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Abstract: Chenciner bifurcation appears for some two-dimensional systems with discrete time having
two independent variables. Investigated here is a special case of degeneration where the implicit
function theorem cannot be used around the origin, so a new approach is necessary. In this scenario,
there are many more bifurcation diagrams than in the two non-degenerated cases. Several numerical
simulations are presented.
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1. Introduction

The discrete dynamical systems have an increasing role in informatics [1], computer
and machine learning, and other interdisciplinary fields [2–4]. A new mathematical model
was recently proposed in [5] for the dynamics of three types of phytoplankton of the Sea
of Azov under the condition of salinity increase. Other examples of applied dynamical
discrete systems, besides continuous ones, are given in [6–9]. Presented among them is a
discrete-time epidemic model applied to the study of the COVID-19 virus [8]. The theory
of discrete dynamical systems may be applied in many branches of engineering such as
suspension bridges, ball bearings, and nanotechnology. The study of impact oscillators is
an important source of nonlinearity in mechanical system theory [10–13]. When the impact
has zero velocity, the so-called grazing impacts appear. The near-grazing systems can be
described by discrete dynamical systems, and an application for harmonic oscillators is
presented in [12]. The dynamics of the other two types of discrete dynamical systems, a
discrete predator-prey model with group defense and nonlinear harvesting in prey and
a modified Nicholson-Bailey model, were investigated, and the conditions for classical
Neimark-Sacker bifurcation were given in [14,15].

Economy is another important domain of application [16]. Traditionally, economic
agents are considered to have rational expectations [17], which assume that prices follow
the fundamental economic value. Experiments have shown that economic agents [18] do
not make rational predictions but follow empirical rules. Thus, sometimes these rules
can lead them to the fundamental landmark, but other times they can be coordinated on
destabilizing strategies to follow the trends. The consequences are market “bubbles” and
even collapses. A “bubble” represents a strong over evaluation [19] and the duration of
an asset compared to its fundamental economic value. Big “bubbles” and sudden market
crashes are difficult to harmonize with the standard model of agents representing rational
expectations. Some authors, for example [20], have devised a simple behavioral heuristic
switching model that explains the path-dependent coordination of the individual forecast,
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as well as the aggregate behavior of the market. The paper analyzes the coexistence of a
locally stable fundamental equilibrium state and a stable quasi-periodic orbit, created by
the Chenciner bifurcation. In relation to the initial states, the economic agents will orient
their individual expectations either on a stable fundamental equilibrium trajectory or on
persistent price fluctuations in the vicinity of the fundamental equilibrium state.

The generalized Neimark-Sacker bifurcations or Chenciner bifurcations of discrete dy-
namical systems have been discovered in 1985 in [21–23], in the framework of the study of
elliptic bifurcations of fixed points. Later, in 1990 in [24] this bifurcation was characterized
better than before. The non-degenerate Chenciner bifurcation is one of the eleven types
retrieved in the generic two-parameter discrete-time dynamical systems, according to clas-
sification from [25]. There is no other bifurcation of codimension 2 in generic discrete-time
systems. The non-degeneracy condition, so called “cubic non-degeneracy”, is not fulfilled in
this case of the generalized Neimark-Sacker bifurcations.

In recent years, the study of degenerated discrete Chenciner bifurcation began, as seen
in [26]. The singularities are always difficult to study in comparison to the regular cases.
The purpose of this article is to examine the Chenciner bifurcation which doesn’t check
the condition (CH.1) [25] (p. 405). That is the degenerated Chenciner bifurcation. The two
types of bifurcation diagrams existing in the non-degenerated variant, as seen in [25], are
replaced by 32 types of bifurcation diagrams in a particular degenerated discrete Chenciner
dynamical system; see [26].

The article is composed of four sections. The first section is the Introduction, where the
non-degenerate Chenciner bifurcations are presented using the truncated normal form of
the system (A4) and polar coordinates, and some new applications in various domains are
mentioned. Section two of this paper describes the results given in [26,27] concerning the
existence of bifurcation curves and their dynamics in the parametric plane (α1, α2) in the
cases where a10b01a01b10 6= 0 and the linear parts of β1(α) and β2(α) nullify, respectively,
and when a10 = 0, b01 = 0, a01 = 0 and b10 = 0. The third section is the main part of the
paper, where the degeneracy case of the Chenciner bifurcation written in the truncated
normal form was studied when a20 = a11 = a02 = 0 and, for b10 and b01, two situations have
been studied: b10 6= 0, b01 6= 0 or b10 = b01 = 0. In addition, some numerical simulations are
presented using Matlab for checking the theoretical results. The discussions and conclusions
are presented in the fourth section of the paper.

2. Methods

The study of the non-degenerated discrete Chenciner bifurcation begins by a defect
of a coordinate change (α1, α2)→ (β1, β2). The degeneration taken into account is a non-
regularity of the coordinate change in the origin, which loses its quality of coordinate
change. The method introduced [26] is to consider the same expression for β1, β2 but as
functions of α1, α2 and not as new coordinates.

The steps of the method used in previous papers for finding the truncated normal
form of generalized Neimark-Sacker bifurcation for analyzing the behavior of such general
two-dimensional discrete dynamical systems in order to obtain the bifurcation diagrams
are given in Appendix A. The Chenciner bifurcations imply that the center manifold for the
Poincare map is two-dimensional. In [26], a new degeneration for generalized Neimark-
Sacher bifurcations was introduced; therefore, the classical Chenciner bifurcations are
called non-degenerate Chenciner bifurcations. This study has been continued in [27,28]
and also in the present paper. In the degenerated case, there are two different approaches:
the first is to work with the initial parameters α1, α2 in the polar form, (A6) of our system,
and the second, in [28], is considered another regular transformation of parameters, when
the product a10a01b10b01 6= 0.

The following two results, Theorems A1 and A2, which have been established in [26],
play a key role in the next section and will be restated in Appendix B. Theorem A1 estab-
lishes the stability of the fix point O function of the sign of β1(α), and then, in Theorem A2,
the existence of invariant circles is discussed as a function of the sign of ∆(α). From here,



Mathematics 2022, 10, 1603 3 of 17

the generic phase portraits corresponding to different regions of the bifurcation diagrams
were obtained in Figure 1 from [26] and in Appendix B, Figure A1. Table 1 from [26] gives
the regions in the parametric plane defined by ∆(α), β1(α), β2(α), and L0. These phase por-
traits remain the same, but the bifurcation diagrams are different from the non-degenerate
Chenciner bifurcation case in [25]. These kinds of studies represent important topics in the
qualitative theory of discrete-time dynamical systems.

Now, we will write the smooth functions β1,2(α) as β1(α) = a10α1 + a01α2 +∑i+j≥2 aijα
i
1α

j
2

and β2(α) = b10α1 + b01α2 + ∑i+j≥2 bijα
i
1α

j
2 for our further goals. We recall that the trans-

formation (A7) is not regular at (0, 0). That means the Chenciner bifurcation becomes
degenerate, iff

a10b01 − a01b10 = 0. (1)

The case when the linear part of β1(α) nullifies and β2(α) has at least one linear
term was mentioned in [27] together with Theorem 2 of [27], which is an important result
concerning the existence, and also the relative positions in the parametric plane, (α1, α2) of
the bifurcation curves, function of the sign of β1(α).

Recently, in [27], the dynamics of the system in the form (A10) and (A11) was described
and studied in the case when all these coefficients a10 = 0, b01 = 0, a01 = 0 and b10 = 0, and
the bifurcation diagrams obtained are different from previous situations form [26,28].

In this paper, the degeneracy condition (1) will be satisfied and the terms of degree
one and two are zero in the case of β1(α). Therefore, the functions β1,2(α) become

β1(α) = aα3
2 + bα1α2

2 + cα2
1α2 + dα3

1 +
p1

∑
i+j=4

aijα
i
1α

j
2 + O

(
|α|p1+1

)
(2)

and

β2(α) = kα1 + hα2 +
q1

∑
i+j=2

bijα
i
1α

j
2 + O

(
|α|q1+1

)
(3)

for some p1 ≥ 4. a = a03, b = a12, c = a21, d = a30, respectively, and q1 ≥ 2, h = b10,
k = b01.

The set B1,2 and C will be denoted by

B1,2 =
{
(α1, α2) ∈ R2, β1,2(α) = 0, |α| < ε

}
(4)

and
C =

{
(α1, α2) ∈ R2, ∆(α) = 0, |α| < ε

}
(5)

for some ε > 0 that is sufficiently small, and then the new ∆(α) is

∆(α) = β2
2(α)− 4β1(α)L2(α). (6)

3. Results

In this section, the degree of the truncated version of the first bifurcation curve, β1, is
Degβ1 = 3, and for the second bifurcation curve, β2, two cases will be studied: when the
Degβ2 = 1 and when the Degβ2 = 2 in the truncated version.

3.1. Degree of the Second Bifurcation Curve Is One in the Truncated Version

Firstly, we focus on the case when Deg β2 = 1 in the truncated version. In expression
of β1(α), we denote the coefficients a03, a12, a21, and a30 by a, b, c, and d, respectively, and
in expression of β2(α), we denote the coefficients b01 and b10 by h and k, respectively.

β1(α1, α2) = aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1 + O(|α|4),
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where a, b, c, d ∈ R∗.
β2(α1, α2) = hα2 + kα1 + O(|α|2),

where h, k ∈ R∗.
Then

∆(α) = [β2(α)]
2 − 4L2(α)β1(α), (7)

where α = (α1, α2).
In the truncated version, we have:

β1(α) = aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1

β2(α) = hα2 + kα1

∆(α) = [β2(α)]
2 (8)

Discussed below is the sign of first bifurcation curve in the truncated version.
In order to establish the sign of β1(α), the following is used:

Remark 1. The sign of the polynomial

β1(T) = aT3 + bT2 + cT + d ∈ R∗[T],

is the same as the sign of β1(α1, α2), for every α1, α2 ∈ R, such that α2 = Tα1.

In order to establish the sign of β1(T), we denote, as usual for the third degree equation:

p =
c
a
− b2

3a2 , q =
2b3

27a3 −
bc

3a2 +
d
a

,

and the polynomial becomes:

β1(T) = a(T3 + pT + q).

The roots of β1(T) are the solutions of the equation

T3 + pT + q = 0.

For the classification of the β1(T)− roots, we use the notation

r =
( q

2

)2
+
( p

3

)3

which is called “the cubic discriminant”.

1. For p > 0, q 6= 0, there is one real root e1, and two complex conjugated ones;
2. For p < 0, q = 0, there is a triple root e1;
3. For p < 0, r > 0, there is one real root e1, and two complex conjugated ones;
4. For p < 0, r = 0, there are three real roots, one simple e1, and two common;
5. For p < 0, r < 0, there are three real different roots e1 < e2 < e3.

Lemma 1. The following statements are true:

1. If p < 0 and r < 0, then

sign[β1(T)] = sign[a(T − e1)(T − e2)(T − e3)],

see Table 1.
2. If p > 0 or (p < 0 and r ≥ 0), then

sign[β1(T)] = sign[a(T − e1)],
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see Table 2.

Table 1. The sign of β1(T) when there are three roots e1, e2, e3.

T (−∞, e1) e1 (e1, e2) e2 (e2, e3) e3 (e2, ∞)

signβ1(T) sign(−a) 0 sign(a) 0 sign(-a) 0 sign(a)

Table 2. The sign of β1(T) when there is one root e1.

T (−∞, e1) e1 (e1, ∞)

signβ1(T) sign(-a) 0 sign(a)

The case when p and r are strictly negative are rendered below.
From Appendix A, θ0 = θ(0) and L0 = L2(0) 6= 0. The case p < 0, r < 0 involves four

cases to analyze, impossing that hk > 0.

1. L0 > 0, k > 0
2. L0 > 0, k < 0
3. L0 < 0, k > 0
4. L0 < 0, k < 0.

The bifurcation diagrams are respectively given in Figures 1–4.
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Figure 1. Bifurcation diagrams when p < 0, r < 0, and hk > 0: (a) L0 > 0, k > 0; (b) L0 > 0, k < 0.
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Figure 2. Bifurcation diagrams when p < 0, r < 0, and hk > 0: (a) L0 < 0, k > 0; (b) L0 < 0, k < 0.

Remark 2. When β2(α) = 0, then the sign of ∆(α) is given by the relation (7), instead of (8).

The case when p is strictly positive or (p is strictly negative and r is positive) will be
studied below.

In the case p > 0 or (p < 0 and r ≥ 0), from Lemma 1 (2), it results that
sign[β1(T)] = sign[a(T − e1)], see Table 2, where e1 is the unique real root of β1(α) = 0.
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From β2(α) = hα2 + kα1, it results that m2 = − k
h . In our case, ∆(α) = [β2(α)]

2. We impose
that hk > 0.

Therefore we will have the following two bifurcation diagrams presented in Figure 3.

Remark 3. In the case p > 0 or (p < 0 and r ≥ 0), we will obtain only two distinct figures; that
means the following Figure 3a,b:

1. if a > 0, k > 0, L0 > 0 or a > 0, k < 0, L0 > 0 or a < 0, k > 0, L0 > 0 or
a < 0, k < 0, L0 > 0, we get Figure 3a;

2. if a > 0, k > 0, L0 < 0 or a > 0, k < 0, L0 < 0 or a < 0, k > 0, L0 < 0 or
a < 0, k < 0, L0 < 0, we get Figure 3b.
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Figure 3. Bifurcation diagrams when p > 0 or (p < 0 and r > 0) and hk > 0: (a) a > 0, k > 0, L0 > 0
or a > 0, k < 0, L0 > 0 or a < 0, k > 0, L0 > 0 or a < 0, k < 0, L0 > 0; (b) a > 0, k > 0, L0 < 0 or
a > 0, k < 0, L0 < 0 or a < 0, k > 0, L0 < 0 or a < 0, k < 0, L0 < 0.

3.2. Degree of the Second Bifurcation Curve Is Two

If Deg β2 = 2, then its first three coefficients will be denoted as below.

β1(α1, α2) = aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1 + O(|α|4),

β2(α1, α2) = hα2
2 + kα1α2 + lα2

1 + O(|α|3),

where h, k, l ∈ R∗.

∆(α1, α2) = (hα2
2 + kα1α2 + lα2

1)
2 − 4L2(α)[aα3

2 + bα2
2α1 + cα2α2

1 + dα3
1 + O(|α|4)]

= −4L0(aα3
2 + bα2

2α1 + cα2α2
1 + dα3

1) + O(|α|4).

Truncated, that is:
β1(α) = aα3

2 + bα2
2α1 + cα2α2

1 + dα3
1

β2(α) = hα2
2 + kα1α2 + lα2

1,

having ∆2 = k2 − 4hl, ∆(α) = −4L0β1(α).
The sign of β1 was previously analyzed.
The case when p and r are strictly negative and ∆2 is strictly positive are considered

below.
In the case p < 0, r < 0, ∆2 > 0, the polynomial β1(T). This has the real roots

e1 < e2 < e3 (and the polynomial β2(T) has the real roots m1 < m2).
There are three cases that must be considered:

I e1 < m1 < m2 < e2 < e3;
II e1 < m1 < e2 < m2 < e3;
III e1 < m1 < e2 < e3 < m2.

In each of those cases, there are four sub-cases depending on the signs of h and L0.
The bifurcation diagrams are given below, in Figures 4–7.
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Figure 4. Bifurcation diagrams in the Case I when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h > 0;
(b) L0 < 0, h > 0.
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Figure 5. Bifurcation diagrams in the Case I when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h < 0;
(b) L0 < 0, h < 0.
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Figure 6. Bifurcation diagrams in the Case II and III when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h > 0
or h < 0, L0 > 0; (b) L0 < 0, h > 0 or L0 < 0, h < 0 or h > 0, L0 < 0.
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Figure 7. Bifurcation diagrams in the Case II and III when p < 0, r < 0, and ∆2 > 0: (a) L0 > 0, h < 0
or h > 0, L0 > 0; (b) h < 0, L0 < 0.
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The case when p, r, and ∆2 are strictly negative is presented in the following.
In the case p < 0, r < 0, ∆2 < 0, we see that β1(T) has the real roots e1 < e2 < e3 and

β2(T) has no real roots (∆2 < 0); therefore, sign β2(α) = sign(h).
We know that sign δ(α) = −sign(L0)sign β1(α).
According to Lemma 1, (1), when p < 0 and r < 0, the sign β1(T) = sign[a(T −

e1)(T − e2)(T − e3)]; see Table 1.
From the information presented above, we obtain the following:

Remark 4. When p < 0, r < 0, ∆2 < 0, the bifurcation diagrams are given in the following:

(1) If a > 0, h > 0, L0 > 0 or a < 0, h > 0, L0 > 0, then we get the Figure 8a.
(2) If a > 0, h > 0, L0 < 0 or a < 0, h > 0, L0 < 0, then we get the Figure 8b.
(3) If a > 0, h < 0, L0 > 0 or a < 0, h < 0, L0 > 0, then we get the Figure 9a.
(4) If a > 0, h < 0, L0 < 0 or a < 0, h < 0, L0 < 0, then we get the Figure 9b.
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a < 0, h > 0, L0 > 0; (b) a > 0, h > 0, L0 < 0 or a < 0, h > 0, L0 < 0.

    
  

                                                               

                                    

  

 

 

① 

2 

 

2 
① 

① 

β1 

 
β1 

 

β1 

 

① 

② ② 

② 

① 

1 

 

2 

① 

① 

① 

① 

(a)

    
  

                                                               

                                    

  

 

 

2 

 

2 
③ 

③ 

④ 

β1 

 
β1 

 

β1 

 

④ 

④ ④ 

④ 

③ 

1 

 

2 

④ 
④ 

④ 

④ 

(b)

Figure 9. Bifurcation diagrams when p < 0, r < 0, and ∆2 < 0: (a) a > 0, h < 0, L0 > 0 or
a < 0, h < 0, L0 > 0; (b) a > 0, h < 0, L0 < 0 or a < 0, h < 0, L0 < 0.

The case when p is strictly positive or (p is strictly negative and r is positive) will be
investigated next.

In the case when p > 0 or (p < 0 and r ≥ 0), from Lemma 1, (2) we have,

sign β1(T) = sign[a(T − e1)],

see Table 2.
(a) There is one real root e1 and two complex conjugates roots of β1(T) when r > 0;
(b) When p < 0 and r = 0, there are three real roots, one simple e1 and two common;
(c) Then p > 0, q 6= 0, there is one real root e1 and two complex conjugates;
(d) If p > 0, q = 0, there is a triple root e1.
From (a)–(d), we see that, in all these cases, β1(T) = 0 has a single real root e1 and

then sign β1(T) = sign[a(T − e1)].
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∆(α) = −4L0β1(α) and then sign∆(α) = −sign(L0)sign[β1(α)].
For the sign of β2(α), we have two cases:

1. ∆2 < 0 implies sign β2(α) = sign(h);
2. ∆2 > 0, then there is m1, m2, two distinct real roots of β2(α) = 0 and

sign β2(α) =

{
sign(h), if m ∈ (−∞, m1) ∪ (m2, ∞)
−sign(h), if m ∈ (m1, m2).

Remark 5. When p > 0 or (p < 0 and r ≥ 0) and ∆2 < 0, then only two cases will appear:

1. If a > 0, L0 > 0, h > 0 or a < 0, L0 > 0, h > 0, see Figure 10a;
2. If a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h > 0, see Figure 10b;
3. If a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h < 0, see Figure 11a;
4. If a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h < 0, see Figure 11b.
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Figure 10. Bifurcation diagrams when p > 0 or (p < 0 and r > 0): (a) a > 0, L0 > 0, h > 0 or
a < 0, L0 > 0, h > 0; (b) a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h > 0.
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Figure 11. Bifurcation diagrams when p > 0 or (p < 0 and r > 0): (a) a > 0, L0 > 0, h < 0 or
a < 0, L0 > 0, h < 0; (b) a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h < 0.

When ∆2 > 0, we have e1, m1, m2, so we write the following situations: e1 < m1 < m2,
m1 < e1 < m2, and m1 < m2 < e1. We notice that, in the case m1 < m2 < e1, the bifurcations
diagrams will be obtained by a rotation from the bifurcation diagrams obtained in the case
e1 < m1 < m2 because e1 is not in the interval (m1, m2). In addition, we will draw below
only β1 because the two lines of β2 do not produce the changing of the region of bifurcation
in this case.

Remark 6. When ∆2 > 0 and p > 0 or (p < 0 and r ≥ 0), then the bifurcation diagrams will be
obtained as in previous remark, as follows:

1. If e1 < m1 < m2 and a > 0, L0 > 0, h > 0 or a < 0, L0 > 0, h > 0 or if m1 < e1 < m2
and a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h < 0, then will obtain Figure 10a.
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2. If e1 < m1 < m2 and a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h > 0 or if m1 < e1 < m2
and a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h < 0, then will obtain Figure 10b.

3. If e1 < m1 < m2 and a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h < 0 or if m1 < e1 < m2
and a > 0, L0 > 0, h < 0 or a < 0, L0 > 0, h > 0, then will obtain Figure 11a.

4. If e1 < m1 < m2 and a > 0, L0 < 0, h < 0 or a < 0, L0 < 0, h > 0 or if m1 < e1 < m2
and a > 0, L0 < 0, h > 0 or a < 0, L0 < 0, h < 0, then will obtain Figure 11b.

3.3. Numerical Simulations

Some numerical examples are given below in order to illustrate the theoretical ap-
proach. Matlab simulations are presented for the regions in Figure 11b, but first we have
to check the conditions of Remark 5, i.e., p > 0, ∆2 < 0, and a > 0, L0 < 0, h < 0 for the
example given below. Considering β1(α) = 2α3

1 + α2 + α2
1α2, β2(α) = −(α2

1 + α1α2 + α2
2),

with |α| being sufficiently small and θ0 = 0.1, L0 = −1, we notice that a = 1, b = 0, c = 1,
d = 2, h = −1, k = −2, l = −1, and p = 1 > 0, ∆2 < 0, a > 0, h < 0. We find different
orbits (xn, yn), where xn = ρn sin ϕn, xn = ρn cos ϕn, when n = 1, . . . , N, N being a fixed
number. Then the two-dimensional map, in polar coordinates, becomes,

ρn+1 = ρn + ρnβ1(α) + ρ3
nβ2(α)− ρ5

n, ϕn+1 = ϕn + θ0. (9)

It is obvious that the Chenciner bifurcation is degenerated here.
Figures 12a,b and 13a give the generic portrait phase 3, and Figure 13b gives the generic

portrait phase 4.
First consider α1 = 0.1, α2 = 0.1, N = 2000, and (ρ1, ϕ1) = (0.3, 0) (for green curve),

(ρ1, ϕ1) = (0.01, 0) (for blue curve), and (ρ1, ϕ1) = (0.03, 0) (for red curve), respectively;
the discrete orbits can be seen in Figures 12a,b and 13a. The orbits for blue, red, and green
curves tend to an invariant stable closed curve. Moreover, in Figure 14a, the red, blue, and
green sequence of points represent the ρn sequence corresponding to the previous three
orbits, respectively, when N = 2000 in (nOρn) axis. We can notice that the results from
Figures 12 and 13a are checked because ρn tends to the same constant number when n tends
to infinity, and then the orbits will be on the same circle. In Figure 14b, the red, blue,
and green sequence of points represent the ρn sequence corresponding to previous three
orbits, respectively, when N = 2000 in (nOρn) axis. This time, these sequences tend to
zero, so the three orbits tend to origin and the result from Figure 13b is checked. Here,
α1 = 0.5, α2 = −0.513, N = 2000 are taken, and the start points are the same as in
Figure 13b. It can be observed that the orbit tends to the origin, therefore region 4 will
appear; see Figure 13b.

Figure 12. Numerical simulation for the map (9) when β1(α) = 2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 −
α1α2 − α2

2, with α1 = 0.1, α2 = 0.1: (a) blue orbit starts from (ρ1, ϕ1) = (0.01, 0); (b) red orbit starts
from (ρ1, ϕ1) = (0.03, 0).



Mathematics 2022, 10, 1603 11 of 17

Figure 13. Numerical simulation for the map (9) when β1(α) = 2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 −
α1α2 − α2

2: (a) the three orbits are represented here with (ρ1, ϕ1) = (0.01, 0), (ρ1, ϕ1) = (0.03, 0) and
(ρ1, ϕ1) = (0.3, 0), respectively, and α1 = 0.1, α2 = 0.1; (b) the three orbits are represented here
with (ρ1, ϕ1) = (0.183, 0), (ρ1, ϕ1) = (0.16, 0) and (ρ1, ϕ1) = (0.14, 0), respectively, and α1 = 0.5,
α2 = −0.513.

Figure 14. The discrete sequence ρn given by the map (9) in the plane (nOρn) when β1(α) =

2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 − α1α2 − α2
2: (a) when (ρ1, ϕ1) = (0.01, 0), (ρ1, ϕ1) = (0.03, 0),

(ρ1, ϕ1) = (0.284, 0) and a1 = 0.1, a2 = 0.1; (b) when starting points are as in Figure 13b.

Now choosing β1(α) = α3
1 + 2α3

2− α1α2
2− α2

1α2 , β2(α) = −α1− 3α2, α1 = 0.1, α2 = −0.1,
and (ρ1, ϕ1) = (0.06), N = 700, the orbit (green color) tends to origin and will depart from the in-
ner invariant curve (magenta color). However, when (ρ1, ϕ1) = (0.187, 0), the orbit (blue color)
will tend from interior to the outer invariant curve (red color). When (ρ1, ϕ1) = (0.3, 0), the
orbit (in red) will tend from exterior to the outer invariant curve. Thus, here, in Figure 15a,
appears the phase portrait for the region 7, see Appendix A, and this is confirmed also
from theoretical conditions from Figure 2b. In Figure 15b, the sequence ρn in (nOρn) axis
is shown for green orbit from Figure 15a, where N = 6000, observing that this sequence
tends to zero when n tends to infinity. In Figure 16a, the sequence xn is given in the axis
(nOxn), for N = 15,000, and also tends to zero.

In Figure16b is considered the case when (α1, α2) = (0.9,−0.9) are on β1(α) = 0.
Here β1(α) = 2α3

1 + α3
2 + α2

1α2, β2(α) = −α2
1 − α1α2 − α2

2, θ0 = 0.1. Now β1(α1, α2) = 0,
but ∆2 < 0 and (ρ1, ϕ1) = (0.187, 0) for red orbit, (ρ1, ϕ1) = (0.16, 0) for blue orbit, and
(ρ1, ϕ1) = (0.14, 0) for green orbit, respectively, which tend to the origin. Therefore, the
region 4 corresponds to the phase portrait, see Figure 11b, this being the third and last case
analyzed for Figure 11b.
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Figure 15. Numerical simulations for the map (9) when β1(α) = α3
1 + 2α3

2 − α1α2
2 − α2

1α2,
β2(α) = −α1 − 3α2 and (α1, α2) = (0.1,−0.1): (a) four orbits corresponding to (ρ1, ϕ1) = (0.06, 0)
(the orbit in red), (ρ1, ϕ1) = (0.187, 0) (the orbit in blue), (ρ1, ϕ1) = (0.0716, 0) (the orbit in magenta),
(ρ1, ϕ1) = (0.06) (the orbit in green); (b) the sequence ρn in the plane (nOρn) corresponding to the
green orbit, when N = 6000 from (a).

Figure 16. Numerical simulations for the map (9): (a) sequence xn in the plane (nOρ)

from Figure 15b; (b) numerical simulations for the map (9) when β1(α) = 2α3
1 + α3

2 + α2
1α2,

β2(α) = −α2
1 − α1α2 − α2

2, (α1, α2) = (0.9,−0.9) and (ρ1, ϕ1) = (0.183, 0) (red orbit),
(ρ1, ϕ1) = (0.16, 0) (blue orbit), (ρ1, ϕ1) = (0.14, 0), (green orbit), respectively.

Moreover, in Figure 17a,b appear the phase portraits 2 and 1 from Figure 11a, when
p > 0, a > 0, L0 > 0, h < 0 for the map,

ρn+1 = ρn + ρnβ1(α) + ρ3
nβ2(α) + ρ5

n, ϕn+1 = ϕn + θ0, (10)

i.e., L0 = 1. Here we take θ0 = 0.1, β1(α) = 2α3
1 + α3

2 + α2
1α2, β2(α) = −α2

1 − α2
2 − α1α2,

and α1 = 0.1, α2 = 0.1 for Figure 17a. The starting points of the three orbits corre-
spond to (ρ1, ϕ1) = (0.2, 0) for the red color, (ρ1, ϕ1) = (0.16, 0) for the blue color, and
(ρ1, ϕ1) = (0.11, 0) for the green color, respectively, and N = 100 step for the red orbit and
N = 150 step for the blue and green orbits. The orbits depart from the origin and escape to
infinity. This situation corresponds to phase portrait 2.

When α1 = 0.1, α2 = −0.112, and the same starting points are taken for the red and
green orbits, but θ0 = 0.003, N = 1500 for the blue and green orbits, and, for the blue orbit,
(ρ1, ϕ1) = (0.1711, 0), N = 200, and θ0 = 0.1, then the red orbit departs from the invariant
circle, which is the blue orbit, and the green orbit departs from the invariant circle and
tends to origin. That corresponds to the phase portrait 1, and this happens in region 1 from
Figure 11a.
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Figure 17. Numerical simulations for the map (10) when β1(α) = 2α3
1 + α3

2 + α2
1α2,

β2(α) = −α2
1 − α1α2 − α2

2: (a) when (α1, α2) = (0.1, 0.1), three orbits having (ρ1, ϕ1) = (0.2, 0)
(red color), (ρ1, ϕ1) = (0.16, 0) (blue color), and (ρ1, ϕ1) = (0.11, 0) (green color) are given, corre-
sponding this case to region 2 from Figure 11a; (b) when (α1, α2) = (0.1,−0.112) and the three
starting points of the orbits correspond to (ρ1, ϕ1) = (0.2, 0) (red orbit), (ρ1, ϕ1) = (0.1711, 0) (blue
orbit), (ρ1, ϕ1) = (0.11, 0), (green orbit), respectively, we obtain the phase portrait corresponding to
region 1 from Figure 11a.

4. Discussions and Conclusions

This paper contributes to the enrichment of the literature related to the Chenciner
bifurcation. This study may be useful in biology, medicine, and economics, where discrete
Chenciner bifurcation occurs.

The degeneracy case of the Chenciner bifurcation written in the truncated normal
form, which was analyzed here, takes place when a20 = a11 = a02 = 0, and for b10 and b01,
we have two situations: b10 6= 0, b01 6= 0 or b10 = b01 = 0. This is a further degeneration
of β1. It appears here a symmetry and an asymmetry of some regions from bifurcation
diagrams in this case studied.

The proposed approach is different from that of [28], being similar to that of [26,27],
solving the problem in a more general framework than in [28]. This paper continues the
study realized in [26,27], which is shortly described in Appendixes A and B, by considering
the following new assumption a10 = a01 = a20 = a11 = a02 = 0. A different method is
necessary than that used in [26], based on the sign of ∆ and ∆2 when degree of β1(α) is
three and degree of β2(α) is one or two.

This article highlights 18 different bifurcation diagrams, which is more than the two
obtained in the case of non-degeneration [25]. Those 18 different bifurcation diagrams
come from the first case, Case 3.1, when Degβ1(α) = 3 and Degβ2(α) = 1, here having
six bifurcation diagrams, and from the second case, Case 3.2, when Degβ1(α) = 3 and
Degβ2(α) = 2, where 12 different bifurcation diagrams appear. The study we conducted
in this article confirms the hypothesis. Therefore, in a case of degeneration that does not
involve resonance, there is an increase in the number of bifurcation diagrams. This study
answers a part of the open problem from [26], and a new open problem would be to study
the behavior of the system when Degβ1(α) = 3 and Degβ2(α) = 3 in the truncated form.

There are more cases of possible degeneration of Chenciner bifurcation, and each of
them requires a special characteristic method of solving, especially developed for each case.
Matlab simulations verify the theoretical conclusions.
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Appendix A. Chenciner Bifurcations

Below is written the normal form of Neimark-Sacker bifurcation with cubic degeneracy,
i.e., Chenciner bifurcation for the system (A1). A discrete dynamical system:“

xn+1 = f (xn, α) (A1)

with α = (α1, α2) ∈ R2, xn ∈ R2, n ∈ N, f ∈ Cr, and r ≥ 2 can be written as

x 7−→ f (x, α) (A2)

”Ref. [26]. By using the same methods as in [25–27], (A2) becomes

z 7−→ µ(α)z + g(z, z̄, α), (A3)

and“

w 7−→
(

r(α)eiθ(α) + a1(α)ww̄ + a2(α)w2w̄2
)

w + O
(
|w|6

)
(A4)

=
(

r(α) + b1(α)ww̄ + b2(α)w2w̄2
)

weiθ(α) + O
(
|w|6

)
respectively, taking into account that g can be written as

g(z, z̄, α) = ∑
k+l≥2

1
k!l!

gkl(α)zk z̄l ,

where µ, g, gkl(α) are smooth functions, bk(α) = ak(α)e−iθ(α), k = 1, 2. , µ(α) = r(α)eiθ(α),
r(0) = 1, and θ(0) = θ0” [26]. The following notations were used:

β1(α) = r(α)− 1 and β2(α) = Re(b1(α)) (A5)

in [26,27] and (A4) was“{
ρn+1 = ρn

(
1 + β1(α) + β2(α)ρ

2
n + L2(α)ρ

4
n
)
+ ρnO

(
ρ6

n
)

ϕn+1 = ϕn + θ(α) + ρ2
n

(
Im(b1(α))
β1(α)+1 + O(ρn, α)

) , (A6)

L2(α) =
Im2(b1(α))+2(1+β1(α))Re(b2(α))

2(β1(α)+1) ” [26–28]).
When r(0) = 1, Re(b1(0)) = 0, but L2(0) 6= 0 in (A6), the generalized Neimark–Sacker

bifurcation appears and the transformation of parameters

(α1, α2) 7−→ (β1(α), β2(α)) (A7)

is regular at (0, 0). These types of bifurcations have been studied in [25], and there they
are called Chenciner bifurcations. It is easy to see from above that, for β1(0) = 0, we have
L2(0) = 1

2
(

Im2(b1(0)) + 2Re(b2(0))
)
. The idea is “to change these coordinates and to work

only using the initial parameters (α1, α2) in the form (A6)” [26].
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It is known from [26], relation (13), page 4 that

β1(α) =
p

∑
i+j=1

aijα
i
1α

j
2 + O(|α|p+1), β2(α) =

q

∑
i+j=1

bijα
i
1α

j
2 + O(|α|q+1) (A8)

for p, q ≥ 1, a10 = ∂β1
∂α1
|α=0, a01 = ∂β1

∂α2
|α=0, b01 = ∂β2

∂α2
|α=0, b10 = ∂β2

∂α1
|α=0, and so on.

The transformation (A7) is not regular at (0, 0), i.e., the Chenciner bifurcation degener-
ates, if and only if

a10b01 − a01b10 = 0. (A9)

Knowing the “truncated form of the ρ-map of (A6),

ρn+1 = ρn

(
1 + β1(α) + β2(α)ρ

2
n + L2(α)ρ

4
n

)
, (A10)

the ϕ-map of the system (A6) describes a rotation by an angle depending on α and ρ and
can be approximated by,

ϕn+1 = ϕn + θ(α), (A11)

being assumed that 0 < θ(0) < π” [26]. The truncated normal form of (A4) is (A10) and (A11).

Appendix B. Literature Review

It is known that “the one dimensional dynamic system for the ρ-map (A10) has a
fixed point in origin for all values of α, which corresponds to the fixed point O(0, 0) in the
system (A10) and (A11), and that a positive nonzero fixed point of the one-dimensional
ρ-map (A10), corresponds to a closed invariant curve in the truncated two-dimensional
map (A10)–(A11)” [26].

On the other hand, sign(L2(α)) = sign(L0) for |α| =
√

α2
1 + α2

2 sufficiently small

because L2(α) = L0(1 + O(|α|)) and L0 6= 0. It is considered O
(
|α|n

)
for n ≥ 1 to be the

series, O
(
|α|n

)
= ∑i+j≥n cijα

i
1α

j
2.

Theorem A1. The fixed point O is (linearly) stable if β1(α) < 0 and unstable if β1(α) > 0, for
all values α with |α| sufficiently small. On the bifurcation curve β1(α) = 0, O is (non-linearly)
stable if β2(α) < 0 and unstable if β2(α) > 0, when |α| is sufficiently small. At α = 0, O is
(non-linearly) stable if L0 < 0 and unstable if L0 > 0 [26].

The positive nonzero fixed points of (A10) are solutions of the following equation:

L2(α)y2 + β2(α)y + β1(α) = 0 (A12)

where y = ρ2
n. The roots of (A12) will be denoted by y1 = 1

2L2

(√
∆− β2

)
and

y2 = − 1
2L2

(√
∆ + β2

)
when these roots are real, and ∆(α) = β2

2(α)− 4β1(α)L2(α) [26].

Theorem A2. “(1) When ∆(α) < 0 for all |α| sufficiently small, the system (A10) and (A11) has
no invariant circles.

(2) When ∆(α) > 0 for all |α| sufficiently small, the system (A10) and (A11) has:

(a) one invariant unstable circle ρn =
√

y1 if L0 > 0 and β1(α) < 0;
(b) one invariant stable circle ρn =

√
y2 if L0 < 0 and β1(α) > 0;

(c) two invariant circles, ρn =
√

y1 unstable and ρn =
√

y2 stable, if L0 > 0, β1(α) > 0,
β2(α) < 0 or L0 < 0, β1(α) < 0, β2(α) > 0; in addition, y1 < y2 if L0 < 0 and y2 < y1 if
L0 > 0;

(d) no invariant circles if L0 > 0, β1(α) > 0, β2(α) > 0 or L0 < 0, β1(α) < 0, β2(α) < 0.
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(3) On the bifurcation curve ∆(α) = 0, the system (A10) and (A11) has one invariant unstable
circle ρn =

√
y1 for all L0 6= 0. Moreover, if L0 < 0, the invariant circle is stable from the exterior

and unstable from the interior, while if L0 > 0 it is vice versa.

(4) When β1(α) = 0, the system (A10) and (A11) has one invariant circle ρn =
√
− β2(α)

L0

whenever L0β2(α) < 0. It is stable if L0 < 0 and β2(α) > 0, respectively, unstable if L0 > 0 and
β2(α) < 0” [26–28].

Corresponding to the studies we have carried out previously [26,27], the following
phase portraits can be highlighted below. In this case, the phase portraits for the curves of
bifurcation when ∆(α) = 0 are shown.
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Figure A1. Generic portraits phase when θ0 > 0.
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