×D×C, which can represent complicated anisotropy [21]. There are

⌊
T

K−1

⌋
− 1 layers

stacked in the STAFM. As a consequence, the cropped connection of the intermediate time
step is organized into Hp = Hm

[[
K
2

]
, K

2 + 1, :, :, :
]
∈ R1×N××D×C.

ReZero connection: We adopt ReZero connection in the STFAGN for faster training
and convergence. Bachlechner et al. [40] demonstrated that ReZero has several benefits,
including wide usability, deeper learning and faster convergence. Compared with residual
connection, ReZero (residual with zero initialization) is a simple change in deep residual
networks to facilitate dynamical isometry. It further enables the efficient training of ex-
tremely deep networks [36]. So, we substitute ReZero for residual connection [40]. Given
F[Wi], which includes the STAFM layer and STFAGN layer and so on, the signal now
propagates according to

Hi+1 = Hi + θiF[Wi](Hi), (11)

where θi represents i-th learnable parameters, named residual weights [36].
Multiple STAFM layers operate the input signal in parallel to extract spatial–temporal

dependencies by gated multiplication. The shape of output data RT×N×D×C is transformed
into R(T−K+1)×N×D×C. Let ϑ denote a hyperparameter to control the sensitivity of the
squared error. We apply Huber loss as the loss function, whose specific calculation is
shown as

L(X̂(t+1):(t+T)
G , Θ) =

∑T
i=0 ∑N

j=0 ∑D
K=0 Er(X̂t+i

G , Xt+i
G )

T × N × D
, (12)

Er(Ŷ, Y) =
{ 1

2 (Ŷ−Y)2,
∣∣Ŷ−Y

∣∣ ≤ ϑ

ϑ
∣∣Ŷ−Y

∣∣− 1
2 ϑ2,

∣∣Ŷ−Y
∣∣ > ϑ

. (13)
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4. Experiments
4.1. Datasets and Baseline

Under the same hardware environment and the same datasets, we conduct compar-
ative experiments to facilitate comparison with other advanced baselines. We testify the
effectiveness of the STFAGN based on two traffic signal datasets consisting of METR-LA
and PEMS-BAY [18]. METR-LA is constructed from records of highways in Los Angeles
County, which tests traffic speeds with a sensor over a period of four months. PEMS-BAY
comprises traffic speeds of the Bay area over a period of six months. For both datasets,
sensors calculate traffic speed every 5 mins, so the adjacent time series differ by 5 mins.
The sensors of METR-LA and PEMS-BAY add up to 207 and 325, respectively, with 1515
and 2369 edges. Before training data, there is a requirement to pre-process data, the same
as in [18]. The adjacency matrix of both datasets is established on a distance-based graph
with the threshold of a Gaussian kernel [17]. The datasets are separated in 70% for training,
20% for validation, and 10% for testing. For more details, see Table 1.

Table 1. Statistical properties of METR-LA and PEMS-BAY.

Dataset Timestep Nodes Edges

METR-LA 34,272 207 1515
PEMS-BAY 52,116 325 2691

We compare STFAGN with the following models.

• Graph WaveNet: Graph WaveNet, a spatial–temporal graph model with a stacked
dilated 1D convolution component and self-adaptive adjacency layers [24].

• STFGNN: Spatial–temporal fusion graph neural networks, with a gated dilated CNN
module and spatial–temporal fusion graph module in parallel [21].

• ARIMA: Autoregressive integrated moving average [6,41], with Kalman filter, widely
used in time series analysis, which fits time series data to predict future points in the
series.

• SVR: Support vector regression, using a support vector machine to regress traffic
sequence, characterized by the use of kernels, sparse solution ,VC control of the
margin and the number of support vectors [8].

4.2. Experiments Results and Analysis

Our experiments are launched under an environment with Intel(R) Xeon(R) Gold 6139
CPU @ 2.30GHz. The edition of NVIDIA is NVIDIA-SMI 455.45.01, driver with version
455.45.01, and CUDA with Version 11.1. The temporal adjacency matrix At respectively
generated from fast-DTW in Alg1. The sparsity of the temporal adjacency matrix At is 0.01.
The batch size is 32. The epoch of training is 100. The using learning rate of the Adam
optimizer is 1.0× 10−3. In the STAFM, the number of gated multiplication layers is 3. The
STFAGN includes 8 parallel STAFM layers with dilation rate 3 and 1 gated multiplication
layer. The size of the filter in the model is R3×3 with all elements filled with 64. Then, we
let the dilation rate equal 3, because the size K of the spatial–temporal fusion adjacency
matrix is 4 to aggregate information through the neighbor. For all experiments, we use
12 past time steps of traffic signal to predict 3, 6 and 12 time steps in the future.

Table 2 indicates a comparison of the prediction validity of each model. The experiment
is conducted to input and train the data of the past 60 min to predict the next 15, 30, and
60 min of traffic speed in the METR-LA and PEMS-BAY datasets. On the mean result of
60 min horizons in METR-LA, STFAGN is optimized by 3.56% more than Graph WaveNet,
1.00% more than STFGNN, 7.30% more than ARIMA and 6.60% more than SVR. On the
mean result of PEMS-BAY in three horizons, STFAGN is probably increased by 0.1% to
2.5% compared to other baselines.
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Table 2. Effectiveness and consequence of STFAGN in comparison with Graph WaveNet, STFGNN,
ARIMA and SVR. We trained every models five times to get five results and calculated the mean and
standard deviation of the results.

Dataset Models
15 min 30 min 60 min

MAE MAPE% RMSE MAE MAPE% RMSE MAE MAPE RMSE

M
ET

R
-L

A
Graph WaveNet 2.98±

0.00
7.88±
0.00

5.91±
0.01

3.59±
0.00

10.17±
0.00

7.29±
0.01

4.45±
0.01

13.66±
0.00

8.97±
0.02

STFGNN 2.99±
0.00

7.24±
0.05

6.72±
0.02

3.48±
0.00

8.69±
0.06

8.10±
0.03

4.27±
0.01

11.01±
0.08

10.00±
0.03

STFAGN 2.94±
0.01

7.12±
0.06

6.62±
0.02

3.32±
0.06

8.22±
0.17

7.76±
0.16

3.96±
0.01

10.01±
0.08

9.46±
0.04

ARIMA 3.99±
0.00

9.60±
0.00

8.21±
0.00

5.15±
0.00

12.70±
0.00

10.45±
0.00

6.90±
0.00

17.40±
0.00

13.23±
0.00

SVR 3.99±
0.00

9.30±
0.00

8.45±
0.00

5.05±
0.00

12.10±
0.00

10.87±
0.00

6.72±
0.00

16.70±
0.00

13.76±
0.00

PE
M

S-
BA

Y

GraptWaveNet 1.39±
0.00

2.90±
0.00

3.01±
0.00

1.84±
0.00

4.16±
0.13

4.22±
0.01

2.37±
0.01

5.85±
0.00

5.45±
0.01

STFGNN 1.20±
0.01

2.47±
0.03

2.47±
0.04

1.47±
0.01

3.18±
0.05

3.27±
0.04

1.81±
0.00

4.17±
0.05

4.23±
0.04

STFAGN 1.17±
0.00

2.43±
0.02

2.43±
0.02

1.41±
0.00

3.06±
0.02

3.13±
0.03

1.69±
0.00

3.85±
0.02

3.88±
0.03

ARIMA 1.62±
0.00

3.50±
0.00

3.30±
0.00

2.33±
0.00

5.40±
0.00

4.76±
0.00

3.38±
0.00

8.30±
0.00

6.50±
0.00

SVR 1.85±
0.00

3.80±
0.00

3.59±
0.00

2.48±
0.00

5.50±
0.00

5.18±
0.00

3.28±
0.00

8.00±
0.00

7.08±
0.00

So, STFAGN surpasses data-driven approaches, such as ARIMA and SVR. Moveover,
STFAGN outperforms the previous convolution-based models, including Graph WaveNet
and STFGNN.

Traffic flow is nonlinear data with complex spatiotemporal correlation. ARIMA only
captures linear relationships. SVR fails to adopt the spatial correlation of the traffic network.
So, ARIMA and SVR perform poorly in traffic prediction. Graph WaveNet is conducted
with poor performance, because it cannot construct the adaptive fusion spatial–temporal
adjacency matrix with incomplete spatial–temporal relevance. Compared with STFGNN,
the second best framework, the effectiveness of STFAGN is slightly better than it on 15 min
and 30 min horizons, but significantly exceeds STFGNN on 60 min horizons. We consider
that there are two reasons to explain the effectiveness of STFAGN. First, our model can be
more adaptive to adjust the spatial–temporal adjacency matrix by constructing the spatial–
temporal adaptive fusion layer. Second, STFAGN is more effective in extracting long-term
temporal correlation by integrating the STAFM module with a gated CNN module.

In general, the average result of the presented STFAGN model is superior compared to
the baselines in performance of extracting spatial–temporal relevance. From the standard
deviation, the training results are also relatively stable.

4.3. Ablation Experiments

To verify the significance of different components in STFAGN, we conduct ablation ex-
periments on METR-LA and PEMS-BAY. “Model Elements” denote different configurations.

• [M, no]: STFAGN is not configured with adaptive matrix M̃ and ReZero connection.
• [M̃, no]: STFAGN is configured with adaptive matrix M̃ without ReZero connection.
• [M̃, ReZero]: STFAGN is configured with adaptive matrix M̃ with ReZero connection.

From the experiments in Table 3 and Figure 3, we draw the following conclusions
concerning the proposed ideas:

• For the ingredient of M̃, the fusion self-adaptive convolution layer is used to construct
the adaptive fusion adjacency matrix, which can complete incomplete information
of the adjacency matrix in the traffic network. Traffic networks based on distance do
not mean that adjacent nodes have a traffic information association. The self-adaptive
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fusion adjacency matrix M̃ just makes up for this information and achieves a good
effect of accelerating convergence.

• ReZero, a simple architectural modification, facilitates signal propagation in deep
networks and helps the network maintain dynamical isometry. Applying ReZero to
the STFAGN, significantly improved convergence speeds can be observed.

• STFAGN with the adaptive fusion adjacency matrix and ReZero connection not only
adjusts spatiotemporal dependency, but trains efficiently. Therefore, the design of the
component is reasonable.
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Figure 3. Comparison of the average validation loss of five results in STFAGN with different
configurations in (a) METR-LA and (b) PEMS-BAY.

Table 3. Ablation experiments on different configurations of modules in METR-LA and PEMS-BAY
datasets. The default configuration we use in STFAGN is

[
M̃, ReZero

]
. We retrained each model five

times to get five results then calculated the mean and standard deviation of the results.

Dataset
Models 15 min 30 min 60 min

Elements MAE MAPE% RMSE MAE MAPE% RMSE MAE MAPE% RMSE

M
ET

R
-L

A [M,no] 2.99±
0.00

7.24±
0.05

6.72±
0.02

3.48±
0.00

8.69±
0.06

8.10±
0.03

4.27±
0.01

11.01±
0.08

10.00±
0.03

[M̃,no] 2.97±
0.03

7.14±
0.09

6.67±
0.09

3.39±
0.03

8.29±
0.07

7.90±
0.06

4.01±
0.03

10.00±
0.08

9.53±
0.05

[M̃,Rezero] 2.94±
0.01

7.12±
0.06

6.62±
0.02

3.32±
0.06

8.22±
0.17

7.76±
0.16

3.96±
0.01

10.01±
0.08

9.46±
0.04

PE
M

S-
BA

Y [M,no] 1.20±
0.01

2.47±
0.03

2.47±
0.04

1.47±
0.01

3.18±
0.05

3.27±
0.04

1.81±
0.00

4.17±
0.05

4.23±
0.04

[M̃,no] 1.18±
0.00

2.44±
0.03

2.53±
0.26

1.41±
0.00

3.07±
0.03

3.17±
0.15

1.69±
0.01

3.88±
0.04

3.90±
0.08

[M̃,Rezero] 1.18±
0.01

2.42±
0.02

2.45±
0.06

1.41
±0.00

3.05
±0.02

3.12±
0.04

1.68±
0.00

3.81±
0.02

3.89±
0.07

5. Conclusions

In this paper, we propose an innovative spatial–temporal network to forecast traffic
data. We design the spatial–temporal adaptive fusion graph network to capture hidden
spatial–temporal heterogeneity effectively. First, learnable spatial–temporal fusion adja-
cency adaptively adjusts the spatiotemporal connections. Second, we integrate the STAFM
module with a gated CNN module, which effectively broadens the receptive field in the
time dimension. Lastly, we replace the ReZero connection with a residual connection
to enable faster convergence. Ablation experiments show that the design of the fusion
adjacency matrix and ReZero connection is reasonable and effective. Executive experiments
and analysis reveal the advantages and weaknesses of previous models, which in turn
demonstrate STFAGN to be of great effectiveness and superiority.

We found that it is still challenging to effectively extract the dynamics of traffic data in
both temporal and spatial dimensions. The proposed spatial–temporal graph convolution
network fails to capture many dynamic spatial relations hiding in the traffic data. In the
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future, we plan to further analyze the dynamic characteristics of traffic networks to capture
the dynamic spatial–temporal correlation.
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