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Abstract: Accelerated life testing (ALT) is a time-saving technology used in a variety of fields to
obtain failure time data for test units in a fraction of the time required to test them under normal
operating conditions. This study investigated progressive-stress ALT with progressive type II filtering
with the lifetime of test units following a Nadarajah–Haghighi (NH) distribution. It is assumed
that the scale parameter of the distribution obeys the inverse power law. The maximum likelihood
estimates and estimated confidence intervals for the model parameters were obtained first. The
Metropolis–Hastings (MH) algorithm was then used to build Bayes estimators for various squared
error loss functions. We also computed the highest posterior density (HPD) credible ranges for the
model parameters. Monte Carlo simulations were used to compare the outcomes of the various
estimation methods proposed. Finally, one data set was analyzed for validation purposes.

Keywords: Bayesian approach; non-Bayesian approach; progressive-stress model; inverse power
low; Nadarajah–Haghighi distribution; type II progressive censoring; balanced squared loss function;
balanced LINEX loss function

MSC: 65C20; 60E05; 62P30; 62L15

1. Introduction

Nadarajah and Haghighi [1] proposed a generalization of exponential distribution as
an alternative to the regularly used Weibull and gamma distributions in lifetime models.
The mode of the Nadarajah and Haghighi (NH) distribution is zero. Recent studies have
shown that the NH distribution is extremely adaptable and can be used to model survival
data, reliability issues, fatigue life studies, and hydrological data. It can have hazard
rate functions that are constant, decreasing, increasing, upside-down bathtub (unimodal),
bathtub-shaped, and decreasing–increasing–decreasing; see, for example, [2–5] and the
references given therein.

The NH distribution is said to apply to a random variable T if its probability density
function (PDF) is provided by

f (t; θ, λ) = θλ(1 + λt)θ−1e(1−(1+λt)θ), θ, λ, t > 0, (1)
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and the related cumulative density function (CDF) is given by

F(t; θ, λ) = 1− e(1−(1+λt)θ), θ, λ, t > 0, (2)

where θ and λ are the shape and scale parameters, respectively.
Some individuals or observations may be lost and/or eliminated from the experi-

ment prior to failure in practical applications for reliability and survival analyses. This
results in censored data, with no access to the whole data information on failure times
for some observations. Progressive type II censoring, first proposed by [6], is one of the
most common censoring systems in lifetime scenarios and has received significant attention
in the literature. The authors of [7] showed, for example, that in many instances, type II
progressive-censoring schemes, which include ordinary type II one-stage right censoring
as a particular case, could greatly outperform standard type II censoring. Reference [8]
provides a brief overview of the progressive type II censoring technique. Furthermore, we
suggest interested readers see [9] for a full examination of the many facets of progressive
censoring, ranging from methodology to applications. Mimicking the seminal work of [10],
the progressive type II censoring strategy may be represented as follows: Before conduct-
ing a life experiment, the experimenter fixes a sample size n, the number of complete
observations to be observed, m and progressive-censoring-scheme R1, R2, · · · , Rm, with

n = m +
m−1
∑

i=1
Ri. The n units are placed on the life test at the same time. Soon after the

initial failure, R1 surviving units are picked at random and removed from the experiment.
Following that, R2 items are eliminated immediately after the second failure, and so on.
This procedure is repeated until all Rι remaining units are deleted following the m-th
failure. Note that the Ri values are fixed before the experiment begins. Furthermore, if
R1 = R2 = · · · = Rm = 0, then n = m which corresponds to the entire sample. Fur-
thermore, if R1 = R2 = · · · = Rm−1 = 0, then Rm = n− m, which corresponds to the
traditional type II right-censoring technique. See [9] for more information on progressive
censoring and important references. The authors of [11] propose a new censoring scheme,
the type II progressive hybrid censoring scheme, which combines progressive type II and
hybrid censoring schemes. A hybrid censoring system is a combination of type I and type
II censoring schemes, as defined by [12]. We suggest readers see the book by [9] for a
thorough account and results of progressive censoring.

However, in many industrial applications, one of the major requirements for the
majority of the production process is that the system is required to operate for a longer
period of time. In addition, it is very important to maintain the desired level of system
reliability regarding the lifetime of products. In such scenarios, however, life testing under
normal stress can lead to a lengthy procedure with expensive cost. Therefore, standard
procedures related to progressive censoring may not be advisable. To remedy this situation,
the study of accelerated life testing (ALT) has been developed (see [13] for details and the
references cited therein). The test procedure makes it possible to quickly obtain information
on the life distribution of products by inducing early failure with a much stronger stress
than normal. An important added feature in ALT is the step-stress accelerated life test
(SSALT). There are two main types of SSALTs: the simple SSALT and the multiple-step
SSALT. In the simple SSALT there is a single change of stress during the test. For example,
the authors of [14] showed optimum simple SSALT plans in an exponential cumulative
exposure (CE) model, the author of [15] studied an exponential CE model with a threshold
parameter in the simple SSALT, and the authors of [16] demonstrated optimum modified
simple SSALT plans in an exponential CE model, with the consideration that it is desirable
to increase the stress at some finite rate. The authors of [17] dealt with a Weibull step-stress
model in the simple SSALT. The ALT for modified Kies exponential lifetime distribution
based on a progressive-censoring scheme was introduced by [18].
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Of particular note is that even though there are some works on complete and censored
NH data from both Bayesian and frequentist perspectives, little attention has been paid
to the progressive-stress model for the Nadarajah–Haghighi distribution with type II
progressive censoring. Accordingly, in this study, we considered classical and Bayesian
inference of the NH progressive step-stress model with the SSALT. In addition, we carried
out simulation studies to compare the finite sample performance of the estimation methods
based on different loss functions.

The rest of the paper is organized as follows. In Section 2, we propose the cumulative
exposure model of NH distribution. We discuss the maximum likelihood estimation shape
and scale parameters of the NH step-stress model with the SSALT in Section 3. In Section 4,
we discuss Bayesian estimation using BSEL and BLINEX loss functions via Markov chain
Monte Carlo (MCMC) algorithms. The interval estimation such as asymptotic confidence
interval, HPD interval of credibility and Bootstrap confidence intervals is outlined in
Section 5. Section 6 describes the simulation studies. An illustrative example is presented
in Section 7. Some final remarks are presented in Section 8.

2. A Cumulative Exposure Model of NH Distribution

The basic assumptions under progressive-stress accelerated life testing of the NH
distribution are given as follows:

- Under usual conditions, the lifetime of a unit follows NH(θ, λ).
- The progressive-stress ϕ(t) is directly proportional to the time t with constant rate β,

i.e., ϕ(t) = βt, β > 0.
- The scale parameter λ of the CDF in (2) satisfies the inverse power law, as follows

λ(t) =
1

a[ϕ(t)]b

- It is assumed that a and b are unknown physical positive parameters and need to
be estimated.

- Assume n is the total number of units tested, ϕ0 < ϕ1(t) < . . . < ϕk(t) are the stress
levels in the test, and ϕ0 is the use stress. Under each progressive-stress level, identical
units ϕi(t) = βit, i = 1, 2, . . . , k, ni are tested, and the progressive type II censoring
is performed as follows: When the first failure ti1:mi :ni occurs, Ri1 units are picked at
random from the remaining n1 − 1 surviving units. When the second failure ti2:mi :ni
occurs, Ri2 items from the remaining ni − 2− Ri1 units are withdrawn at random.
When the mi − th failure occurs, timi :mi :ni , the test is terminated, and all remaining

Rimi :mi :ni = ni −mi −
mi−1

∑
j=1

Rimi items are removed.

- The complete samples and type II censored samples are clearly specific examples of
this technique. Under the progressive-stress ϕi(t), the observed progressive-censoring
data are ti1:mi :ni < ti2:mi :ni < ··· < timi :mi :ni , i = 1, 2, . . . , k.

- The linear cumulative exposure model (CEM) accounts for the effect of changing
stress; for more details, see [13].

- The CDF in progressive stress, ϕi(t), and the linear cumulative exposure model is
given as follows

Gi(t) = Fi(∆t), i = 1, 2, . . . , k,

where ∆t =
∫ t

0
1

λi(u)
du =

aβb
i tb+1

b+1 , F (·) denotes the CDF of the NH distribution under
progressive-stress ϕi(t) with scale parameter λ. Thus,

Gi(t) = 1− e(1−(1+
aβb

i tb+1

b+1 )
θ

), t > 0, a, b, θ > 0, i = 1, 2, . . . , k. (3)
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The corresponding PDF is given by

gi(t) = aθβb
i tb

(
1 +

aβb
i tb+1

b + 1

)θ−1

e[1−(1+
aβb

i tb+1

b+1 )
θ

], (4)

where t > 0, a, b, θ > 0,

3. Maximum Likelihood Estimation

In this section, we discuss the maximum likelihood estimates (MLEs) for the parame-
ters a, b, and θ under the progressive-stress ALT based on progressively type II censored
data. We assume that the observed data under the stress levels ϕi(t), i = 1, . . . , k and
j = 1, . . . , mi, . The likelihood function is obtained as

L(a, b, θ) =
k

∏
i=1

ci

mi,

∏
j=1

gi
(
tij
)[

1− Gi
(
tij
)]Rij , tij > 0, (5)

where ci = ni(ni − 1− Ri1)(ni − 2− Ri2) . . .

(
ni −mi + 1−

mi−1
∑

j=1
Rij

)
. By substituting (3)

and (4) in (5), we obtain

L(a, b, θ) =
k

∏
i=1

ci

mi,

∏
j=1

aθβb
i tb

ij

1 +
aβb

i tb+1
ij

b + 1

θ−1

e[1−(1+
aβb

i tb+1
ij

b+1 )

θ

]

e[1−(1+
aβb

i tb+1
ij

b+1 )

θ

]


Rij

.

Then,

L(a, b, θ) =
k

∏
i=1

ci

mi,

∏
j=1

aθβb
i tb

ij

1 +
aβb

i tb+1
ij

b + 1

θ−1e[1−(1+
aβb

i tb+1
ij

b+1 )

θ

]


Rij+1

(6)

The logarithm of (6) is given by

log L(a, b, θ) =
k
∑

i=1
log ci

+
k
∑

i=1
mi(loga + logθ)

+b
k
∑

i=1
milog βi

+b
k
∑

i=1

mi
∑

j=1
log
(
tij
)

+(θ − 1)
k
∑

i=1

mi
∑

j=1
log
(

1 +
aβb

i tb+1
ij

b+1

)
+

k
∑

i=1

mi
∑

j=1

(
Rij + 1

)[
1−

(
1 +

aβb
i tb+1

ij
b+1

)θ
]

.

(7)

By taking the first partial derivatives of (7) with respect to a, b, and θ and then equating
each to zero, we obtain

∂log L
∂ a

=
∑k

i=1 mi

a
+ (θ − 1)

k

∑
i=1

mi

∑
j=1

βb
i tb+1

ij

(b + 1)
(

1 +
aβb

i tb+1
ij

b+1

) +
k

∑
i=1

mi

∑
j=1

θβb
i tb+1

ij

(b + 1)
(

Rij + 1
)1 +

aβb
i tb+1

ij

b + 1

θ−1

= 0, (8)
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∂log L
∂ b =

k
∑

i=1
milogβi

+
k
∑

i=1

mi
∑

j=1
tij

+(θ − 1)
k
∑

i=1

mi
∑

j=1

aβb
i tb+1

ij

[
logβi
b+1 +

logtij
b+1 −1

]
(

1+
aβb

i tb+1
ij

b+1

)

+
k
∑

i=1

mi
∑

j=1
θ
(

Rij + 1
)1−

aβb
i tb+1

ij

[
logβi
b+1 +

logtij
b+1 −1

]
(b+1)2

 = 0,

(9)

∂log L
∂ θ = ∑k

i=1 mi
θ

+θ
k
∑

i=1

mi
∑

j=1
log
(

1 +
aβb

i tb+1
ij

b+1

)
−

k
∑

i=1

mi
∑

j=1

θβb
i tb+1

ij
(b+1)

(
Rij + 1

)(
1 +

aβb
i tb+1

ij
b+1

)θ

log
(

1 +
aβb

i tb+1
ij

b+1

)
= 0.

(10)

Equating the first partial derivatives of (7) to zero and solving the resulting Equations (8)–(10)
numerically, we could numerically obtain the MLEs â, b̂ and θ̂ for the three unknown pa-
rameters a, b, and θ. As a result, numerical solutions to the nonlinear system in (8)–(10) can
be found using an iterative approach such as Newton–Raphson.

4. Bayesian Estimation

In this section, we study the Bayes estimates of the parameters a, b, and θ using the
balanced squared error loss (BSEL) and balanced linear-exponential (BLINEX) error loss
function. It is well known that Bayesian analysis begins with the prior specification for the
unknown parameters, and in the absence of prior knowledge, noninformative priors are
often preferred to minimize the impacts of the prior distributions. Thus, in this study, we
assumed that the three parameters are independent, and the noninformative priors of a, b,
and θ are given as

π(Θ) = π(a, b, θ) = π1(a)π2(b)π3(θ) ∝
1

abθ
, a, b, θ > 0, (11)

where Θ is the parameter model. The resulting joint posterior density function is ob-
tained by

π∗( a, b, θ|t) ∝ π(a, b, θ)L(a, b, θ), which shows thatπ∗( a, b, θ|t) ∝
1

abθ

k

∏
i=1

ci (12)

Bayes Estimation Using BSEL and BLINEX Loss Functions

We followed the work of [19–21] and determined that the Bayes parameter estimators
of a function w using the BSEL function are given by

ŵBSEL = ωŵML + (1−ω)
∫

Θ
ŵML π∗(Θ| t) dΘ (13)

where ŵML is the MLE of w, and 0 < ω < 1 and π∗( .|t) is defined in (12). Similarly, the
Bayes parameter estimator of a function w using the BLINEX loss function is obtained as

ŵBLINEX = − 1
γ

ln
[

ωe−γŵML + (1−ω)
∫

Θ
e−γŵMLπ∗(Θ|t) dΘ

]
(14)
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where γ 6= 0 is the shape parameter of the BLINEX loss function. We used the MCMC
algorithm to solve the integrals in (13) and (14). The conditional posterior distributions of
the parameters a, b and θ are obtained as follows

π∗( a|b, θ, t) ∝
1
a

k

∏
i=1

mi

∏
j=1

βb
i tb

ij

1 +
aβb

i tb+1
ij

b + 1

θ−1e[1−(1+
aβb

i tb+1
ij

b+1 )

θ

]


Rij+1

, (15)

π∗( b|a, θ, t) ∝
1
b

k

∏
i=1

mi

∏
j=1

βb
i tb

ij

1 +
aβb

i tb+1
ij

b + 1

θ−1e[1−(1+
aβb

i tb+1
ij

b+1 )

θ

]


Rij+1

, (16)

and

π∗( θ|b, a, t) ∝
1
θ

k

∏
i=1

mi

∏
j=1

βb
i tb

ij

1 +
aβb

i tb+1
ij

b + 1

θ−1e[1−(1+
aβb

i tb+1
ij

b+1 )

θ

]


Rij+1

. (17)

Because it is difficult to obtain the conditional posterior distributions of the parameters
a, b, and θ in the form of some well-known distributions, we employed the Metropolis–
Hastings (MH) algorithm for generating posterior samples for the above conditional poste-
rior distributions to obtain the appropriate Bayes estimates of the unknown parameters.
However, drawing samples directly from the conditional posterior distributions of model
parameters may be problematic. As a result, we need to choose appropriate known distri-
butions to obtain these conditional distributions. More information about this topic can
be found in [22–27]. In this study, we followed the steps of the MH algorithm to create a
random sample from these conditional distributions:

Step 1: For the parameters (a, b, θ), set the initial guess to (a0, b0, θ0).
Step 2: Set j = 1.
Step 3: Create a ∼ N

(
aj, σ11

)
, b ∼ N

(
bj, σ22

)
and θ ∼ N

(
θ j, σ33

)
, where σ is the variance–

covariance matrix.
Step 4: Compute p =

π( aj , bj ,θ j|x)
π( aj−1, bj−1,θ j−1|x) .

Step 5: With probability min(1, p), accept (aj, bj, θj),
Step 6: To obtain B number of samples for the parameters (a, b, θ), repeat steps (3) to (5) B

times.

5. Interval Estimation

We created confidence intervals (CIs) utilizing the MLE’s normality criterion using
the asymptotic CI (ACI) as well as the highest posterior density (HPD) intervals for the
parameters a, b, and θ.

5.1. Asymptotic Confidence Interval

The ACI was obtained using the normality property of MLEs with the parameters a, b,
and θ. It is known that the MLEs of (a, b, θ) have an asymptotic distribution under some
regularity conditions, such that

(â − a) ∼ N(0, σ11),
(

b̂− b
)
∼ N(0, σ22) ,

(
θ̂ − θ

)
∼ N(0, σ33),

where the variance–covariance matrix for the parameters (a, b, θ) is σii. The 100(1−ω)%
percent confidence intervals for the parameters (θ1, θ2,θ3) = (a, b, θ) are written as(

θ̂i ∓ Z1− ω
2

√
σii

)
, i = 1, 2, 3, where σii indicates the (i, i)th the variance–covariance matrix

σ and
(

θ̂1 ≡ â, θ̂2 ≡ b̂, θ̂3 ≡ θ̂
)

.
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5.2. HPD Interval of Credibility

The HPD credible interval (L, U) was constructed for a random quantity θ∗ that is
derived by debating the following expression.

p(L ≤ θ∗ ≤ U) =
∫ U

L
π∗( θ∗|t)dθ∗ = 1− γ

Because finding the interval (L, U) analytically is difficult, we used the posterior
samples acquired in Section 4, to obtain the requisite HPD credible intervals using the
technique described in [28].

5.3. Bootstrap Confidence Intervals

The CIs based on parametric bootstrap sampling utilizing the percentile intervals were
produced; for additional information, see [29]. The bootstrap CIs were calculated by using
the following algorithm:

(1) Calculate the MLE values of the parameters using the original data θ, a, and b.
(2) To make a bootstrap sample t∗, use the variables θ̂, â, and b̂.
(3) The bootstrap estimates θ̂∗, â∗, and b̂∗, respectively, are obtained based on t∗.
(4) To obtain the bootstrap samples, repeat steps 1–3 several times and organize each

estimate in ascending order{
θ̂∗[1], θ̂∗[2], . . . , θ̂∗[I]

}
,
{

â∗[1], â∗[2], . . . , â∗[I]
}

and
{

b̂∗[1], b̂∗[2], . . . , b∗[I]
}

,

The 100(1− δ)% percentile bootstrap CIs for ω are then calculated as follows:

(ω̂iL, ω̂iU) =
(

ω̂i
∗[ δ

2 I], ω̂i
∗[(1− δ

2 )I]
)

, i = 1, 2, 3, (18)

where ω̂1
∗ = θ̂∗, ω̂2

∗ = â∗ and ω̂3
∗ = b̂∗.

6. Simulation Study

We carried out a simulation study according to the following algorithm to obtain the
likelihood and Bayesian estimation of the NH parameters based on progressive stress and
study their properties through the mean squared error (MSE), bias, and length of confidence
intervals.

Step 1: Using the algorithm presented in [10], k ≥ 2 progressively type II censored random

samples are generated from the uniform (0,1) distribution
(

Ui1, Ui2, . . . , Uimi,

)
, for

given values of mi,, i = 1, 2, . . . , k.
Step 2: To compare the performance of the estimation procedures developed in the study,

we consider the following two schemes for each stress: Scheme 1: Rimi = ni − mi,
Rij = 0; j = 1, . . . , mi − 1. Scheme 2: Ri1 = ni −mi, Rij = 0; j = 1, . . . , mi.

Step 3: Progressively type II censored random samples
(
ti1, . . . , timi

)
are produced, and

from inverse CDF (3), we specify the values of parameters as follows:
In Table 1 (θ = 1.7, a = 1.3, b = 2), k = 2, and β1 = 40, β2 = 80. In Table 2
(θ = 0.8, a = 0.5, b = 1.3), k = 2, and β_1 = 40, β_2 = 80. In Table 3
(θ = 3, a = 2.5, b = 0.6), k = 2,and β1 = 40, β2 = 80. In Table 4 (θ = 1.7, a = 1.3, b = 2),
k = 4, and β1 = 40, β2 = 80, β3 = 110, β4 = 150. In Table 5 (θ = 0.8, a = 0.5, b = 1.3),
k = 4, and β1 = 40, β2 = 80, β3 = 110, β4 = 150. In Table 6 (θ = 3, a = 2.5, b = 0.6),
k = 4, and β1 = 40, β2 = 80, β3 = 110, β4 = 150.

Step 4: The MLEs
(

θ̂, â, b̂
)

are obtained numerically by solving the likelihood equations
with respect to (θ, a, b) in (8)–(10) by using an iterative Newton–Raphson algorithm
using the maxlik function of the “maxlik” package in the R program; for more infor-
mation in this topic see [30].
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Step 5: Based on (15)–(17), and the MH algorithm, the Bayesian estimations with the BSEL
and BLINEX loss functions of the parameters (θ, a, b) are computed by (13) and (14),
respectively.

Step 6: The above steps are repeated I times based on I different samples, and then the
average of likelihood and Bayesian estimations are computed, with their MSE, bias,
and length of confidence intervals (LCI) of the parameters (θ, a, b).

Step 7: In length of CI (LCI) of the MLE of each parameter, we compute the ACI for
likelihood estimators and bootstrap CIs with the percentile algorithm and t algorithm,
which can be denoted as LBP and LBT, respectively. In the LCI of Bayesian estimation,
we compute the HPD for each loss function, denoted by the LCCI.

Simulation Results

Based on the two censoring schemes, considering two cases of levels of the stress
(simple ramp when k = 2 and multi ramp when k = 4 (k > 2)), simulation results are
presented in Tables 1–6. First, Tables 1–3 show the likelihood and Bayesian estimations
of the parameters (θ, a, b) in the simple ramp with their bias, MSE, and LCI for different
sample sizes (ni), and number of failures (mi) which can be obtained by rounding r× ni.
Second, Tables 4–6 show the likelihood and Bayesian estimations of the parameters (θ, a, b)
in the multi-ramp with their bias, MSE, and LCI for different sample sizes (ni), and number
of failures (mi). Bayesian estimations of the parameters based on the BLINEX loss function,
considering two values of c (c = −0.5, 0.5), are also included. The number of MH iterations
of the algorithm is 10,000, and the number of simulations is 1000. The coverage probabilities
of CI were set to 95%.

From the simulation results presented in Tables 1–6, the following points can be observed:

(1) For fixed values of the sample sizes ni, by increasing the censored sample sizes, mi, the
bias, MSE, and LCI of the estimates decrease for the two different censored schemes.

(2) For fixed values of mi, by increasing the sample sizes ni, the bias, MSE, and LCI
decrease for different censored schemes.

(3) For fixed values of mi or ni or scheme, by increasing the level of stress k, the bias, MSE,
and LCI decrease.

(4) For fixed values of mi or ni or scheme, we note that Scheme 2 is better than Scheme 1
for some or all parameters.

(5) The bias and MSE reduce significantly, and the symmetric and asymmetric Bayesian
estimations are better than the MLE in the considered scenarios.

(6) The LCI reduces significantly, the symmetric and asymmetric Bayesian estimations of
the HPD are better than the ACI of MLE.

(7) We observe that the shortest lengths of the CI are the bootstrap CI.
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Table 1. MLE and Bayesian estimation with different loss functions in the simple ramp when θ = 1.7, a = 1.3, b = 2.

k = 2 θ = 1.7, a = 1.3, b = 2 MLE BSEL BLINEX (c = −0.5) BLINEX (c = 0.5) MLE BSEL BLINEX
(c = −0.5)

BLINEX
(c = 0.5)

n1, n2 Scheme r Bias MSE Bias MSE Bias MSE Bias MSE LCI LBP LBP LCCI LCCI LCCI

20, 15

1

65%

θ −0.6751 1.5008 −0.1938 0.0886 −0.1172 0.0801 −0.2619 0.1099 4.0094 0.1331 0.1271 0.8592 0.9821 0.7748

a 0.3824 1.5335 −0.0521 0.0788 0.0209 0.0994 −0.1174 0.0740 4.6193 0.1432 0.1453 1.0048 1.1145 0.8922

b 0.0673 0.6760 −0.2972 0.1145 −0.2616 0.0964 −0.3314 0.1345 3.2139 0.0998 0.0993 0.6315 0.6551 0.6181

85%
θ −0.4879 0.7308 −0.0879 0.0657 −0.0097 0.0736 −0.1581 0.0724 2.7529 0.0899 0.0894 0.9552 1.0524 0.8647

a 0.5008 0.9984 0.0504 0.0612 0.0195 0.0890 0.0426 0.0691 3.3911 0.1105 0.1101 0.9821 0.9834 0.9084

b 0.0625 0.6469 −0.1622 0.0558 −0.1260 0.0471 −0.1967 0.0667 3.1026 0.0978 0.0965 0.6718 0.6934 0.6551

2

65%

θ 0.0872 0.5633 0.0550 0.0583 0.1391 0.0909 −0.0206 0.0450 2.9235 0.0894 0.0875 0.9262 1.0470 0.8281

a −0.2725 0.5104 0.0517 0.1058 0.1262 0.1418 −0.0158 0.0866 2.5902 0.0805 0.0818 1.2014 1.3056 1.0823

b 0.5035 0.8594 0.0607 0.0411 0.1011 0.0500 0.0218 0.0360 3.0529 0.0908 0.0915 0.7305 0.7490 0.7048

85%

θ 0.0823 0.5078 0.0542 0.0580 0.1346 0.0879 −0.0171 0.0448 2.8345 0.0804 0.0803 0.9137 0.9103 0.8448

a −0.1801 0.4902 0.0863 0.1041 0.1611 0.1509 0.0185 0.0778 2.6534 0.0858 0.0860 1.0977 1.2237 1.0492

b 0.3257 0.5593 0.0494 0.0363 0.0879 0.0437 0.0126 0.0323 2.6404 0.0854 0.0845 0.7149 0.7384 0.6916

40, 50

1

65%

θ −0.9678 1.4864 −0.3139 0.1585 −0.2489 0.1345 −0.3726 0.1900 3.7765 0.1250 0.1174 0.9207 1.0006 0.8607

a 0.3126 1.0050 0.1260 0.1244 0.1974 0.1754 0.0601 0.0913 4.4408 0.1433 0.1373 1.2116 1.3391 1.0992

b −0.0262 0.5537 −0.4534 0.2334 −0.4262 0.2114 −0.4791 0.2558 2.9167 0.0938 0.0929 0.6567 0.6774 0.6325

85%

θ −0.9531 1.0410 −0.2143 0.1193 −0.1488 0.1099 −0.2738 0.1380 1.4282 0.0451 0.0455 1.0419 1.1471 0.9624

a 0.3033 0.9427 0.1230 0.1202 0.1374 0.1701 0.0582 0.0902 3.1609 0.1034 0.1027 1.2028 1.1908 1.1697

b 0.2468 0.3993 −0.2597 0.1017 −0.2310 0.0904 −0.2869 0.1145 2.2816 0.0720 0.0720 0.7346 0.7532 0.7076

2

65%

θ 0.0189 0.5195 0.0350 0.0660 0.1067 0.0902 −0.0307 0.0557 2.8259 0.0875 0.0878 0.9662 1.0601 0.9024

a −0.1043 0.3458 0.0534 0.1026 0.1154 0.1347 −0.0034 0.0834 2.2699 0.0749 0.0750 1.1326 1.2150 1.0415

b 0.2988 0.3316 0.0806 0.0416 0.1104 0.0489 0.0519 0.0365 1.9309 0.0610 0.0610 0.7083 0.7181 0.6939

85%

θ 0.0199 0.2902 0.0345 0.0627 0.1023 0.0901 −0.0155 0.0547 2.1112 0.0691 0.0689 0.9521 0.9602 0.9010

a −0.0041 0.2644 0.0499 0.1013 0.1106 0.1325 0.0046 0.0829 2.0168 0.0606 0.0617 1.1228 1.1344 1.1043

b 0.1356 0.1506 0.0437 0.0332 0.0711 0.0381 0.0173 0.0302 1.4262 0.0475 0.0476 0.6648 0.6811 0.6482
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Table 2. MLE and Bayesian estimation with different loss functions in the simple ramp when θ = 0.8, a = 0.5, b = 1.3.

k = 2 θ = 0.8, a = 0.5, b = 1.3 MLE BSEL BLINEX (c = −0.5) BLINEX (c = 0.5) MLE BSEL BLINEX
(c = −0.5)

BLINEX
(c = 0.5)

n1, n2 Scheme r Bias MSE Bias MSE Bias MSE Bias MSE LCI LBP LBP LCCI LCCI LCCI

20, 15

1

65%

θ −0.6718 2.8664 −0.1568 0.1203 −0.1274 0.1278 −0.1845 0.1151 6.0949 0.2060 0.1973 0.9950 1.0839 0.9307

a 0.2440 1.6298 0.1466 0.1261 0.1736 0.1496 0.1202 0.1050 4.9146 0.1549 0.1554 1.0924 1.1438 1.0436

b 0.0957 0.4839 −0.0738 0.0664 −0.0268 0.0708 −0.1174 0.0675 2.7025 0.0858 0.0848 0.9578 1.0205 0.8990

85%

θ −0.2515 0.1789 −0.0586 0.1017 −0.0262 0.1189 −0.0889 0.0893 1.3336 0.0416 0.0414 1.0767 1.1327 0.9832

a 0.1999 0.2632 0.1647 0.1249 0.1903 0.1468 0.1398 0.1054 1.8532 0.0598 0.0607 1.1127 1.1571 1.0571

b 0.2494 0.3102 0.0044 0.0617 0.0480 0.0721 −0.0363 0.0566 1.9532 0.0594 0.0579 0.9574 1.0115 0.8972

2

65%

θ 0.1997 0.2701 0.1153 0.1081 0.1526 0.1338 0.0801 0.0876 1.8819 0.0604 0.0602 1.0837 1.1369 0.9657

a −0.1490 0.1301 0.0586 0.0855 0.0816 0.0993 0.0365 0.0737 1.2884 0.0409 0.0399 1.0231 1.0804 0.9543

b 0.2680 0.2961 0.0933 0.0665 0.1342 0.0823 0.0551 0.0557 1.8574 0.0593 0.0599 0.9271 0.9837 0.8748

85%

θ 0.1673 0.2162 0.0845 0.0495 0.1121 0.0621 0.0586 0.0400 1.7014 0.0522 0.0516 0.7796 0.8472 0.7347

a −0.0699 0.0976 0.0664 0.0581 0.0850 0.0669 0.0486 0.0508 1.1941 0.0379 0.0380 0.8233 0.8664 0.7746

b 0.1521 0.2192 0.0372 0.0230 0.0627 0.0273 0.0130 0.0206 1.7367 0.0583 0.0588 0.5765 0.6031 0.5623

40, 50

1

65%

θ −0.6809 3.2570 −0.3695 0.1771 −0.3528 0.1723 −0.3849 0.1822 6.5550 0.2254 0.2022 0.6022 0.6613 0.5605

a 0.6260 1.1068 0.3023 0.1956 0.3278 0.2238 0.2769 0.1692 3.3163 0.1154 0.1066 1.1525 1.2097 1.0901

b 0.2043 0.1752 0.0435 0.0965 0.0945 0.1144 −0.0056 0.0849 1.4326 0.0473 0.0469 1.1800 1.2411 1.1403

85%

θ −0.4415 0.2093 −0.2621 0.0908 −0.2500 0.0879 −0.2733 0.0942 0.4708 0.0153 0.0151 0.5155 0.5453 0.4948

a 0.4369 0.3465 0.2701 0.1401 0.2903 0.1585 0.2502 0.1231 1.5470 0.0474 0.0479 0.9661 1.0058 0.9208

b 0.2543 0.1467 0.0283 0.0340 0.0554 0.0390 0.0022 0.0311 1.1229 0.0349 0.0349 0.7075 0.7235 0.6965

2

65%

θ 0.0872 0.1598 0.1037 0.0866 0.1337 0.1045 0.0753 0.0720 1.5300 0.0468 0.0472 0.9517 1.0225 0.9087

a −0.1012 0.0663 0.0297 0.0519 0.0452 0.0580 0.0149 0.0467 0.9282 0.0277 0.0276 0.8375 0.8677 0.7991

b 0.1905 0.2101 0.0796 0.0639 0.1103 0.0757 0.0506 0.0552 1.6350 0.0535 0.0526 0.8925 0.9435 0.8638

85%

θ 0.0839 0.1248 0.0757 0.0492 0.0973 0.0593 0.0550 0.0409 1.3462 0.0423 0.0426 0.7645 0.8162 0.7216

a −0.0484 0.0473 0.0579 0.0489 0.0717 0.0550 0.0446 0.0435 0.8311 0.0265 0.0264 0.7049 0.7358 0.6820

b 0.0961 0.1294 0.0243 0.0259 0.0433 0.0286 0.0059 0.0241 1.3594 0.0432 0.0432 0.6307 0.6517 0.6262
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Table 3. MLE and Bayesian estimation with different loss functions in the simple ramp when θ = 3, a = 2.5, b = 0.6.

k = 2 θ = 3, a = 0.5, b = 0.6 MLE BSEL BLINEX (c = −0.5) BLINEX (c = 0.5) MLE BSEL BLINEX
(c = −0.5)

BLINEX
(c = 0.5)

n1, n2 Scheme r Bias MSE Bias MSE Bias MSE Bias MSE LCI LBP LBP LCCI LCCI LCCI

20, 15

1

65%

θ −1.0081 1.4542 −0.3499 0.1451 −0.2693 0.0983 −0.4242 0.2008 2.5956 0.0851 0.0847 0.5826 0.6182 0.5601

a 0.0679 1.2060 −0.3724 0.1673 −0.2938 0.1205 −0.4438 0.2221 4.2987 0.1386 0.1410 0.6487 0.7208 0.6095

b −0.1176 0.1318 −0.2613 0.0778 −0.2521 0.0737 −0.2702 0.0819 1.3473 0.0437 0.0433 0.3603 0.3730 0.3459

85%

θ −0.4454 0.4194 −0.1202 0.0252 −0.0733 0.0168 −0.1652 0.0375 1.8440 0.0591 0.0591 0.3991 0.4098 0.3920

a −0.0649 0.2608 −0.1168 0.0311 −0.0670 0.0235 −0.1639 0.0433 1.9865 0.0654 0.0637 0.5281 0.5430 0.5133

b −0.0581 0.0912 −0.1632 0.0352 −0.1555 0.0331 −0.1707 0.0374 1.1620 0.0367 0.0374 0.3568 0.3624 0.3499

2

65%

θ −0.1533 0.4265 −0.0128 0.0410 0.0808 0.0511 −0.0995 0.0484 2.4897 0.0734 0.0726 0.8016 0.8379 0.7820

a −0.2400 0.6128 −0.0100 0.0597 0.0877 0.0755 −0.0987 0.0639 2.9224 0.0901 0.0898 0.9570 1.0232 0.9205

b 0.2240 0.1830 0.0290 0.0270 0.0438 0.0293 0.0145 0.0253 1.4291 0.0427 0.0426 0.6181 0.6302 0.6014

85%

θ −0.0076 0.2889 0.0133 0.0152 0.0632 0.0198 −0.0346 0.0158 2.1077 0.0662 0.0651 0.4780 0.4812 0.4698

a −0.1365 0.3228 0.0253 0.0269 0.0803 0.0347 −0.0268 0.0255 2.1629 0.0679 0.0684 0.6379 0.6699 0.6282

b 0.1288 0.1135 0.0058 0.0144 0.0155 0.0150 −0.0039 0.0140 1.2206 0.0386 0.0384 0.4462 0.4534 0.4430

40, 50

1

65%

θ −1.1973 2.0957 −0.4388 0.2123 −0.3633 0.1551 −0.5082 0.2761 3.1917 0.1021 0.0996 0.5524 0.5850 0.5390

a 0.4242 1.8779 −0.4240 0.2012 −0.3566 0.1528 −0.4852 0.2543 5.1106 0.1639 0.1643 0.5646 0.6197 0.5296

b −0.3040 0.1460 −0.3420 0.1222 −0.3367 0.1188 −0.3471 0.1255 0.9077 0.0310 0.0305 0.2663 0.2715 0.2631

85%

θ −1.1130 1.6602 −0.1645 0.0369 −0.1219 0.0252 −0.2053 0.0517 2.5459 0.0791 0.0792 0.3912 0.3950 0.3890

a 0.3356 0.3522 −0.1170 0.0290 −0.0745 0.0218 −0.1575 0.0393 4.9114 0.1509 0.1504 0.4752 0.4874 0.4623

b −0.1376 0.0633 −0.2416 0.0645 −0.2372 0.0625 −0.2459 0.0665 0.8264 0.0268 0.0265 0.2928 0.2964 0.2898

2

65%

θ −0.0736 0.3191 −0.0093 0.0421 0.0786 0.0525 −0.0899 0.0477 2.1964 0.0688 0.0681 0.8118 0.8396 0.7883

a −0.0731 0.2996 0.0195 0.0535 0.1048 0.0712 −0.0585 0.0517 2.1275 0.0674 0.0659 0.8891 0.9502 0.8511

b 0.1074 0.0593 0.0351 0.0180 0.0438 0.0190 0.0264 0.0171 0.8576 0.0288 0.0285 0.4791 0.4815 0.4721

85%

θ −0.0128 0.2589 0.0097 0.0167 0.0557 0.0204 −0.0344 0.0173 1.3010 0.0590 0.0589 0.5014 0.5122 0.4937

a 0.0694 0.2707 0.0260 0.0300 0.0731 0.0363 −0.0188 0.0284 1.3429 0.0612 0.0612 0.6600 0.6807 0.6407

b 0.0647 0.0409 0.0031 0.0099 0.0090 0.0101 −0.0027 0.0097 0.7513 0.0240 0.0241 0.3942 0.3955 0.3921
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Table 4. MLE and Bayesian estimation with different loss functions in multi ramp when θ = 1.7, a = 1.3, b = 2.

k = 4 θ = 1.7, a = 1.3, b = 2 MLE BSEL BLINEX (c = −0.5) BLINEX (c = 0.5) MLE BSEL BLINEX
(c = −0.5)

BLINEX
(c = 0.5)

n1, n2,
n3, n4

Scheme r Bias MSE Bias MSE Bias MSE Bias MSE LCI LBP LBP LCCI LCCI LCCI

20, 15,
18, 10

1

65%

θ −0.8715 1.0614 −0.2242 0.1068 −0.1519 0.0943 −0.2893 0.1302 2.1561 0.0965 0.0965 0.8956 0.9632 0.8047

a 0.8096 1.4846 0.0001 0.0882 0.0688 0.1142 −0.0625 0.0765 3.7822 0.1691 0.1694 1.1078 1.2537 0.9950

b 0.1157 0.3767 −0.3089 0.1190 −0.2801 0.1037 −0.3365 0.1355 2.3651 0.1070 0.1066 0.6109 0.6291 0.5869

85%

θ −0.5590 0.7077 −0.1089 0.0307 −0.0677 0.0259 −0.1476 0.0388 2.4667 0.1144 0.1135 0.5240 0.5597 0.4972

a 0.6354 0.9014 0.0470 0.0402 0.0905 0.0539 0.0062 0.0323 3.0655 0.1441 0.1385 0.6795 0.7253 0.6408

b 0.0962 0.3299 −0.1872 0.0476 −0.1704 0.0419 −0.2036 0.0538 2.2221 0.1003 0.1017 0.4437 0.4436 0.4419

2

65%

θ 0.1463 0.4847 0.0373 0.0756 0.1170 0.1094 −0.0345 0.0617 2.9452 0.1315 0.1295 0.9935 1.0840 0.8752

a −0.3137 0.3755 0.0228 0.1139 0.0899 0.1463 −0.0388 0.0959 2.0658 0.0946 0.0937 1.2244 1.3813 1.1134

b 0.3591 0.4138 0.0913 0.0437 0.1225 0.0519 0.0613 0.0379 2.0944 0.0977 0.0973 0.7276 0.7407 0.7164

85%

θ 0.1331 0.3552 0.0306 0.0226 0.0738 0.0306 −0.0100 0.0192 2.8690 0.1216 0.1226 0.5557 0.6039 0.5304

a −0.1476 0.3143 0.0460 0.0416 0.0882 0.0533 0.0067 0.0348 2.1222 0.1006 0.0992 0.7528 0.8065 0.7120

b 0.2191 0.2586 0.0238 0.0139 0.0419 0.0154 0.0060 0.0132 1.8008 0.0761 0.0764 0.4427 0.4514 0.4406

25, 20,
20, 25

1

65%

θ −1.0371 1.2431 −0.2741 0.1331 −0.2060 0.1158 −0.3356 0.1606 1.6059 0.0765 0.0765 0.9131 1.0396 0.8033

a 0.9794 0.9451 0.0684 0.1174 0.1367 0.1581 0.0052 0.0917 2.7529 0.1255 0.1214 1.1129 1.2247 1.0286

b 0.2007 0.4168 −0.3360 0.1360 −0.3096 0.1204 −0.3612 0.1525 2.4078 0.0999 0.1001 0.5456 0.5477 0.5355

85%

θ −0.8327 0.8583 −0.1666 0.0526 −0.1276 0.0443 −0.2031 0.0638 1.5933 0.0719 0.0724 0.6202 0.6524 0.5959

a 0.8746 0.8324 0.0859 0.0508 0.1282 0.0662 0.0464 0.0406 2.9330 0.1322 0.1275 0.7932 0.8515 0.7411

b 0.2137 0.3082 −0.1874 0.0491 −0.1719 0.0440 −0.2027 0.0547 2.0106 0.0873 0.0873 0.4630 0.4716 0.4563

2

65%

θ 0.0105 0.4456 0.0441 0.0754 0.1172 0.1023 −0.0232 0.0628 2.6189 0.1169 0.1171 1.0020 1.0986 0.9428

a −0.1869 0.3433 −0.0015 0.1093 0.0559 0.1339 −0.0545 0.0955 2.1788 0.0930 0.0930 1.1695 1.2602 1.0874

b 0.3025 0.2693 0.0981 0.0430 0.1247 0.0504 0.0725 0.0374 1.6543 0.0717 0.0713 0.6976 0.7207 0.6846

85%

θ 0.0224 0.2149 0.0203 0.0238 0.0630 0.0310 −0.0196 0.0212 1.8168 0.0821 0.0822 0.6106 0.6641 0.5580

a −0.0716 0.2182 0.0536 0.0487 0.0929 0.0604 0.0168 0.0415 1.8115 0.0809 0.0810 0.7661 0.8193 0.7406

b 0.1356 0.1320 0.0284 0.0175 0.0444 0.0191 0.0127 0.0164 1.3223 0.0592 0.0601 0.4837 0.4910 0.4805
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Table 5. MLE and Bayesian estimation with different loss functions in multi ramp when θ = 0.8, a = 0.5, b = 1.3.

k = 4 θ = 0.8, a = 0.5, b = 1.3 MLE BSEL BLINEX (c =
−0.5) BLINEX (c = 0.5) MLE BSEL BLINEX

(c = −0.5)
BLINEX
(c = 0.5)

n1, n2,
n3, n4

Scheme r Bias MSE Bias MSE Bias MSE Bias MSE LCI LBP LBP LCCI LCCI LCCI

20, 15,
18, 10

1

65%

θ −0.4626 0.2492 −0.2234 0.1145 −0.1991 0.1159 −0.2461 0.1151 0.7363 0.0344 0.0328 0.8227 0.8569 0.7749

a 0.3913 0.3915 0.2019 0.1463 0.2270 0.1703 0.1772 0.1240 1.9158 0.0833 0.0839 1.1213 1.1835 1.0524

b 0.1880 0.1968 −0.0547 0.0723 −0.0107 0.0790 −0.0959 0.0703 1.5765 0.0739 0.0737 0.9501 1.0167 0.8885

85%

θ −0.2908 0.1596 −0.1193 0.0548 −0.1007 0.0563 −0.1370 0.0545 1.0747 0.0506 0.0498 0.7117 0.7482 0.6735

a 0.2322 0.2134 0.1603 0.0924 0.1795 0.1058 0.1415 0.0804 1.5669 0.0688 0.0679 0.8484 0.8828 0.8237

b 0.1623 0.1711 −0.0366 0.0257 −0.0133 0.0263 −0.0588 0.0263 1.4928 0.0685 0.0673 0.5739 0.5880 0.5635

2

65%

θ 0.1299 0.1748 0.1374 0.1253 0.1716 0.1523 0.1044 0.1022 1.5594 0.0733 0.0726 1.0883 1.1717 1.0231

a −0.1473 0.0858 0.0164 0.0596 0.0339 0.0670 −0.0005 0.0536 0.9932 0.0429 0.0434 0.8881 0.9247 0.8439

b 0.2240 0.2153 0.0817 0.0631 0.1126 0.0743 0.0525 0.0551 1.5945 0.0698 0.0698 0.9148 0.9542 0.8811

85%

θ 0.1153 0.1522 0.0809 0.0505 0.1036 0.0606 0.0592 0.0421 1.4724 0.0720 0.0710 0.7057 0.7504 0.6762

a −0.0763 0.0775 0.0679 0.0594 0.0842 0.0672 0.0520 0.0526 1.0509 0.0466 0.0465 0.8191 0.8463 0.7834

b 0.1143 0.1520 0.0234 0.0241 0.0429 0.0264 0.0046 0.0228 1.4627 0.0616 0.0614 0.5870 0.5948 0.5762

25, 20,
20, 25

1

65%

θ −0.5191 0.2829 −0.2937 0.1456 −0.2745 0.1430 −0.3117 0.1490 0.4551 0.0212 0.0194 0.8007 0.8642 0.7501

a 0.5151 0.4880 0.2251 0.1420 0.2473 0.1616 0.2032 0.1237 1.8517 0.0845 0.0843 1.0437 1.0777 0.9973

b 0.1694 0.1096 −0.0074 0.0847 0.0334 0.0947 −0.0465 0.0789 1.1161 0.0488 0.0475 1.1251 1.1954 1.0986

85%

θ −0.3831 0.1711 −0.2176 0.0699 −0.2051 0.0671 −0.2295 0.0729 0.6114 0.0285 0.0277 0.5299 0.5513 0.5081

a 0.3178 0.2274 0.2112 0.1011 0.2299 0.1151 0.1928 0.0883 1.3947 0.0643 0.0637 0.8576 0.8927 0.8125

b 0.1490 0.1018 0.0134 0.0287 0.0367 0.0318 −0.0089 0.0269 1.0124 0.0450 0.0420 0.6588 0.6696 0.6415

2

65%

θ 0.1017 0.1693 0.1241 0.0918 0.1547 0.1115 0.0951 0.0755 1.5643 0.0706 0.0690 1.0020 1.0791 0.9475

a −0.1549 0.0652 −0.0193 0.0454 −0.0055 0.0490 −0.0326 0.0426 0.7969 0.0354 0.0353 0.7545 0.7783 0.7351

b 0.2107 0.1870 0.0883 0.0566 0.1150 0.0655 0.0629 0.0499 1.4821 0.0700 0.0698 0.8434 0.8594 0.8319

85%

θ 0.0992 0.1270 0.0802 0.0429 0.0992 0.0500 0.0619 0.0369 1.3428 0.0595 0.0595 0.7124 0.7547 0.6790

a −0.0549 0.0520 0.0444 0.0417 0.0577 0.0465 0.0314 0.0374 0.8686 0.0394 0.0392 0.6876 0.7238 0.6680

b 0.0887 0.1077 0.0285 0.0241 0.0455 0.0266 0.0120 0.0225 1.2399 0.0551 0.0552 0.5933 0.6070 0.5709
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Table 6. MLE and Bayesian estimation with different loss functions in multi ramp when θ = 3, a = 2.5, b = 0.6.

k = 4 θ = 3, a = 2.5, b = 0.6 MLE BSEL BLINEX (c = −0.5) BLINEX (c = 0.5) MLE BSEL BLINEX
(c = −0.5)

BLINEX
(c = 0.5)

n1, n2,
n3, n4

Scheme r Bias MSE Bias MSE Bias MSE Bias MSE LCI LBP LBP LCCI LCCI LCCI

20, 15,
18, 10

1

65%

θ −1.3150 2.3042 −0.3331 0.1341 −0.2518 0.0897 −0.4078 0.1876 2.9740 0.0931 0.0934 0.5858 0.6235 0.5653

a 0.8989 3.0227 −0.3491 0.1514 −0.2737 0.1096 −0.4177 0.2009 5.8365 0.1831 0.1819 0.6546 0.7089 0.6228

b −0.0913 0.0606 −0.2622 0.0764 −0.2552 0.0731 −0.2691 0.0798 0.8971 0.0275 0.0271 0.3234 0.3309 0.3182

85%

θ −0.4708 0.4836 −0.1116 0.0243 −0.0654 0.0166 −0.1557 0.0358 2.0072 0.0672 0.0661 0.4192 0.4311 0.4174

a 0.1134 0.3691 −0.0982 0.0274 −0.0510 0.0217 −0.1430 0.0372 2.3408 0.0769 0.0765 0.5218 0.5481 0.5058

b −0.1124 0.0513 −0.1800 0.0387 −0.1749 0.0370 −0.1852 0.0405 0.7709 0.0247 0.0247 0.2934 0.2941 0.2908

2

65%

θ −0.1024 0.4661 −0.0198 0.0413 0.0717 0.0510 −0.1043 0.0486 2.6473 0.0861 0.0860 0.8006 0.8313 0.7613

a −0.1680 0.7442 −0.0116 0.0668 0.0803 0.0824 −0.0956 0.0693 3.3186 0.1090 0.1096 0.9976 1.0673 0.9505

b 0.1489 0.0759 0.0331 0.0167 0.0426 0.0178 0.0237 0.0159 0.9086 0.0284 0.0285 0.4847 0.4906 0.4771

85%

θ 0.0948 0.4053 0.0163 0.0164 0.0650 0.0211 −0.0303 0.0166 2.4820 0.0808 0.0806 0.4926 0.5031 0.4903

a −0.1387 0.3914 0.0311 0.0291 0.0823 0.0368 −0.0174 0.0271 2.3925 0.0765 0.0772 0.6587 0.6836 0.6349

b 0.0754 0.0501 0.0002 0.0083 0.0061 0.0085 −0.0057 0.0082 0.8269 0.0263 0.0273 0.3591 0.3616 0.3564

25, 20,
20, 25

1

65%

θ −1.0913 1.4984 −0.3755 0.1641 −0.2985 0.1155 −0.4466 0.2206 2.1751 0.0671 0.0668 0.5890 0.6191 0.5681

a 0.1753 0.6860 −0.3636 0.1586 −0.2929 0.1171 −0.4282 0.2069 3.1748 0.1003 0.1006 0.6294 0.6672 0.6001

b −0.1634 0.0712 −0.2865 0.0879 −0.2809 0.0849 −0.2920 0.0909 0.8272 0.0254 0.0253 0.2929 0.2975 0.2878

85%

θ −0.6934 0.7946 −0.1339 0.0307 −0.0891 0.0214 −0.1768 0.0435 2.1972 0.0689 0.0680 0.4372 0.4488 0.4279

a 0.1442 0.6040 −0.0950 0.0278 −0.0492 0.0224 −0.1385 0.0372 3.0604 0.1013 0.0911 0.5472 0.5677 0.5313

b −0.1170 0.0424 −0.1894 0.0414 −0.1851 0.0398 −0.1936 0.0429 0.6642 0.0197 0.0199 0.2797 0.2791 0.2786

2

65%

θ −0.1862 0.6036 −0.0300 0.0419 0.0594 0.0488 −0.1123 0.0510 2.9582 0.0956 0.0961 0.7994 0.8209 0.7782

a −0.0428 0.6685 −0.0307 0.0599 0.0549 0.0696 −0.1088 0.0656 3.2022 0.1008 0.1016 0.9397 1.0007 0.9127

b 0.1438 0.0634 0.0441 0.0147 0.0515 0.0157 0.0367 0.0139 0.8105 0.0261 0.0261 0.4317 0.4365 0.4286

85%

θ −0.0443 0.1186 0.0114 0.0177 0.0587 0.0219 −0.0340 0.0182 1.3394 0.0427 0.0432 0.5242 0.5270 0.5207

a −0.0603 0.1282 0.0288 0.0309 0.0779 0.0382 −0.0179 0.0290 1.3843 0.0435 0.0431 0.6507 0.6920 0.6365

b 0.0485 0.0237 0.0034 0.0071 0.0082 0.0072 −0.0014 0.0070 0.5732 0.0183 0.0181 0.3187 0.3206 0.3177
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7. An Illustrative Example

We used a practical experiment to test the MH distribution’s superiority over its
competitors. In this case, [13] employed a previous dependability experiment. This data set
contains stress time from ramp-voltage studies with small light bulbs. In the ramp-voltage
trials, 62 light bulbs were utilized in the first level of stress, and 61 light bulbs were used
in the second level of stress, with ramp rates of 2.01 and 2.015 V/h, respectively, as well
as a 2 V experimental design stress. The data are for a complete sample that has not been
censored as follows:

The first level under progressive stress 2.01 V/h, t1, and the second level under
progressive stress 2.015 V/h, t2, are shown in Figures 1 and 2, respectively.
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To see if the real data set follows the NH distribution, we utilized the Kolmogorov–
Smirnov distance (KSD) test to obtain the p-value for making decisions. Table 7 contains
the MLEs for the NH distribution with standard error (SE) and Akaike information criteria
(AIC). Figures 1 and 2 show the fitted CDF, estimated PDF, and P-P plots for each stress
level of real data. These figures confirmed that the NH distribution is a fit for each stress
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level of this real data. According to the results of KSD and P-values for the NH distribution
in Table 7 and Figures 1 and 2, we conclude that the NH distribution is suitable for fitting
each stress level of real data. If the P-value of the KS test is more than 0.05, then we may
conclude that the distribution is a fit for this data. When the P-value of the KS test increases,
the line of estimated cdf is near the empirical cdf, and the line of estimated pdf has drowned
the histogram of data. Table 7 shows the KS test values and the P-value of the KS test < 0.5
as shown in Figures 1 and 2. Table 8 shows the MLEs and Bayesian estimates for the
parameters of the progressive-stress model and the MLEs and Kolmogorov–Smirnov test
for each stress level of real data. Table 8 results were obtained after those of Table 7.

Table 7. MLE and Kolmogorov–Smirnov test for each stress level of real data.

First Level Second Level

Estimates SE Estimates SE

θ 3.3823 0.8429 2.6078 0.5590

a 1.10× 10−5 3.96× 10−6 8.33× 10−6 3.08× 10−6

b 1.3756 0.0320 1.6994 0.0507

AIC 554.7177 493.5818

KSD 0.1124 0.1113

p-value 0.3852 0.4362

Table 8. MLEs and Bayesian estimates for parameters of progressive-stress model.

MLE Bayesian

Estimates SE Lower Upper Estimates SE Lower Upper

θ 11.9739 0.5590 0.0000 66.3388 12.3834 0.4691 4.0420 21.6353

a 1.84× 10−5 3.08× 10−6 1.84× 10−5 1.84× 10−5 1.92× 10−5 2.75× 10−6 1.08× 10−6 1.71× 10−5

b 1.0260 0.0507 0.9979 1.0541 1.0322 0.0409 0.9997 1.0539

AIC 1074.528

As illustrated in Figure 3, we see that Bayes estimators outperform MLEs in most cases.
The estimated parameters maximize the log-likelihood function. The roots were computed,
and they invariably pinpoint the global maximum rather than the local maximum. By
displaying the log-likelihood function, we were able to confirm our findings. As seen by
the blue dot, the estimate is at its maximum location along the curve.
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and g is value of parameter g without virgule.

Figures 4 and 5 illustrate the trace plots and normal curves of the posterior distri-
bution for MCMC estimation, respectively. These numbers also showed that the MCMC
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sequences converged quickly to become stationary. Furthermore, as shown in Figure 6, we
used the random drawings to generate random draws for the sub-survivors and overall
survivors as well as the Bayesian estimators and 95% credible intervals for those functions
at various times. The normal distribution is often used to estimate the conditional posterior
distributions of the parameters because they are generally symmetric and unimodal (see
Figure 5). Figure 6 indicate that Bayes point and interval estimates of the sub-survivor
functions and the overall survivor function.
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8. Concluding Remarks

In this work, we studied classical and Bayesian estimation procedures for the progressive-
stress model for the NH distribution with type II progressive-censoring data. Specifically,
we first considered the MLEs of the NH parameters and adopted their asymptotic normal
distribution to construct approximate confidence intervals. Then, we studied Bayesian
estimators and the corresponding HPD intervals of the unknown parameters with suitable
prior distributions and different loss functions. Numerical results from simulation studies
and real data examples showed that the performance of the proposed methods is satisfac-
tory for statistical inference of the step-stress accelerated model with the NH distribution
based on progressive type II censored data.
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