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Abstract: The exploration of contractive inequalities which do not imply the continuity of the
mapping at fixed points was an interesting open problem for quite some time. A significant amount of
progress was made in the last two decades towards the solution of this problem. In the current paper,
we attempt to address the question of discontinuity at fixed point with the help of F-contractions in a
metric space. We establish a common fixed-point (CFP) result for such contractive mappings and
investigate its discontinuity at the CFP. A fixed-circle result is also obtained consequently.

Keywords: discontinuity; fixed point; common fixed point; F-contraction; complete metric space;
fixed-circle
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1. Introduction and Preliminaries

The well-known contractive inequality due to Stefan Banach forces the mapping to
be continuous. However, the investigation of discontinuity at fixed points was initiated
by Kannan in his 1968–69 papers [1,2]. All the familiar mappings at that point of time
exhibited continuity at the fixed points in spite of the fact that they admitted points of
discontinuity within their domains [3–5]. In 1977, Rhoades [6] presented a comparative
study of 250 contractive definitions and noticed that many of those definitions did not
imply the continuity of the mappings in their respective domains. Motivated by this, in
1988, Rhoades [7] posed the open problem of exploring contractive definitions which do
not compel the mapping to be continuous at fixed points. Pant [8], in 1999, gave a positive
answer to this exploration by constructing mappings which exhibited discontinuity at their
fixed points.

Fixed-point results for mappings with discontinuity are well sought-after because
of their wide variety of applications in neural networks, character recognition, and the
solution of non-negative sparse approximation problems [9–13]. Recently, this study gained
immense popularity and various authors have provided affirmative solution to the problem
posed by Rhoades (see Bisht and Rakocević [14], Pant et al. [15], Tas and Ozgur [16], Ozgur
and Tas [17]).

In this paper, we attempt to address the issue of discontinuity at fixed point with
the help of a class of F-contractive mappings in a metric space (MS). Throughout this
manuscript, we use the standard symbol =⇒ to denote “implies”.

In 2012, Wardowski [18] defined the concept of F-contraction as follows.

Definition 1. Let F : (0,+∞)→ (−∞,+∞) be a function which satisfies the following:

(F1) F is strictly increasing;
(F2) For each sequence {un}n∈N ⊂ (0,+∞), limn→+∞ un = 0 if and only if

limn→+∞ F(un) = −∞;
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(F3) There is t ∈ (0, 1) such that limu→0+ utF(u) = 0.

LetF denote the class of all such functions F. If (W , η) is an MS, then a self-map Φ :W →W
is said to be an F-contraction if there exist δ > 0, F ∈ F , such that for all θ, ξ ∈ W ,

η(Φθ, Φξ) > 0⇒ δ + F(η(Φθ, Φξ)) ≤ F(η(θ, ξ)).

We divide the main results of this paper into two sections. The first section deals with
a CFP result where the mappings under consideration are discontinuous at the CFP. In the
second section, we present a fixed-circle result without assuming completeness of the MS.
For some more interesting relevant works, we refer to [19–24].

2. Common Fixed Point with Discontinuity of the Contraction

In this section, we establish a CFP result and study discontinuity at the CFP.
The following notation will be used.

Λ0(θ, ξ) = max{η(θ, ξ), η(θ, Φθ), η(ξ, Ψξ), [
η(θ, Ψξ) + η(ξ, Φθ)

η(θ, Φθ) + η(ξ, Ψξ) + 1
]η(θ, ξ)}.

Theorem 1. Let (W , η) be a complete MS and Φ, Ψ : W → W be a pair of self-maps such that
there exist δ > 0 and F ∈ F satisfying

(i) δ + F(η(Φθ, Ψξ)) ≤ F(Γ(Λ0(θ, ξ))) for all θ, ξ ∈ W , where Γ : R+ → R+ has the
property Γ(s) < s for each s > 0;

(ii) For a given ε > 0, there exist κ > 0 such that ε < Λ0(θ, ξ) < ε+ κ implies that η(Φθ, Ψξ) ≤ ε.

Then, the pair Φ, Ψ possesses a CFP, say ω, and limn→+∞ Φnθ → ω, limn→+∞ Ψnθ → ω for each
θ ∈ W . Moreover, Φ and Ψ happen to be discontinuous at ω if and only if limθ→ω Λ0(θ, ω) 6= 0
or limξ→ω Λ0(ω, ξ) 6= 0.

Proof. Fix θ0 ∈ W such that θ0 6= Φθ0 and θ0 6= Ψθ0. Construct the sequence {θn} by
θ2n+1 = Φ2nθ0 = Φθ2n and θ2n+2 = Ψ2n+1θ0 = Ψθ2n+1 for n = 0, 1, 2, . . .. We denote
dn = η(θn, θn+1).

Using (i) of the hypothesis, we have

F(η(Φθ0, Ψθ1)) ≤ F(Γ(Λ0(θ0, θ1)))− δ

< F(Γ(Λ0(θ0, θ1))) (1)

=⇒ η(Φθ0, Ψθ1) < Γ(Λ0(θ0, θ1)).

Now,

d1 = η(θ1, θ2) = η(Φθ0, Ψθ1)

< Γ(Λ0(θ0, θ1))

= Γ(max{η(θ0, θ1), η(θ0, Φθ0), η(θ1, Ψθ1), [
η(θ0, Ψθ1) + η(θ1, Φθ0)

η(θ0, Φθ0) + η(θ1, Ψθ1) + 1
]η(θ0, θ1)})

= Γ(max{η(θ0, θ1), η(θ0, θ1), η(θ1, θ2), [
η(θ0, θ2) + η(θ1, θ1)

η(θ0, θ1) + η(θ1, θ2) + 1
]η(θ0, θ1)}) (2)

≤ Γ(max{η(θ0, θ1), η(θ1, θ2), [
η(θ0, θ1) + η(θ1, θ2)

η(θ0, θ1) + η(θ1, θ2) + 1
]η(θ0, θ1)})

≤ Γ(max{η(θ0, θ1), η(θ1, θ2)}).

If η(θ0, θ1) ≤ η(θ1, θ2), then using condition (ii) of the hypothesis and a property of Γ,
we have that η(θ1, θ2) < Γ(η(θ1, θ2)) < η(θ1, θ2), which is a contradiction. Thus, we must
have η(θ1, θ2) < η(θ0, θ1).

So, from (2),
d1 = η(θ1, θ2) < Γ(η(θ0, θ1)) = Γ(d0) < d0.
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Similarly, one can show that

d2 = η(θ2, θ3) < Γ(η(θ1, θ2)) = Γ(d1) < d1.

Using mathematical induction, we obtain that

dn = η(θn, θn+1) < Γ(η(θn−1, θn)) = Γ(dn−1) < dn−1 for n = 0, 1, 2, . . . .

Thus, {dn} is a strictly decreasing sequence of positive reals and hence converges to,
say d. If possible, suppose that d > 0. Obviously, there exists p ∈ N such that for n ≥ p,
we have

d < dn < d + κ. (3)

Using (ii) of the hypothesis and the fact that dn < dn−1, we have that dn ≤ d for all
n ≥ p, which contradicts (3). Thus, we have d = 0.

Next, using a similar technique as in [17] we can show that {θn} is Cauchy.
SinceW is complete, there exists a point ω ∈ W such that θn → ω as n → +∞. In

addition, we have that Φnθn → ω and Ψnθn → ω as n→ +∞.
Next, we show that ω is a CFP of Φ and Ψ.
If possible, suppose that ω 6= Ψω. From condition (i) of the hypothesis and generaliz-

ing inequality (1), we have that

η(ω, Ψω) < η(ω, θ2n+1) + η(θ2n+1, Ψω)

= η(ω, θ2n+1) + η(Φθ2n, Ψω)

≤ η(ω, θ2n+1) + Γ(Λ0(θ2n, ω))

= η(ω, θ2n+1) + Γ(max{η(θ2n, ω), η(θ2n, Φθ2n), η(ω, Ψω),

[
η(θ2n, Ψω) + η(ω, Φθ2n)

η(θ2n, Φθ2n) + η(ω, Ψω) + 1
]η(θ2n, ω)}).

Letting n→ +∞ in the last inequality, we have that

η(ω, Ψω) ≤ Γ(η(ω, Ψω)) < η(ω, Ψω),

which is a contradiction. Hence, ω = Ψω. Similarly, it follows that ω = Φω. Thus, ω is a
CFP of Φ and Ψ.

To prove the next part, let limθ→ω Λ0(θ, ω) = 0 and limξ→ω Λ0(ω, ξ) = 0.
Using definition of Λ0(θ, ω), we have that

lim
θ→ω

[max{η(θ, ω), η(θ, Φθ), η(ω, Ψω), [
η(θ, Ψω) + η(ω, Φθ)

η(θ, Φθ) + η(ω, Ψω) + 1
]η(θ, ω)}] = 0

=⇒ lim
θ→ω

η(θ, Φθ) = 0

=⇒ Φ is continuous at ω.

Again, using definition of Λ0(ω, ξ), we have that

lim
ξ→ω

[max{η(ω, ξ), η(ω, Φω), η(ξ, Ψξ), [
η(ω, Ψξ) + η(ξ, Φω)

η(ω, Φω) + η(ξ, Ψξ) + 1
]η(ω, ξ)}] = 0

=⇒ lim
ξ→ω

η(ξ, Ψξ) = 0

=⇒ Ψ is continuous at ω.

The converse of this part can also be proved using similar techniques.
Hence, at least one Φ and Ψ is discontinuous at ω if and only if limθ→ω Λ0(θ, ω) 6= 0

or limξ→ω Λ0(ω, ξ) 6= 0.
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Remark 1. If Φ = Ψ in the above theorem, we obtain a fixed point result.

Below, we provide an example to validate Theorem 1.

Example 1. LetW = [0, 4] be endowed with the usual metric η. Define Φ, Ψ :W →W by

Φθ =

{
2, if θ ∈ [0, 2]
0.85, if θ ∈ (2, 4],

and

Ψθ =

{
2, if θ ∈ [0, 2]
0.88, if θ ∈ (2, 4].

Then, ω = 2 is a CFP of Φ, Ψ and both the mappings are discontinuous at ω = 2 (see
Figure 1).

Φ and Ψ satisfy condition (i) of Theorem 1 with δ = ln 2, F = ln t, t > 0 and

Γt =


t
5 , if 0 < t ≤ 0.15
0.15, if 0.15 < t ≤ 0.17
0.17, if t > 0.17.

Further, Φ, Ψ satisfy condition (ii) of Theorem 1 with

κ(ε) =

{
4, if ε ≥ 0.17
5− ε, if ε < 1.17.

We also observe that limθ→2 Λ0(θ, 2) 6= 0 and limξ→2 Λ0(2, ξ) 6= 0.

Figure 1. Plot of the functions Φ and Φ2.

3. A Fixed-Circle Result

In situations when the fixed point of a self-map is not unique, the study of geometric
properties of fixed points becomes important. In certain cases, the fixed set of a mapping
happens to be the unit circle and sometimes the fixed set contains a circle. Such findings
initiated the study of fixed-circle problems.
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In this section, we present a fixed-circle result by dropping the completeness of the MS.
We shall use the following notation which was recently used by Ozgur and Tas [17] to

describe some interesting fixed circle-problems, where Φ is a self-map on the MS.

∆(θ, ξ) = max{η(θ, ξ), η(θ, Φθ), η(ξ, Φξ),
[ η(θ, Φξ) + η(ξ, Φθ)

1 + η(θ, Φθ) + η(ξ, Φξ)

]
η(θ, ξ)}.

By Cθ0,ρ, we denote a circle {θ ∈ W : η(θ, θ0) = ρ}, whereas by Dθ0,ρ, we denote a disk
{θ ∈ W : η(θ, θ0) ≤ ρ}.

Theorem 2. Let (W , η) be an MS and Φ : W → W be a self-map. Define ρ = inf{ η(Φθ,θ)√
2

:
Φθ 6= θ, θ ∈ W}. If there exist θ0 ∈ W , δ > 0 and F ∈ F satisfying

(i) For all θ ∈ Cθ0,ρ, there exists τ > 0 such that

ρ ≤ ∆(θ, θ0) < ρ + τ =⇒ η(Φθ, θ0) ≤ ρ;

(ii) For all θ ∈ W ,
η(Φθ, θ) > 0 =⇒ η(Φθ, θ) ≤ Γ(∆(θ, θ0)),

where Γ : R+ → R+ has the property Γ(s) < s for each s > 0.

Then, Φθ0 = θ0 and Cθ0,ρ is a fixed circle of Φ. Further, the disk Dθ0,ρ is fixed by Φ. In addition, Φ
is discontinuous at ω ∈ Dθ0,ρ if and only if limθ→ω ∆(θ, ω) 6= 0.

Proof. Let θ ∈ Cθ0,ρ and Φθ 6= θ so that η(Φθ, θ) > 0. By condition (ii) of the hypothesis,
we have that

F(η(Φθ, θ) ≤ F(Γ(∆(θ, θ0)))

=⇒ η(Φθ, θ) ≤ Γ(∆(θ, θ0))

=⇒ η(Φθ, θ) < [max{η(θ, θ0), η(θ, Φθ), η(θ0, Ψθ0), [
η(θ, Ψθ0) + η(θ0, Φθ)

η(θ, Φθ) + η(θ0, Ψθ0) + 1
]η(θ, θ0)}].

Rest of the proof can be obtained in a similar manner as in the proof of Theorem 2.3
in [17].

The next example shows that the converse of Theorem 2 is not true in general.

Example 2. LetW = R and Φ :W →W be defined as

Φ(θ) =

{
θ, if θ ∈ Dθ0,ρ
θ0, if θ /∈ Dθ0,ρ,

where ρ > 0.
Then, Φ does not satisfy condition (ii) for any κ > 0 and F = ln t, t > 0 and Γ(s) = s√

2
,

s > 0.
However, Φ fixes every circle Cθ0,r with r < ρ.

4. Conclusions and Future Work

In the current work, we presented some new results on discontinuity at fixed points
with the help of F-contractive inequalities. Bisht and Pant [25] elucidated actual physical
circumstances on the applicability of such discontinuity results. The McCulloch–Pitts model
is a widely sought-after and prominent model in Artificial Intelligence and Biology, which
describes algorithms for neural networks to reduce and optimize the aberration of neurons
from its limiting equilibrium condition. Such a stabilization can be modeled with the help of
fixed points of some specific mappings. The functions derived from this procedure exhibit
discontinuity at a fixed point the reason of which is a jump in the threshold frequency.
Therefore, these discontinuity results always have potential application in neural networks.
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We refer to the works listed in [26–28] for details about these models. Obtaining multivalued
analogues of the current results using the framework as in [29,30] and the analogues in
terms of enriched contractions as in [31] are also interesting suggested future work.
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14. Bisht, R.K.; Rakocević, V. Generalized Meir-Keeler type contractions and discontinuity at fixed point. Fixed Point Theory 2018,

19, 57–64. [CrossRef]
15. Pant, R.P.; Ozgur, N.; Tas, N. On discontinuity problem at fixed point. Bull. Malays. Math. Sci. Soc. 2020, 43, 499–517. [CrossRef]
16. Tas, N.; Ozgur, N. A new contribution to discontinuity at fixed point. Fixed Point Theory 2019, 20, 715–728. [CrossRef]
17. Ozgur, N.; Tas, N. New discontinuity results at fixed point on metric spaces. J. Fixed Point Theory Appl. 2021, 23, 1–14. [CrossRef]
18. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric space. Fixed Point Theory Appl. 2012,

2012, 94. [CrossRef]
19. Acar, O. Some fixed-point results via mix-type contractive condition. J. Funct. Spaces 2021, 2021, 5512254. [CrossRef]
20. Afassinou, K.; Mebawondu, A.A.; Abbas, H.A.; Narain, O.K. Existence of solution of differential and Riemann-Liouville equation

via fixed point approach in complex valued b-metric spaces. Aust. J. Math. Anal. Appl. 2021, 18, 1–15.
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