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Abstract: The reservoir characterization aims to provide the analysis and quantification of the
injection-production relationship, which is the fundamental work for production management. The
connectivity between injectors and producers is dominated by geological properties, especially
permeability. However, the permeability parameters are very heterogenous in oil reservoirs, and
expensive to collect by well logging. The commercial simulators enable to get accurate simulation but
require sufficient geological properties and consume excessive computation resources. In contrast, the
data-driven models (physical models and machine learning models) are developed on the observed
dynamic data, such as the rate and pressure data of the injectors and producers, constructing the
connectivity relationship and forecasting the productivity by a series of nonlinear mappings or the
control of specific physical principles. While, due to the “black box” feature of machine learning
approaches, and the constraints and assumptions of physical models, the data-driven methods often
face the challenges of poor interpretability and generalizability and the limited application scopes. To
solve these issues, integrating the physical principle of the waterflooding process (material balance
equation) with an artificial neural network (ANN), a knowledge interaction neural network (KINN)
is proposed. KINN consists of three transparent modules with explicit physical significance, and
different modules are joined together via the material balance equation and work cooperatively to
approximate the waterflooding process. In addition, a gate function is proposed to distinguish the
dominant flowing channels from weak connecting ones by their sparsity, and thus the inter-well
connectivity can be indicated directly by the model parameters. Combining the strong nonlinear
mapping ability with the guidance of physical knowledge, the interpretability of KINN is fully
enhanced, and the prediction accuracy on the well productivity is improved. The effectiveness of
KINN is proved by comparing its performance with the canonical ANN, on the inter-well connectivity
analysis and productivity forecast tasks of three synthetic reservoir experiments. Meanwhile, the
robustness of KINN is revealed by the sensitivity analysis on measurement noises and wells shut-in
cases.

Keywords: reservoir characterization; productivity prediction; machine learning; knowledge interac-
tion neural network; embedded model
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1. Introduction

In a waterflooding reservoir, the subsurface flow is invisible and influenced by the
heterogenous geophysical properties, such as the porosity, compressibility, and especially
permeability. As an important content of reservoir characterization, the inter-well connec-
tivity analysis aims to quantify the contribution from an injection well to a production well,
so as to reflect the relative permeability strength of the flowing channels. Based on the anal-
ysis of inter-well connectivity, the oil field enables the adjustment of the hydrodynamics,
such as water shutoff, profile control, and well pattern optimization [1–5]. Commercial
simulators can predict production and characterize reservoirs accurately. However, geolog-
ical information is essential for the model development by simulators, which is difficult
and expensive to obtain in practice. In addition, the simulation for complex reservoirs is
pretty time-consuming, usually taking several hours or even days [6–8]. For most oil fields,
the injection and production rates are often available, on which the simplified reservoir
simulation models can be established.

Generally, characterization approaches for the inter-well connecting relationship can
be classified into three categories:

(1) Statistical and signal processing methods. These methods are based on statistical
analysis and signal processing techniques. Spearman rank correlations [9] were presented
to measure the relationship between injectors and producers, while the authors also pointed
out that this method was not completely robust and nor were the influence factors fully
understood. Tian and Horne [10] proposed a modified Pearson’s correlation coefficient
method to capture the influence from injectors to producers, showing a more precise
inter-well characterization ability than the Spearman rank correlation method. Wavelet
analysis was adopted to infer the connecting relationships [11], revealing new insights
into the inter-well connectivity analysis. Some novel signal processing approaches, like
cross-correlation, spectral analysis, magnitude-squared coherence, and periodogram were
also applied to infer the inter-well communication [12]. Although these methods have
high computational efficiency by analyzing the correlation and mapping relationships
between injection and production signals, they are not established on the physical laws of
waterflooding. Therefore, the robustness of these methods is hard to be guaranteed, and
these models are often combined together or served as complemental methods to reduce
the uncertainty [9,11,12].

(2) Machine learning methods. These methods usually quantify inter-well connec-
tivity through model parameters. Panda and Chopra [13] proposed a related approach,
using artificial neural networks (ANNs) to estimate the interactions between injectors
and producers, while the geological and geostatistical data were required to determine
the model parameters. Artun [14] evaluated the inter-well connectivity via the products
of weight matrices in ANNs, providing a new perception of the inter-well connectivity
analysis. While Jensen [15] commented that Artun’s ANNs model can’t reflect the physical
mechanism of the waterflooding process, so it was unclear for ANN’s performance on the
field disturbances (e.g., temporary shut-in or completion). Even though these machine
learning (ML) methods are capable of inferring the inter-well connectivity via their strong
nonlinear mapping abilities, they are considered as “black box” models, for their weakness
in physical interpretation, limiting their practical applications.

(3) Physical models. These models are established on the physical process and derived
from corresponding physical laws. Yousef et al. [16] used the capacitance resistance model
(CRM or CRMIP) to reflect the connectivity and time lag between injector and producer
pairs, which derived from the material balance equation and linear productivity model.
Compared with the multiple linear regression (MLR) model [17], it considered the effects
of compressibility and transmissibility. Based on the work of CRM, a series of models
were introduced, such as the capacitance resistance model for the producer control volume
(CRMP) [18] and the capacitance resistance model for a tank or field control volume
(CRMT) [19] and. Different from CRMIP, CRMT and CRMP assign each drainage volume
or each tank to a constant time delay, making the production signals react synchronously
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with the signals of all injectors. In addition, Sayarpour [20] proposed a CRM-blocks model,
dividing the drainage volume into several blocks to calculate the flow rate. However,
the complexity of the CRM-blocks model is inevitably increased, since it simulates the
flowing process block by block, limiting its applications in complex cases. To infer the
inter-well connectivity from multilayers, the multilayer CRM (ML-CRM) [21] was proposed,
by modeling the injected fluids flowing across different layers with the help of production
logging tools (PLT). Besides, Zhao et al. [22] presented an inter-well numerical simulation
model (INSIM) to approximate the performance of waterflooding reservoirs. INSIM is
derived from the mass material balance and front tracking equations, which consist of
inter-well control units considering transmissibility and control pore volume. Moreover,
considering more complex cases, such as the conversion from a producer to an injector,
INSIM-FT [23] was designed; INSIM-FT-3D was proposed to simulate the flow in three
dimensions with gravity [24]. Recently, INSIM-FPT [25] has been presented to reveal the
inter-well connectivity via history matching data instead of the reservoir petrophysical
properties. These physical models have clear physical assumptions and can be applied in
other aspects, such as production optimization [26–29].

With the high computing efficiency, strong fitting ability, and excellent prediction
accuracy, ML models have been widely utilized in the oil industry [28,30–36]. As an
important kind of ML approach, ANNs enable to learn the complex mapping from the
input variables to the desired output variables, by adjusting the weights of the internal
synapses [37,38]. Nonetheless, the lack of trustworthiness is a big challenge for the further
development of ANNs in real applications, since these models seldom consider physical
knowledge and the model parameters do not have physical implications.

To improve the model reliability and generalizability, many researchers have tried
to associate physical knowledge with ANNs in practical applications. A physics-guided
neural network (PGNN) [39] was proposed to simulate the lake’s temperature, using
the results of physical models and leveraging physical rules to improve the scientific
consistency of neural networks. In [40], physics-informed neural networks (PINN) were
proposed, integrating the partial differential equation (PDE), boundary condition (BC),
and initial condition (IC) into the objective function. PINN was improved in [41], which
learned parameters and constitutive relationships in subsurface flow by minimizing the
PDE (Darcy or Richards equation) residual. To reduce the sensitivity of initial parameters
and too many iterations of primary PINN, a modified genetic algorithm is adopted in the
model’s optimization scheme, effectively resolving the linear elastic problems in the solid
mechanics [42]. Moreover, a theory-guided neural network (TgNN) [43] was proposed
to simulate the subsurface flow, which considered not only PDE, BC, and IC, but also
expert knowledge and engineering controls. Csiszár et al. [44] combined continuous
logic rules and multicriteria decision operators with networks, providing the semantic
meaning for the values of the activation functions. In a social recommendation system,
a Knowledge-aware Coupled Graph Neural Network (KCGN) is proposed, coupling the
inter-dependent knowledge between items and users with the machine learning framework,
which shows great performance on several real-world datasets [45]. On the one hand, most
interpretable methods associate the physical knowledge with the objective function in
the form of regularization terms, thus enforcing the neural networks to make predictions
within certain physical constraints. However, penalty terms inevitably lead to the increase
of hyperparameters, which are difficult to determine and negative to the model stability.
On the other hand, the results of ML models are more consistent with the physical reality
to a certain extent, yet they have a weak effect on strengthening the physical meaning
of model parameters. Therefore, the “black box” can only be opened when ANNs have
deeper physical interaction from the parameter level. Still, to the best of our knowledge,
in terms of inter-well connectivity analysis problems, there are few studies focused on
integrating the physical information with ANNs, not to mention assigning the knowledge
to model parameters.
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The goal of this study is to improve the accuracy and stableness of the inter-well
connectivity characterization and enhance the prediction precision on well productiv-
ity, by combining the physical knowledge with machine learning techniques. The main
contributions of this paper are outlined as follows.

(1) An innovative neural network is proposed to handle the reservoir characterization
and productivity forecast problems, in which the material balance equation is embedded via
three high transparent modules, thereby ensuring the physical sense of model parameters.

(2) A gate function is designed to evaluate the contributions from input signals to
the output signals, which avoids the complex constraint optimization and guarantees the
interpretability of function values.

(3) KINN reveals a successful paradigm to enhance the generalization capability and
interpretability by integrating physical knowledge within the model architectures, which
can be easily extended to a series of neural networks.

The rest of this paper is arranged as follows. In Section 2, we introduce the theoretical
foundation (the material balance equation) of KINN. Then we provide the detailed work-
flow and explanation of model structures of KINN in Section 3. In Section 4, we reveal
the effectiveness of KINN by comparing its performance with classical ANN on three
reservoir simulation experiments and test the model’s sensitivity to noisy data. Finally, we
summarize this paper and get some conclusions in Section 5.

2. Methods

The material balance equation is the basic principle for a closed waterflooding reservoir,
which describes the relationship between inflow, outflow, and the changes of flow among
the water drainage volumes of the geological system. The inter-well connectivity analysis
aims to generate a quantitative evaluation of the connecting strength for each injector-
producer pair. During the waterflooding process, considering a single injector and single
producer case, the material balance equation is:

CtVp
dp
dt

= i(t)− q(t), (1)

where Ct is the total compressibility; Vp represents the drainage pore volume; p is the
average pressure of Vp; t represents the timestep; i(t) and q(t) are the vectors denote
the injection rate and production rate, respectively. Equation (1) assumes that the total
compressibility is a small constant, and no fluids flow into or out of the drainage volume.
Assume that there is a case with M injectors and N producers, using superposition in space
of M injectors and ignoring the response of the production signals before injection, the
production rate for producer j is given by:

∑M
k=1 CtkjVpkj

dpkj

dt
= ∑M

k=1 λkjik(t)− qj(t), (2)

where k is the injector index, k = 1, 2, . . . , M; j is the producer index, j = 1, 2, . . . , N; and λkj
denotes the connectivity value between injector k and producer j.

3. Knowledge Interaction Neural Network (KINN)

As shown in Figure 1, KINN is a first-principle-based model with modularized ar-
chitectures, where each module keeps a one-to-one correspondence with each item of the
material balance equation. According to Equation (2), KINN is established on each producer,
considering the flow from all injectors and the influence caused by the compressibility
of the control volume. There are two input modules in KINN, named injection regulator
module (IRM) and control volume module (CVM), respectively. IRM corresponds to the
injection item in the material balance equation, using a gate function layer to quantitatively
measure the contribution from each injector to the analyzed producer. CVM is used for
approximating the fluid change rate in the control volume via a series of fully connected
layers. Then, the model output of the analyzed producer is controlled by the output system,
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called the production monitor module (PMM). It aims to calculate the estimated production
rate via the outputs of IRM and CVM according to the material balance equation. In
brief, within the framework of the material balance equation, the three modules of KINN
interact with physical knowledge corporately, then simulate the water flooding process
and characterize inter-well connectivity through network parameters (gate functions).

Figure 1. The architecture of KINN.

3.1. Injection Regulator Module (IRM)

The injection regulator module is an essential part of the input system in KINN,
responsible for measuring the total flow from all injectors to the target producer (the first
item on the right-hand side of Equation (2)) and inferring the inter-well connectivity by
gate functions.

Let’s assume that I = [i1, i2, . . . , ik, . . . , iM]T is the well water injection rate (WIR) data
of M injectors, and Q = [q1, q2, . . . , qj, . . . , qN]T is the well liquid production rate (LPR) data
of N producers, where ik and qj are vectors. As shown in Figure 1, the input data of IRM is
I, followed by a gate function layer defined as:

g
(

γkj

)
= e−γkj

2
, (3)

g(γ)M×N =


g(γ11) · · · g(γ1N)

... g
(

γkj

) ...
g(γM1) · · · g(γMN)

, (4)

where g(γ)M×N denotes the inter-well connectivity matrix; g
(

γkj

)
is the connectivity value

between injector k and producer j; and γkj denotes the independent variable of g
(

γkj

)
.

The output of IRM is calculated by:

Γj = ∑M
k=1 g

(
γkj

)
·ik, (5)

where · represents the product between one scalar and one vector and Γj denotes the
comprehensive injection rate for producer j.
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The multiplicity of the solution is a big challenge for inter-well connectivity analysis
since it is a typical inverse problem. To reduce the multiplicity caused by the initialization
of model parameters, Pearson correlation is employed in the initialization of γM×N :

ρ(I, Q) =
cov(I, Q)

σI · σQ
, (6)

where ρ(I, Q) and cov(I, Q) are the correlation matrix and the covariance matrix between I
and Q; σI , σQ are the standard deviations of I and Q. By calculating the reciprocal of each
element in ρ(I, Q), we can get γM×N :

γM×N =

 γ11 · · · γ1N
... γkj

...
γM1 · · · γMN

, (7)

where γkj is the reciprocal of the Pearson correlation coefficient between ik and qj.
For producer j, its initialized independent variable of the gate function, γM×1, is

shown in Figure 2a, which is column j of γM×N . During the initialization process, if the
relationship between the signals of injector k and producer j is strong, their correlation
coefficient would be big, and γkj would be close to 0, which means its gate value, g(γkj),
would be large. In this way, each good pair would be assigned a fixed connectivity value
according to the relation strength, which helps to decrease the multiplicity of the inter-well
connectivity.

Figure 2. The curve of the gate function and its independent variables: (a) independent variables of
the gate function; (b) curve of the gate function.

There are two major purposes for the presentation of the gate function.
(1) One purpose is that the negative connectivity value can be eliminated by the gate

function, as its value is strictly constrained in (0, 1], as shown in Figure 2b. Therefore, the
physical meaning of the gate function values can be guaranteed (the contribution from
injector to producer). Moreover, γkj can be updated by normal unconstrained optimization
methods, ensuring the fast convergence speed of KINN.

(2) The other purpose is that the proposed gate function has great significance for the
stableness of KINN. As can be seen in Figure 2b, the gate function has a good sparsity,
thereby only the strong connecting well pairs would be assigned to big connectivity values
and the values of the weak or none connecting pairs would be maintained at a low level. In
the machine learning field, it is common sense that the sparsity feature is helpful to support
the model’s robustness.

In IRM, for every producer, only γM×1 requires optimization, and the gate function layer
can be used as inter-well connectivity indicators directly, once KINN has finished training.
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3.2. Control Volume Module (CVM)

As shown in Figure 1, the control volume module is another part of the input system,
aiming at computing the flow among the control volume, the left-hand side of Equation (2).
In reservoir waterflood simulation, if the average reservoir pressure, p, is a constant, the
linear productivity model is often used to describe the relationship between production
rate (q) and bottom hole pressure (pw f ). However, in an unstable flow case, q changes
continuously, and the linear prediction model cannot represent the exact mapping rela-
tionship between q and pw f . Figure 3 illustrates two inflow performance relationship (IPR)
curves: one denotes the actual curve in the unstable flow case, and another represents
the curve of the linear productivity model. Obviously, the linear model cannot provide a
precise map between q and pw f in the unstable flow case. To overcome this defect, some
fully connected layers (some layers use nonlinear activation functions) are utilized in CVM
to learn the nonlinear mapping relationships between q and pw f . The motivation behind
CVM is that the input variables can be mapped into a nonlinear space via the activation
functions of nonlinear layers, thereby combining the connected weights to approximate the
target output.

Figure 3. The inflow performance relationship (IPR) curves. The black line is the linear IPR prediction
curve, and the red dashed line is the IPR curve of unstable flow.

Here, considering a single producer, we use:

q = Ñ
(

p − pw f

)
, (8)

to represent the nonlinear relationship, where Ñ denotes a nonlinear mapping. In oil fields,
p is usually unavailable, so we indicate the relationship between q and p − pw f by:

p − pw f = N(q), (9)

where N denotes another nonlinear mapping different from N. The differential form of
Equation (9) with respect to the time step, t, is as follows:

dp
dt

−
dpw f

dt
=

dN(q)
dt

. (10)

Considering the case with constant BHP, Equation (10) can be simplified as:

dp
dt

=
dN(q)

dt
. (11)
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Multiply the left and right sides by CtVp at the same time, and the change rate of the
flow in the control volume is given by:

CtVp
dp
dt

= CtVp
dN(q)

dt
. (12)

For the analyzed producer j, considering M injectors, we utilize an amount of fully
connected layers to approximate:

∑M
k=1 CtkjVpkj

dpkj

dt
∼ Net

(
qj
)
, (13)

where Net represents the connected layers in the network. In this paper, tansig function
and Gaussian kernel function are employed as activation functions in CVM, respectively.

To sum up, several fully connected layers are used in CVM to approximate the sophis-
ticated mapping from the LPR of the producer to the flow change rate among the control
volume. Consequently, the robustness of KINN can be guaranteed even in the unstable
flow case.

3.3. Production Monitor Module (PMM)

The production monitor module (PMM) is employed to calculate the liquid production
rate of producer j, as shown in Figure 1. Based on the outputs generated by IRM and CVM,
according to the material balance equation, the output of PMM can be given as:

q̂j = Γj − Net
(
qj
)
, (14)

where q̂j denotes the estimated production rate of producer j, the second item on the
right-hand side of Equation (2). In this paper, the mean square error (MSE) function is used
as the loss function:

MSE
(
qj, q̂j

)
=

1
T ∑T

t=1

(
qj(t)− q̂j(t)

)2, (15)

where t is the time step and T denotes the number of total time steps. Therefore, the
difference between model output and target output can be monitored by PMM, and the
waterflood simulation can be achieved by minimizing Equation (15).

As demonstrated in Figure 1, IRM and CVM are united with PMM under the control of
the material balance equation, to approximate the influence caused by water injection and
compressibility, respectively. Hence, KINN enables different modules to interact physical
knowledge with each other during the learning process. Additionally, the transparency of
KINN is significantly improved from the underlying parameter level, and both robustness
and computation efficiency are successfully combined by integrating physical information
within the ML framework.

3.4. Reservoir Characterization and Productivity Prediction

For producer j, considering the effect of all injection wells, KINN can be established
on I and qj, and each injector would obtain a gate function to evaluate its connectivity
value with the producer j. The workflow of the KINN training procedure is shown in
Figure 4, and the pseudocode is demonstrated in Algorithm 1. Firstly, γM×N must be
initialized via Pearson correlation method with given I and Q, and the connecting weights
in CVM also need an initialization. Afterward, guided by the material balance equation,
IRM and CVM would cooperatively simulate the influence caused by water injection and
compressibility in the waterflooding process. In the IRM part, the input comes from the
water injection rate data of all injectors, and each vector would multiply a gate function,
which is the inter-well connectivity indicator and has to be optimized during the training
procedure. The output of IRM is the total inflow rate, the sum of all multiplied vectors. In
the CVM part, a number of fully connected layers are utilized to realize the map from liquid
production rate to the fluid change rate of the control volume, whose connecting weight
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matrices need optimization in the learning process. Afterward, both IRM and CVM would
be combined by the material balance equation to calculate the model liquid production rate
for producer j, and the loss between model output and target output can be measured by
the loss function. It must be noted that the model loss comes from the outputs of both IRM
and CVM, hence their physical knowledge would interact cooperatively with the model
training process. During the optimization process, all the model parameters would be
updated at the same time. When the stop criterion is satisfied, KINN would stop training,
and the inter-well connectivity values can be inferred directly by gate functions.

Figure 4. Flow diagram of KINN training.

Productivity forecast is the testing process of KINN, revealing its generalization
performance. Unlike regular machine learning models, the liquid production rate is used
as both input and output during the training procedure, as shown in Figure 1. When the
training process is finished, all parameters of KINN are constants, then it can forecast the
production rate q̂j with given I, by solving the nonlinear equation:

q̂j − Γj + Net
(
q̂j
)
= 0. (16)

Algorithm 1: Knowledge Interaction Neural Network (KINN)

Input: I, WWIR for M injectors, and Q, WLPR for N producers
Output:q̂j

/ *** start KINN training *** /
1 Initialization λM×N : Compute γM×N using database I and Q by Equations (6) and (7), and initialize the parameters of ANN

in CVM
2 For j = 1 to N do
3 While convergence tolerance is not met

/ *** IRM calculation *** /
4 Select the jth column, γM×1, in γM×N as the independent variable of gate function;
5 Calculate the output of IRM, Γj, with γM×1 and I, using Equation (5)

/ *** CVM calculation *** /
6 Calculate the output of CVM, Net

(
qj

)
, with qj, using Equation (13)

/ *** PMM calculation *** /
7 Calculate the output of PMM, q̂j, using Equation (14)

/ *** parameters update *** /
8 Evaluate the loss function using Equation (15)
9 Update γM×1 and weight matrices of CVM via gradient descent algorithm
10 End While
11 End For

/ *** end KINN training *** /
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4. Results

Three reservoir cases with various inter-well connecting conditions are studied in
this section, including the streak reservoir case, the braided river reservoir case and Egg
reservoir case, developed on ECLIPSE (Schlumberger Ltd., Houston, TX, USA). KINN has
taken two activation functions (tansig function and Gaussian kernel function) in CVM,
named KINN-tansig and KINN-Gaussian, respectively. To compare the performance of
the proposed models and the classical neural network without the guidance of physical
information, we demonstrate the results obtained by the single-hidden-layer feedforward
neural network (SLFNN). The numbers of the input nodes and output nodes are equal to
the numbers of injectors and producers. To keep the fairness of comparison, the number
of hidden nodes, the activation function, the learning rate, the convergence error, and the
optimization method are the same as those of KINN-tansig. The connectivity matrix of
SLFNN is the normalized absolute value of the product between the input-hidden-layer
weights and the hidden-output-layer weights. All three models use an Intel(R) Core (TM)
i7-9700 CPU. The data are separated into two parts, where the former 80% are used in
history matching and the latter 20% are utilized in productivity prediction. Table 1 shows
the hyperparameters of KINN-tansig and KINN-Gaussian in three cases. To demonstrate
the inter-well connectivity clearly and intuitively, the connectivity characterization results
are visualized by heatmaps, where the deeper the block color, the stronger the injector-
producer connectivity.

Table 1. The hyperparameters for KINN-tansig and KINN-Gaussian in three cases.

Hyperparameter KINN-Tansig KINN-Gaussian

Learning rate 0.05 0.05
Number of hidden layers in CVM 3 3

Number of neurons of each layer in CVM [1, 10, 1] [1, 10, 1]
Activation function in CVM tansig function Gaussian kernel function

Initialization range of weights in CVM [0, 0.25] [0, 0.25]
Initialization method of γ in IRM Pearson Correlation Pearson Correlation

Optimization algorithm Gradient descent method Gradient descent method
Convergence error (MSE) 10−6 10−6

4.1. The Streak Reservoir Case

This model is reconstructed from the work of [19], which consists of 31 × 31 single-
layer grids in the X-Y plane, with 80, 80, and 12 ft in the X, Y, and Z axes, respectively.
There are 5 injectors, named I1, I2, I3, I4, I5, and 4 producers, named P1, P2, P3, P4. As
shown in Figure 5, the permeability of the matrix is 5 md, except for two high-permeability
streaks. One streak is between I1 and P1 of 1000 md, and the other is 500 md between I3
and P4. The normal properties of the streak model are shown in Table 2. The simulated
production lasts around 1800 days, and the timestep is 5 days. Because the permeability
values of I1-P1 and I3-P4 are much higher than other well pairs, the fluids are less likely
to flow into P2 and P3, thus their production rates are quite low. Here, only the history
matching and production prediction results of P1 and P4 are given.

Table 2. Properties of the streak reservoir model.

Properties Value

Model Size 31 × 31 × 1
Depth 2000 m

Initial pressure 2000 psi
Porosity 0.18

Initial water saturation 0.3
Density of oil 900 kg/m3

Viscosity of oil 2.0 cp
Oil compressibility 5.0 × 10−6 bar−1
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Figure 5. Permeability field of the streak reservoir case.

Figure 6a,b illustrate the history matching and productivity prediction results of P1
and P4, respectively. Obviously, the proposed two methods outperform SLFNN on both
history matching and prediction periods. As shown in the figures, both KINN-tansig and
KINN-Gaussian can obtain high fitness accuracy on P1 and P4 in the history matching
period. And the two proposed models show different performances during the productivity
prediction period. As illustrated in Figure 6a, there are three peaks in the prediction period
of P1, which can be estimated accurately by KINN-tansig, while the forecast by KINN-
Gaussian is lower than the actual values. Similar results can be found in Figure 6b, where
KINN-tansig outperforms KINN-Gaussian in the prediction of P4. Figure 7 illustrates the
training error (MSE) curves of KINN-tansig, KINN-Gaussian, and SLFNN, where both two
proposed methods show smaller errors than SLFNN. Note that there are some fluctuations
on the error curve of KINN-Gaussian, while the accuracy of KINN-Gaussian is equivalent
to that of KINN-tansig when the training is finished. As shown in Table 3, KINN-tansig
costs less computation time (0.3702 s) than KINN-Gaussian (2.3393 s) in this case, and the
computation time of SLFNN (1.2737 s) is in the middle of the three methods. Both the
history matching and prediction errors of KINN-tansig and KINN-Gaussian are around one
order magnitude lower than those of SLFNN. Moreover, even though the history matching
errors of KINN-tansig (0.0046) and KINN-Gaussian (0.0047) are very close to each other,
the former outperforms the latter in the production prediction, with the errors of 0.0223
and 0.0256, respectively.

Table 3. The time consumption, training error (MSE) and testing error (MSE) of KINN-tansig,
KINN-Gaussian and SLFNN in the streak reservoir case.

Methods KINN-Tansig KINN-Gaussian SLFNN

Computation time (training and testing) 0.3702 s 2.3393 s 1.2737 s
Error of history matching (training error) 0.0046 0.0047 0.0976

Error of prediction (testing error) 0.0223 0.0256 0.1832
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Figure 6. History matching results of the streak reservoir case by KINN-tansig, KINN-Gaussian and
SLFNN. The black line with squares is the result obtained by KINN-tansig method; the blue line
with triangles represents the result gotten by KINN-Gaussian method; the green line with stars is the
results obtained by SLFNN; the red line with circles is the liquid production rate gotten by ECLIPSE;
the grey vertical dashed line makes a separation of history matching period and the productivity
forecast period: (a) P1; (b) P4.

Figure 7. The training error (MSE) curves of KINN-tansig, KINN-Gaussian and SLFNN for the streak
reservoir case. The black line with squares is the error curve of KINN-tansig; the blue line with
triangles represents the error curve of KINN-Gaussian; and the green line with stars represent the
error curve of SLFNN.

Figure 8 illustrates the inter-well connectivity analysis results produced by three mod-
els. Undoubtedly, I1-P1 and I3-P4 should be the top and the second highest connecting well
pairs according to the permeability distribution in Figure 5, which are indicated truthfully
by KINN-tansig and KINN-Gaussian. In detail, the permeability of the streak of I1-P1 is
1000 md, twice larger than the streak of I3-P4, so that their corresponding connectivity
values should also reflect this difference. As shown in Figure 8a, the connectivity values of
I1-P1 and I3-P4 obtained by KINN-tansig are 0.5974 and 0.2047, respectively. Similarly, as
illustrated in Figure 8b, KINN-Gaussian assigns I1-P1 and I3-P4 with the values of 0.5138
and 0.2205, separately. However, as demonstrated in Figure 8c, the top two connectivity
values are assigned to I4-P4 (1.000) and I1-P1 (0.9713), and the value of I3-P4 (0.7729) only
ranks seventh, which means SLFNN mistakenly identifies the weak connecting well pairs
as the strong connecting ones. In contrast, KINN-tansig and KINN-Gaussian successfully
allocate the well pairs on the low permeability area with quite small connectivity values,
showing great accordance with their actual geological properties.
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Figure 8. The heatmaps of the inter-well connectivity analysis by three models for the streak reservoir
case: (a) KINN-tansig; (b) KINN-Gaussian; (c) SLFNN.

4.2. The Braided River Reservoir Case

To test the performance of KINN in other more complex cases, we have designed
the braided river reservoir case, which is a classical fluvial deposition distributing in
continental facies basin. There are 100 × 100 single-layer grids in the braided river reservoir
model, where each grid is 80, 80 and 12 ft in the X, Y and Z axes, respectively. Except for
the model size, the other properties of the braided river reservoir model are the same as
shown in Table 4. As shown in Figure 9, the permeability distributions are significantly
different between river channels and other areas, whose permeability values are set to be
1000 md and 50 md, respectively. The simulated production lasts around 1800 days and
the time step is 1 day. In this case, there are also 5 injectors, named I1, I2, I3, I4 and I5,
and 4 producers, called P1, P2, P3 and P4. I1 is located on the top left corner, connecting
P1 through the river channel. P2, P3 and P4 are connected with I5 by three tributaries,
respectively, where the tributary between I5 and P2 is widest. Besides, the tributaries of
I5-P3 and I5-P4 are of similar width, while the distance of I5-P4 is longer than that of I5-P3.

Table 4. The time consumption, training error (MSE) and testing error (MSE) of KINN-tansig,
KINN-Gaussian and SLFNN in the braided river reservoir case.

Methods KINN-Tansig KINN-Gaussian SLFNN

Computation time (training and testing) 0.7417 s 3.4679 s 2.4602 s
Error of history matching (training error) 0.0052 0.0058 0.0104

Error of prediction (testing error) 0.0071 0.0065 0.0142

In the braided river reservoir case, even the production rates change significantly,
the two proposed models are capable of matching the history of 4 producers with certain
accuracy in general, as shown in Figure 10. In contrast, SLFNN shows a poorer performance
than KINN-tansig and KINN-Gaussian, on both history matching and forecast tasks of
all producers, where the green lines with stars often deviate from the actually observed
curves (the red lines with circles). When it comes to the details, KINN-tansig and KINN-
Gaussian show different performances on different producers. For instance, as can be
seen in Figure 10a–d, the history matching results on P1 gotten by both two models are
not as good as those on other producers, especially for KINN-tansig, whose estimated
curve may be above or below the actual values. In the productivity prediction period, both
KINN-tansig and KINN-Gaussian conduct results with significant fluctuations on P4, while
they still show great performance on the other producers.
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Figure 9. Permeability field of the braided river reservoir case.

Figure 10. History matching results of the braided river reservoir case by KINN-tansig, KINN-
Gaussian and SLFNN. The black line with squares is the result obtained by KINN-tansig method;
the blue line with triangles represents the result gotten by the KINN-Gaussian method; the green
line with stars is the results obtained by SLFNN; the red line with circles is the liquid production rate
gotten by ECLIPSE; the grey vertical dashed line makes a separation of history matching period and
the productivity forecast period: (a) P1; (b) P2; (c) P3; (d) P4.

As can be seen in Figure 11, KINN-tansig and KINN-Gaussian keep high computa-
tion efficiency in the braided river reservoir case, and their training errors converge to
a neighborhood between 0.0050 and 0.0060, which is about a half of the error of SLFNN
(0.0104). In addition, as shown in Table 4, it costs 0.7417 s for KINN-tansig and 3.4679 s for
KINN-Gaussian to finish training and 2.4602 s for SLFNN. The proposed two approaches
also have smaller training and testing errors than SLFNN in the braided river case.
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Figure 11. The training error (MSE) curves of KINN-tansig, KINN-Gaussian and SLFNN for the
braided river reservoir case. The black line with squares is the error curve of KINN-tansig; the
blue line with triangles represents the error curve of KINN-Gaussian; and the green line with stars
represent the error curve of SLFNN.

According to the permeability distribution of the braided river reservoir case, the
injector-producer pairs with high flow channels are I1-P1, I5-P2, I5-P3 and I5-P4, ranking by
the strength of their connecting conditions. As shown in Figure 12, these strong connecting
well pairs can be revealed directly through deep color grids in heatmaps. Figure 12a
demonstrates that the inter-well connectivity can get a good reflection by KINN-tansig, as
the top four connectivity values and the top four high connecting well pairs are one-to-one
matched, where I1-P1 is biggest with 0.777, following I5-P2, I5-P3 and I5-P4, with 0.49,
0.4319 and 0.2963, respectively. Figure 12b shows that KINN-Gaussian generates similar
characterization results with KINN-tansig, except that the value of I5-P3 (0.4696) is bigger
than that of I5-P2 (0.4232). SLFNN enables to characterize three strong connecting well
pairs, I5-P2, I1-P1 and I5-P4, with the values of 1, 0.8523 and 0.8409. Meanwhile, I5-P3 only
obtains 0.3636, which is much lower than some actually weak connecting well pairs, such
as I1-P3 (0.9205), I2-P1 (0.8295), I2-P4(0.7841), I3-P1 (0.7841) and I3-P3 (0.875).

Figure 12. The heatmaps of the inter-well connectivity analysis by KINN-tansig and KINN-Gaussian
for the streak reservoir case: (a) KINN-tansig; (b) KINN-Gaussian; (c) SLFNN.
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4.3. Egg Reservoir Case

The initial Egg model can be seen in the work of [46], and some modifications are taken
to make it more suitable for the inter-well connectivity analysis. This synthetic reservoir
model consists of active 6910 grids, and the size of each grid in the X, Y, and Z directions
is 8 m, 8 m, and 4 m, respectively. The important properties of Egg reservoir model are
presented in Table 5. The simulated production lasts around 1200 days and the time step is
10 days. As shown in Figure 13a, the are 8 injectors and 4 producers in this case, and there
are two faults in the Egg reservoir model, blocking the flow of underground fluid. In this
way, the relationships between injectors and producers located on the different sides of the
fault should be pretty weak. To understand the communications between injectors and
producers in detail, the oil saturation distribution is demonstrated in Figure 13b.

Table 5. Properties of Egg reservoir model.

Properties Value

Model Size 100 × 99 × 1
Depth 4000 m

Initial pressure 5765 psi
Porosity 0.2

Initial water saturation 0.1
Density of oil 900 kg/m3

Viscosity of oil 2.0 cp
Oil compressibility 1.0 × 10−5 bar −1

Figure 13. The permeability and oil saturation distribution of Egg reservoir case: (a) Permeability
distribution; (b) oil saturation distribution.

As can be seen in Figure 14a–c, there are a certain number of points obtained by
SLFNN (denoted by the green lines with stars) deviated from the actual ones (denoted
by the red lines with circles), especially for the results on P4. Meanwhile, the proposed
two methods (black lines with squares for KINN-tansig, and blue lines with triangles for
KINN-Gaussian) show much better performance than SLFNN on the history matching and
prediction for the LPR data of P1, P2 and P3. Besides, all three models show pretty good
performance on P4, as shown in Figure 14d.
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Figure 14. History matching results of the Egg reservoir case by KINN-tansig, KINN-Gaussian and
SLFNN. The black line with squares is the result obtained by KINN-tansig method; the blue line
with triangles represents the result gotten by KINN-Gaussian method; the green line with stars is the
results obtained by SLFNN; the red line with circles is the liquid production rate gotten by ECLIPSE;
the grey vertical dashed line makes a separation of history matching period and the productivity
forecast period: (a) P1; (b) P2; (c) P3; (d) P4.

Figure 15 shows that KINN-tansig and KINN-Gaussian converge fast in the training
process, where the MSE errors of both methods are reduced to less than 10−2 within 200
iterations. Meanwhile, the initial MSE for SLFNN is much bigger than that of KINN-tansig
and KINN-Gaussian, and so is the converged error. As illustrated in Table 6, KINN-tansig,
KINN-Gaussian, and SLFNN all demonstrate significant computation efficiency, taking
1.1282 s, 0.8539 s, and 0.3361 s, to finish training, respectively. As expected, both KINN-
tansig and KINN-Gaussian are capable of producing more accurate results in history
matching (0.0022 and 0.0035) and productivity prediction (0.0171 and 0.02263, respectively)
than those obtained by SLFNN (0.0097 and 0.0426).

Figure 15. The training error (MSE) curves of KINN-tansig, KINN-Gaussian, and SLFNN for the
Egg reservoir case. The black line with squares is the error curve of KINN-tansig; the blue line with
triangles represents the error curve of KINN-Gaussian, and the green line with stars represents the
error curve of SLFNN.
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Table 6. The time consumption, training error (MSE), and testing error (MSE) of KINN-tansig,
KINN-Gaussian, and SLFNN in the Egg reservoir case.

KINN-Tansig KINN-Gaussian SLFNN

Computation time (training and testing) 0.1282 s 0.8539 s 0.3361 s
Error of history matching (training error) 0.0022 0.0035 0.0097

Error of prediction (testing error) 0.0171 0.0263 0.0426

Figure 16 reveals the inter-well connectivity characterization results obtained by three
models. For P1, the production comes from the contribution of I1, I2, and I3. It is important
to note that despite the fault between I3 and P1, the injected water of I3 still could reach P1
by getting round of the fault, as shown in Figure 13b. As shown in Figure 16a,b, I1-P1, I2-P1,
and I3-P1 can be reflected correctly by the two proposed models, while I6-P1 is wrongly
considered as a relatively high connecting well pair by both models. Moreover, the main
contributors of P2 are I2 and I4; the main contributors of P3 are I4 and I7; and the flow of
P4 comes from I5, I7, and I8. As shown in Figure 16a,b, all these strong connecting well
pairs can be accurately revealed by the deeper color blocks of the heatmaps by the two
models. However, SLFNN still struggles to characterize the relative connecting strength.
For instance, the top four connectivity values obtained by SLFNN are assigned to I6-P4,
I5-P2, I4-P1 and I6-P2, which are actually weak connecting well pairs.

Figure 16. The heatmaps of the inter-well connectivity analysis by KINN-tansig and KINN-Gaussian
for the Egg reservoir case: (a) KINN-tansig; (b) KINN-Gaussian; (c) SLFNN.

4.4. Sensitivity to Noise

The measurement noise and wells shut-in are unavoidable in real oilfield production,
which are common challenges for all reservoir characterization methods. To evaluate
the performance of KINN-tansig and KINN-Gaussian on these noisy data, we design the
measurement noise case and wells shut-in cases for the braided river reservoir model. In
the measurement noise case, all the injection data (5 × 1447 samples) and production data
(4 × 1447 samples) are added with Gaussian noises, whose mean value is 1 and standard
deviations range from 5%, 10%, 15%, 20%, 25% and 30%, respectively. In the wells shut-in
case, 5 injectors and 4 producers are shut in from the time step 401 to 800.

Figure 17 shows the average absolute error of the connectivity values of KINN-tansig
and KINN-Gaussian in the measurement noise case. As expected, the error of connectivity
values grows slightly with the increase of measurement noise, where the two proposed
models show great robustness. As can be seen in Figure 17, the average absolute errors of
the connectivity values by the two models are less than 0.08, even though the noise reaches
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30%. Figure 18 demonstrates the inter-well connecting relationship by KINN-tansig and
KINN-Gaussian in the wells shut-in case against the basic case. KINN-Gaussian shows
poor performance, since a part of connectivity values obtained by KINN-Gaussian are
higher than 0 in the wells shut-in case, while they are very close to 0 in the basic case.
This phenomenon means that the inter-well connectivity values of these weak connecting
well pairs obtained by KINN-Gaussian are affected by wells shut-in. In detail, these weak
connecting well pairs are likely to get bigger connectivity values in the wells shut-in case
than those in the basic case. Nevertheless, KINN-tansig still demonstrates strong robustness
in this case. As shown in Figure 18, the connectivity values obtained by KINN-tansig
are close to the 45◦ line, which means that KINN-tansig can generate similar inter-well
connectivity characterization results in wells shut-in case as in the basic case.

Figure 17. The average absolute error of connectivity values by KINN-tansig and KINN-Gaussian in
the noise measurement case. The black line is the error curve of KINN-tansig and the blue line is the
error curve of KINN-Gaussian.

Figure 18. A cross plot of the connectivity values using KINN-tansig and KINN-Gaussian in the
wells shut-in case against the basic case results. The black squares and blue circles represent the
connectivity values of KINN-tansig and KINN-Gaussian, respectively, and the dashed is 45◦ line.

5. Discussion and Conclusions

The application of ANN in oil industry is limited by its unexplainability and poor
generalizability. In this paper, we concentrate on associating the physical knowledge with
neural networks to solve the reservoir characterization and production forecast problems.
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Integrating the material balance equation with the machine learning techniques, the physi-
cal knowledge interaction neural networks have been proposed, combining both the merits
of interpretability and robustness. Furthermore, the proposed gate functions have avoided
the negative connectivity values without physical sense, and the computation efficiency has
been fully improved by unconstraint optimization algorithm. In the end, the effectiveness
of our models has been proved through several simulation experiments. Moreover, the per-
formance of the proposed models on noisy data has been demonstrated. KINN illustrates a
novel configuration to realize the cooperation and interaction between neural networks
and physical knowledge. In the future, we would like to extend KINN to other areas, like
production optimization, and try other machine learning optimization algorithms, like the
fractional stochastic gradient descent method [47].
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Nomenclature
The nomenclature used in this paper is as follows:

Nomenclature Explanations
Ct total compressibility, bar−1

ik water injection rate, m3/Day
J productivity index, m3/Day/bar
M number of injectors
N number of producers
n time-like variable
p average reservoir pressure, bar
pwf bottom hole pressure, bar
q̂ estimated production rate, m3/Day
qj liquid production rate, m3/Day
t time step, Day
Vp drainage pore volume, m3/Day
λkj inter-well connectivity value
γkj independent variable of inter-well connectivity of intelligent connectivity model
ρ Pearson correlation coefficient
τi time constant of capacitance resistance model, Day
Γj comprehensive injection rate, m3/ day
k injector index
j producer index



Mathematics 2022, 10, 1614 21 of 22

References
1. Hashan, M.; Jahan, L.N.; Zaman, T.U.; Imtiaz, S.; Hossain, M.E. Modelling of fluid flow through porous media using memory

approach: A review. Math. Comput. Simul. 2020, 177, 643–673. [CrossRef]
2. Mozolevski, I.; Murad, M.A.; Schuh, L.A. High order discontinuous Galerkin method for reduced flow models in fractured

porous media. Math. Comput. Simul. 2021, 190, 1317–1341. [CrossRef]
3. Ma, X.; Zhang, K.; Zhang, L.; Yao, C.; Yao, J.; Wang, H.; Jian, W.; Yan, Y. Data-Driven Niching Differential Evolution with Adaptive

Parameters Control for History Matching and Uncertainty Quantification. SPE J. 2021, 26, 993–1010. [CrossRef]
4. Xu, X.; Wang, C.; Zhou, P. GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective. Int. J.

Prod. Econ. 2021, 235, 108078. [CrossRef]
5. Xu, X.; Lin, Z.; Li, X.; Shang, C.; Shen, Q. Multi-objective robust optimisation model for MDVRPLS in refined oil distribution. Int.

J. Prod. Res. 2021, 5, 1–21. [CrossRef]
6. Yin, F.; Xue, X.; Zhang, C.; Zhang, K.; Han, J.; Liu, B.; Wang, J.; Yao, J. Multifidelity Genetic Transfer: An Efficient Framework for

Production Optimization. SPE J. 2021, 26, 1614–1635. [CrossRef]
7. Zhang, K.; Zhang, J.; Ma, X.; Yao, C.; Zhang, L.; Yang, Y.; Wang, J.; Yao, J.; Zhao, H. History Matching of Naturally Fractured

Reservoirs Using a Deep Sparse Autoencoder. SPE J. 2021, 26, 1700–1721. [CrossRef]
8. Xu, X.; Lin, Z.; Zhu, J. DVRP with limited supply and variable neighborhood region in refined oil distribution. Ann. Oper. Res.

2022, 309, 663–687. [CrossRef]
9. Heffer, K.J.; Fox, R.J.; McGill, C.A.; Koutsabeloulis, N.C. Novel Techniques Show Links between Reservoir Flow Directionality,

Earth Stress, Fault Structure and Geomechanical Changes in Mature Waterfloods. SPE J. 1997, 2, 91–98. [CrossRef]
10. Tian, C.; Horne, R.N. Inferring Interwell Connectivity Using Production Data. In Proceedings of the SPE Annual Technical

Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016. [CrossRef]
11. Unal, E.; Siddiqui, F.; Rezaei, A.; Eltaleb, I.; Kabir, S.; Soliman, M.Y.; Dindoruk, B. Use of Wavelet Transform and Signal Processing

Techniques for Inferring Interwell Connectivity in Waterflooding Operations. In Proceedings of the SPE Annual Technical
Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019. [CrossRef]

12. Wang, Y.; Kabir, C.S.; Reza, Z. Inferring Well Connectivity in Waterfloods Using Novel Signal Processing Techniques. In
Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. [CrossRef]

13. Panda, M.N.; Chopra, A.K. An Integrated Approach to Estimate Well Interactions. In Proceedings of the SPE India Oil and Gas
Conference and Exhibition, Society of Petroleum Engineers, New Delhi, India, 17–19 February 1998; p. SPE-39563-MS.

14. Artun, E. Characterizing interwell connectivity in waterflooded reservoirs using data-driven and reduced-physics models: A
comparative study. Neural Comput. Appl. 2017, 28, 1729–1743. [CrossRef]

15. Jensen, J. Comment on “Characterizing interwell connectivity in waterflooded reservoirs using data-driven and reduced-physics
models: A comparative study” by E. Artun. Neural Comput. Appl. 2016, 28, 1745–1746. [CrossRef]

16. Yousef, A.A.; Gentil, P.H.; Jensen, J.L.; Lake, L.W. A Capacitance Model To Infer Interwell Connectivity From Production and
Injection Rate Fluctuations. SPE Reserv. Eval. Eng. 2006, 9, 630–646. [CrossRef]

17. Albertoni, A.; Lake, L.W. Inferring interwell connectivity only from well-rate fluctuations in waterfloods. SPE Reserv. Eval. Eng.
2003, 6, 6–16. [CrossRef]

18. Lake, L.W.; Liang, X.; Edgar, T.F.; Al-Yousef, A.; Sayarpour, M.; Weber, D. Optimization Of Oil Production Based On A Capacitance
Model Of Production And Injection Rates. In Proceedings of the Hydrocarbon Economics and Evaluation Symposium, Dallas,
TX, USA, 1–3 April 2007.

19. Sayarpour, M.; Zuluaga, E.; Kabir, C.S.; Lake, L.W. The use of capacitance–resistance models for rapid estimation of waterflood
performance and optimization. J. Pet. Sci. Eng. 2009, 69, 227–238. [CrossRef]

20. Sayarpour, M. Development and Application of Capacitance-Resistive Models to Water/CO2 Floods; University of Texas at Austin:
Austin, TX, USA, 2008.

21. Mamghaderi, A.; Bastami, A.; Pourafshary, P. Optimization of Waterflooding Performance in a Layered Reservoir Using a
Combination of Capacitance-Resistive Model and Genetic Algorithm Method. J. Energy Resour. Technol. 2012, 135, 013102–013110.
[CrossRef]

22. Zhao, H.; Kang, Z.; Zhang, X.; Sun, H.; Cao, L.; Reynolds, A.C. INSIM: A Data-Driven Model for History Matching and Prediction
for Waterflooding Monitoring and Management with a Field Application. In Proceedings of the SPE Reservoir Simulation
Symposium, Houston, TX, USA, 23–25 February 2015.

23. Guo, Z.; Reynolds, A.C. INSIM-FT in three-dimensions with gravity. J. Comput. Phys. 2019, 380, 143–169. [CrossRef]
24. Guo, Z.; Reynolds, A.C. INSIM-FT-3D: A Three-Dimensional Data-Driven Model for History Matching and Waterflooding

Optimization. In Proceedings of the SPE Reservoir Simulation Conference, Society of Petroleum Engineers, Galveston, TX, USA,
10–11 April 2019; p. SPE-193841-MS. [CrossRef]

25. Zhao, H.; Xu, L.; Guo, Z.; Zhang, Q.; Liu, W.; Kang, X. Flow-Path Tracking Strategy in a Data-Driven Interwell Numerical
Simulation Model for Waterflooding History Matching and Performance Prediction with Infill Wells. SPE J. 2020, 25, 1007–1025.
[CrossRef]

26. Kansao, R.; Yrigoyen, A.; Haris, Z.; Saputelli, L. Waterflood Performance Diagnosis and Optimization Using Data-Driven
Predictive Analytical Techniques from Capacitance Resistance Models CRM. In Proceedings of the SPE Europec Featured at 79th
EAGE Conference and Exhibition, Paris, France, 12–15 June 2017. [CrossRef]

http://doi.org/10.1016/j.matcom.2020.05.026
http://doi.org/10.1016/j.matcom.2021.07.012
http://doi.org/10.2118/205014-PA
http://doi.org/10.1016/j.ijpe.2021.108078
http://doi.org/10.1080/00207543.2021.1887534
http://doi.org/10.2118/205013-PA
http://doi.org/10.2118/205340-PA
http://doi.org/10.1007/s10479-020-03780-9
http://doi.org/10.2118/30711-PA
http://doi.org/10.2118/181556-ms
http://doi.org/10.2118/196063-ms
http://doi.org/10.2118/191643-ms
http://doi.org/10.1007/s00521-015-2152-0
http://doi.org/10.1007/s00521-016-2549-4
http://doi.org/10.2118/95322-PA
http://doi.org/10.2118/83381-PA
http://doi.org/10.1016/j.petrol.2009.09.006
http://doi.org/10.1115/1.4007767
http://doi.org/10.1016/j.jcp.2018.12.016
http://doi.org/10.2118/193841-ms
http://doi.org/10.2118/199361-PA
http://doi.org/10.2118/185813-ms


Mathematics 2022, 10, 1614 22 of 22

27. Olenchikov, D.; Posvyanskii, D. Application of CRM-Like Models for Express Forecasting and Optimizing Field Development. In
Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 22–24 October 2019.

28. Nguyen, A.P.; Lasdon, L.S.; Lake, L.W.; Edgar, T.F. Capacitance Resistive Model Application to Optimize Waterflood
in a West Texas Field. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA,
30 October–2 November 2011.

29. Guo, Z.; Reynolds, A.; Zhao, H. Waterflooding optimization with the INSIM-FT data-driven model. Comput. Geosci. 2018, 22,
745–761. [CrossRef]

30. Chen, B.; Pawar, R.J. Characterization of CO2 storage and enhanced oil recovery in residual oil zones. Energy 2019, 183, 291–304.
[CrossRef]

31. Alimohammadi, H.; Rahmanifard, H.; Chen, N. Multivariate Time Series Modelling Approach for Production Forecasting in
Unconventional Resources. In Proceedings of the SPE Annual Technical Conference and Exhibition, Virtual. 26–29 October 2020.
[CrossRef]

32. Chen, B.; Harp, D.R.; Lin, Y.; Keating, E.H.; Pawar, R.J. Geologic CO2 sequestration monitoring design: A machine learning and
uncertainty quantification based approach. Appl. Energy 2018, 225, 332–345. [CrossRef]

33. Li, Y.; Wang, G.; McLellan, B.; Chen, S.-Y.; Zhang, Q. Study of the impacts of upstream natural gas market reform in China on
infrastructure deployment and social welfare using an SVM-based rolling horizon stochastic game analysis. Pet. Sci. 2018, 15,
898–911. [CrossRef]

34. Boret, S.E.B.; Marin, O.R. Development of Surrogate models for CSI probabilistic production forecast of a heavy oil field. Math.
Comput. Simul. 2019, 164, 63–77. [CrossRef]

35. Fumagalli, A.; Zonca, S.; Formaggia, L. Advances in computation of local problems for a flow-based upscaling in fractured
reservoirs. Math. Comput. Simul. 2017, 137, 299–324. [CrossRef]

36. Xu, X.; Hao, J.; Zheng, Y. Multi-objective Artificial Bee Colony Algorithm for Multi-stage Resource Leveling Problem in Sharing
Logistics Network. Comput. Ind. Eng. 2020, 142, 106338. [CrossRef]

37. Huang, D.S. Radial Basis Probabilistic Neural Networks: Model and Application. Int. J. Pattern Recognit. Artif. Intell. 1999, 13,
1083–1101. [CrossRef]

38. Huang, D.; Du, J. A Constructive Hybrid Structure Optimization Methodology for Radial Basis Probabilistic Neural Networks.
IEEE Trans. Neural Netw. 2008, 19, 2099–2115. [CrossRef]

39. Karpatne, A.; Watkins, W.; Read, J.; Kumar, V. Physics-guided Neural Networks (PGNN): An Application in Lake Temperature
Modeling. arXiv 2017, arXiv:1710.11431.

40. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

41. Tartakovsky, A.M.; Marrero, C.O.; Perdikaris, P.; Tartakovsky, G.D.; Barajas-Solano, D. Physics-Informed Deep Neural Networks
for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems. Water Resour. Res. 2020, 56, e2019WR026731.
[CrossRef]

42. Dehghani, H.; Zilian, A. A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs. Math.
Comput. Simul. 2021, 190, 398–417. [CrossRef]

43. Wang, N.; Zhang, D.; Chang, H.; Li, H. Deep learning of subsurface flow via theory-guided neural network. J. Hydrol. 2020,
584, 124700. [CrossRef]

44. Csiszár, O.; Csiszár, G.; Dombi, J. Interpretable neural networks based on continuous-valued logic and multicriteria decision
operators. Knowl.-Based Syst. 2020, 199, 105972. [CrossRef]

45. Huang, C.; Xu, H.; Xu, Y.; Dai, P.; Xia, L.; Lu, M.; Bo, L.; Xing, H.; Lai, X.; Ye, Y. Knowledge-aware Coupled Graph Neural
Network for Social Recommendation. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), Virtual. 2–9
February 2021. [CrossRef]

46. Zandvliet, M.J.; Bosgra, O.H.; Jansen, J.-D.; Van den Hof, P.; Kraaijevanger, J.B.F.M. Bang-bang control and singular arcs in
reservoir flooding. J. Pet. Sci. Eng. 2007, 58, 186–200. [CrossRef]

47. Khan, Z.; Chaudhary, N.I.; Zubair, S. Fractional stochastic gradient descent for recommender systems. Electron. Mark. 2019, 29,
275–285. [CrossRef]

http://doi.org/10.1007/s10596-018-9723-y
http://doi.org/10.1016/j.energy.2019.06.142
http://doi.org/10.2118/201571-ms
http://doi.org/10.1016/j.apenergy.2018.05.044
http://doi.org/10.1007/s12182-018-0238-x
http://doi.org/10.1016/j.matcom.2018.11.023
http://doi.org/10.1016/j.matcom.2017.01.007
http://doi.org/10.1016/j.cie.2020.106338
http://doi.org/10.1142/S0218001499000604
http://doi.org/10.1109/TNN.2008.2004370
http://doi.org/10.1016/j.jcp.2018.10.045
http://doi.org/10.1029/2019WR026731
http://doi.org/10.1016/j.matcom.2021.05.036
http://doi.org/10.1016/j.jhydrol.2020.124700
http://doi.org/10.1016/j.knosys.2020.105972
http://doi.org/10.48550/arXiv.2110.03987
http://doi.org/10.1016/j.petrol.2006.12.008
http://doi.org/10.1007/s12525-018-0297-2

	Introduction 
	Methods 
	Knowledge Interaction Neural Network (KINN) 
	Injection Regulator Module (IRM) 
	Control Volume Module (CVM) 
	Production Monitor Module (PMM) 
	Reservoir Characterization and Productivity Prediction 

	Results 
	The Streak Reservoir Case 
	The Braided River Reservoir Case 
	Egg Reservoir Case 
	Sensitivity to Noise 

	Discussion and Conclusions 
	References

