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Abstract: In this article, we introduce and study a new stochastic order of multivariate distributions,
namely, the conditional likelihood ratio order. The proposed order and other stochastic orders are
analyzed in the case of a bivariate exponential distributions family. The theoretical results obtained
are applied for studying the reliability of bridges affected by earthquakes. The conditional likelihood
ratio order involves the multivariate stochastic ordering; it resembles the likelihood ratio order in
the univariate case but is much easier to verify than the likelihood ratio order in the multivariate
case. Additionally, the likelihood ratio order in the multivariate case implies this ordering. However,
the conditional likelihood ratio order does not imply the weak hard rate order, and it is not an order
relation on the multivariate distributions set. The new conditional likelihood ratio order, together
with the likelihood ratio order and the weak hazard rate order, were studied in the case of the
bivariate Marshall–Olkin exponential distributions family, which has a lack of memory type property.
At the end of the paper, we also presented an application of the analyzed orderings for this bivariate
distributions family to the study of the effects of earthquakes on bridges.

Keywords: stochastic order; multivariate distribution; reliability; exponential distribution; earthquake

MSC: 60E15; 60E05; 26B30

1. Introduction

Over time, the study of people’s life expectancy and the study of the reliability of
certain devices or constructions represent important research topics. There are many
random phenomena that can influence the expected human life. An important factor that
can impact the chance of life is the likelihood that a person will die suddenly after the age
of t years. This is the hazard rate at the time t. The same problem arises in the study of
reliability of a device or a construction.

It is well known (see, for example, Shaked and Shanthikumar [1]) that the hazard rate
order between two random variables X and Y is equivalent to the same stochastic order
between the conditional random variables (X |X > t) and (Y |Y > t) for all the values
t ∈ R.

These inequalities are applied to study the reliability of series and parallel systems.
We can mention several research works that have approached this problem. Fang and
Balakrishnan [2] compared the likelihood ratio order of the largest-order statistics by
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using a particular Weibull random variables. Fang and Balakrishnan [3] obtained results
regarding some stochastic orders of the smallest and largest-order statistics in the case of an
exponential-Weibull random variables family. Khaledi and Kochar [4] studied the stochastic
order of extreme-order statistics in the case of the Weibull distribution. Balakrishnan
and Torrado [5] and Balakrishnan et al. [6] analyzed stochastic comparisons between the
largest-order statistics in the particular case of independent and identically distributed
random variables and studied the usual stochastic, hazard rate, reversed hazard rate,
likelihood ratio, and dispersive and star orders, concluding that all these stochastic orders
are preserved in the case of parallel systems using exponentiated models for the lifetimes
of components. Chen et al. [7] studied the ordering properties of extreme-order statistics
arising from independent negative binomial random variables. Wang and Zhu [8] proposed
and analyzed the water quality redundancy/reliability method based on information
entropy technology, including Tsallis entropy and Shannon entropy in water distribution
system. Triantafyllou [9] delivered a reliability study of the weighted-r-consecutive-k-out-
of-n: F reliability systems consisting of independent and identically distributed components.
Rykov et al. [10] studied the reliability characteristics of a k-out-of-n: F system in the case
when a failure of one of the system’s components leads to increasing the load on others.
Montoro-Cazorla and Pérez-Ocón [11] studied an N-system with different units submitted
to shock and wear.

Multivariate generalization takes place in the case of the hazard rate function and the
stochastic order in the hazard rate sense. For example, we can study the stochastic order
between conditional random variables (X |X > t) and (Y |Y > t) for all t ∈ Rd. This order
is the multivariate weak hazard rate order. A multivariate stochastic ordering involving
the multivariate weak hazard rate order ordering is the multivariate likelihood ratio order.
However, the study of the multivariate likelihood ratio order is a difficult task. The main
objective of this paper is to introduce a new multivariate order relationship that involves
the univariate likelihood ratio order, can be easily checked, and implies the multivariate
stochastic order .

Another important research direction in this article is to prove the importance and
utility of this multivariate order relationship in real applications.

One of the main objectives of seismology is to predict when and where an earthquake
will occur after another earthquake. Although it does not seem to be an exact answer yet,
there are probabilistic models that describe this phenomenon quite accurately. Abe and
Suzuki [12] proved that the probability distribution of the time interval4t between succes-
sive earthquakes is approximately equal to eq(−βt · 4t), where βt is a scale constant. Wang
and Chang [13] obtained the probability function of seismic hazard and then compared
it to the model prediction that uses the Poisson distribution. Kayid et al. [14] introduced
the proportional reversed hazards weighted frailty model and analyzed some stochastic
orders of this model. Catana [15] gave necessary and sufficient conditions of some stochas-
tic orders in the case of the multivariate Pareto distribution family. By using the hazard
function, Quintela-del-Río [16] analyzed the distribution of earthquake occurrences in two
regions of Spain. Catana [17] studied the necessary and sufficient conditions for some
multivariate stochastic orders of Jones–Larsen distribution and gave applications in the
study of earthquakes. Dias et al. [18] studied the influence of considering partial sets of
earthquake data on the temporal and spatial probability distributions of earthquakes, using
data from the California region between 2003 and 2016, with different thresholds for the
magnitude and depth of hypocenters. Catana and Raducan [19] gave sufficient conditions
for the stochastic order of multivariate uniform distributions on closed convex sets.

If we want to calculate the probability of the next earthquake after another that oc-
curred at a time interval4t in an area that may be affected more or less by other earthquakes
originating in other areas, then we can use an multivariate exponential distribution.

For this distribution, we know, for example, P(X1 ≥ t1, X2 ≥ t2). In this case, we can
characterize the variation of the function R2 3 (t1, t2) 7−→ P(X1 ≥ t1, X2 ≥ t2) when the
parameters of this distribution vary.
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However, how we can find max(X1,X2) Eu(X1, X2) where u is an utility function? (A
utility function is an increasing function).

One method that can be used in case it is difficult to calculate Eu(X1, X2) is based-
von using multivariate stochastic orders. Even so, it is still difficult to determine if
Eu(X1, X2) ≤ Eu(Y1, Y2) for any u utility function depending on the parameters of the dis-
tributions. The multivariate likelihood ratio order implies stochastic order (see Shaked and
Shanthikumar [1]). It is more difficult to verify the likelihood order ratio in the multivariate
case of absolute continuity according to the Lebesgue measure distributions, compared
to the univariate case . It is necessary to find a new ordering that involves the stochastic
ordering in the multivariate case.

The paper is structured as follows. Section 2 includes the preliminaries. In Section 3,
we introduce and study the new stochatic order of multivariate distributions. Sections 4–6
discuss the new stochastic order, likelihood ratio order, and weak hazard rate order of the
bivariate Marshall–Olkin exponential distributions family. Section 7 includes an application
of the new stochastic order for the study of the reliability of bridges affected by earthquakes.
The last section presents the conclusions.

2. Preliminaries

We present some theoretical notions related to the main distribution families used and
some important definitions and results regarding multivariate stochastic orders.

Let (Ω,F , P) be a probability space. For a random vector X : Ω → Rd (d ≥ 2),
we consider

µX(B) = P(X ∈ B)

its distribution on
(
Rd,B(Rd)

)
and we denote by

FX(x) = P(X ≤ x) = P(X1 ≤ x1, . . . , Xd ≤ xd)

its distribution function. We also consider

F∗X(x) = P(X ≥ x, X 6= x).

For a function g : Rd → R, we denote by Supp(g) =
{

x ∈ Rd : g(x) 6= 0
}

the support
of the function g.

If µX is absolutely continuous according to the Lebesgue measure, we denote:

fX(x) =
∂d

∂x1 . . . ∂xd
FX(x)

its density function and

rX : Supp(F∗X)→ R, rX(x) = ∇(− ln(F∗X(x)))

the hazard rate function.
Additionally, we denote by pri(x1, . . . , xd) = xi and pr(i1,...,ik)(x1, . . . , xd) =

(
xi1 , . . . , xik

)
(1 ≤ i1 < i2 < . . . < ik ≤ d) the canonical projections.

The distribution that we will be used in this article is proposed by Marshall and Olkin
(see Kotz et al. [20]), and it is given by

P(X ≥ x, X 6= x) =

e
− ∑

1≤i1≤d
λi1

xi1
− ∑

1≤i1<i2≤d
λi1 i2

max
(

xi1
,xi2

)
− ∑

1≤i1≤i2≤i3≤d
λi1 i2 i3

max
(

xi1
,xi2

,xi3

)
−...−λ123...d max(x1,...,xd)

where x ∈ (0, ∞)d, d ≥ 2 and λi1 ...im ≥ 0 ∀ m ∈ {1, . . . , d}.
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For this distribution, it is verified that

P(X ≥ x) = P(X ≥ x, X 6= x)

where x ∈ (0, ∞)d, d ≥ 2.
This distribution verifies the lack of memory property (see Kotz et al. [20], p. 392):

P(X ≥ x + (t, t, . . . , t)) = P(X ≥ x) · P(X ≥ (t, t, . . . , t)) ∀ x ∈ (0, ∞)d ∀ t ∈ (0, ∞).

This distribution is very useful for the study of earthquakes. Its lack of memory
property is important for the study of occurrence of earthquakes in a time interval4t.

We now present the definition of the bivariate distribution proposed by Marshall–Olkin
and an interesting property.

Definition 1 (Kotz et al. [20]). We say that the positive bivariate random vector X is Mar-
shall–Olkin Exponential distributed with parameters λ1, λ2, λ12 ∈ (0, ∞) and denote this by
X ∼ MOExp(λ1, λ2, λ12) if

F∗X(x1, x2) = e−λ1x1−(λ2+λ12)x2 · 1{y∈R2 :0<y1≤y2}(x1, x2)+

e−(λ1+λ12)x1−λ2x2 · 1{y∈R2 :0<y2<y1}(x1, x2).

We have:

fX(x1, x2) = λ1(λ2 + λ12)e−λ1x1−(λ2+λ12)x2 · 1{y∈R2 :0<y1≤y2}(x1, x2)+

λ2(λ1 + λ12)e−(λ1+λ12)x1−λ2x2 · 1{y∈R2 :0<y2<y1}(x1, x2),

FX(x1, x2) =
(

1− e−λ1x1
)(

1− e−(λ2+λ12)x2
)
· 1{y∈R2 :0<y1≤y2}(x1, x2)+(

1− e−(λ1+λ12)x1
)(

1− e−λ2x2
)
· 1{y∈R2 :0<y2<y1}(x1, x2)

and
− ln F∗X(x1, x2) = [λ1x1 + (λ2 + λ12)x2] · 1{y∈R2 :0<y1≤y2}(x1, x2)+

[(λ1 + λ12)x1 + λ2x2] · 1{y∈R2 :0<y2<y1}(x1, x2).

Then,

(rX)1(x) = λ1 · 1{y∈R2 :0<y1≤y2}(x1, x2) + (λ1 + λ12) · 1{y∈R2 :0<y2<y1}(x1, x2),

(rX)2(x) = λ2 · 1{y∈R2 :0<y1≤y2}(x1, x2) + (λ2 + λ12) · 1{y∈R2 :0<y2<y1}(x1, x2).

Proposition 1 (Kotz et al. [20]). If X ∼ MOExp(λ1, λ2, λ12) then Xi = min(Zi, Z12), i ∈
{1, 2}, where Z1 ∼ Exp(λ1), Z2 ∼ Exp(λ2) and Z12 ∼ Exp(λ12) are independent random
variables.

Definition 2 (Dias et al. [18]). The q-deformed Tsallis exponential function is eq : R→ [0, ∞),

eq(x) = [1 + (1− q)x]
1

1−q · 1[0,∞)(1 + (1− q)x), where q ∈ R.

Proposition 2 describes the probability distribution of the time interval4t between
successive earthquakes.
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Proposition 2 (Abe and Suzuki [12]). The probability distribution of the time interval 4t be-
tween successive earthquakes is well adjusted by a q-exponential function and it is is approximated by

eq(−βt · 4t),

where βt is a scale constant.

We now present the definitions of the basic multivariate orderings and some impor-
tant properties.

Definition 3 (Shaked and Shanthikumar [1]). We say that:

(i) a function u : Rd → R is increasing if

∀ x, y ∈ Rd, x ≤ y =⇒ u(x) ≤ u(y).

(ii) a set C ⊂ Rd is increasing if

∀ x ∈ C ∀ y ∈ Rd then x ≤ y =⇒ y ∈ C.

Definition 4 (Shaked and Shanthikumar [1]). Let X and Y be two d-dimensional random
vectors. We say that X is smaller than Y in the

(i) Stochastic order sense (written as X ≺st Y) if

P(X ∈ C) ≤ P(Y ∈ C) ∀ C ⊂ Rd increasing set;

(ii) Strong stochastic order sense (written as X ≺sst Y) if

X1 ≺st Y1

and
(Xi| X1 = x1, . . . , Xi−1 = xi−1) ≺st (Yi| Y1 = y1, . . . , Yi−1 = yi−1)

∀ i ∈ {2, . . . , d} ∀ xi, yi ∈ R xi ≤ yi.

(iii) Weak hazard rate order sense (written as X ≺whr Y) if

rX(x) ≥ rY(y) ∀ x ∈ Rd;

(iv) Likelihood ratio order sense (written as X ≺lr Y) if

fX(x) · fY(y) ≤ fX(min(x, y)) · fY(max(x, y)) ∀ x, y ∈ Supp( fX) ∪ Supp( fY).

Theorem 1 (Shaked and Shanthikumar [1]). Let X and Y be two d-dimensional random vectors.
Then:

(i) X ≺sst Y =⇒ X ≺st Y;
(ii) X ≺lr Y =⇒ X ≺whr Y;
(iii) X ≺lr Y =⇒ X ≺st Y.

Theorem 2 (Shaked and Shanthikumar [1]). Let X and Y be two d-dimensional random vectors.
Then,

X ≺st Y ⇐⇒ Eu(X) ≤ Eu(Y) ∀ u : Rd → R increasing.

Definition 5 (Shaked and Shanthikumar [1], p. 290). A function K : Rd → (0, ∞) is said to
be multivariate totally positive of order 2 (MTP2) if

K(x) · K(y) ≤ K(min(x, y)) · K(max(x, y)) ∀ x, y ∈ Rd.
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Lemma 1 (Ruggeri et al. [21]). A function K : Rd → (0, ∞) with 2 continuous derivatives is
MTP2 if and only if

∂2

∂xi∂xj
ln K(x) ≥ 0 ∀ x ∈ Rd ∀ i, j ∈ {1, . . . , d} i 6= j.

Remark 1. Let X and Y be two d-dimensional random vectors with Supp(X) = Supp(Y) and
Supp(X) is lattice. Then X ≺lr Y if and only if the function x 7−→ fY(x)

fX(x) is increasing on
Supp( fX) and fX or fY is MTP2.

3. The New Stochastic Order of Multivariate Distributions and Some Properties

We introduce the following order given by the definition:

Definition 6. Let the d-dimensional random vector X and Y. We say that X is smaller in the
conditional likelihood ratio order sense than Y (and we denote X ≺clr Y) if

X1 ≺lr Y1

and
(Xi| X1 = x1, . . . , Xi−1 = xi−1) ≺lr (Yi| Y1 = y1, . . . , Yi−1 = yi−1)

∀ i ∈ {2, . . . , d} ∀ xi, yi ∈ R xi ≤ yi.

Proposition 3 describes an implication between the conditional likelihood ratio order
and the multivariate stochastic order. Theorem 3 describes a a characterization of the
conditional likelihood ratio. The conditions from this order are similar to those in the case
of ordering the distributions on (R,B(R)). In Proposition 4, a relationship between the
multivariate likelihood ratio order and the conditional likelihood ratio order is established.
Propositions 5, 6 and 7 describe some of the properties of the conditional likelihood
ratio order.

Proposition 3. Let the d-dimensional random vector X and Y. Then, X ≺clr Y =⇒ X ≺st Y.

Proof. Thus from Theorem 1.

Theorem 3. Let the d-dimensional random vectors X and Y with µX and µY be absolutely contin-
uous with respect to the Lebesgue measure. Then, X ≺clr Y if and only if

t 7−→
fY1(t)
fX1(t)

is increasing on Supp
(

fX1

)
∪ Supp

(
fY1

)
and

t 7−→
f(Y1,Y2,...,Yi−1,Yi)

(y1, y2, . . . , yi−1, t)
f
(X1,X2,...,Xi−1,Xi)

(x1, x2, . . . , xi−1, t)
is increasing on

pri

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

))
∀ x, y ∈ pr(1,2,...,i−1)

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

))
x ≤ y ∀ i ∈ {2, . . . , d}.

Proof. X1 ≺lr Y1 ⇐⇒ t 7−→ fY1 (t)
fX1 (t)

is increasing on Supp
(

fX1

)
∪ Supp

(
fY1

)
.
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Let i ∈ {2, . . . , d}. For x = (x1, . . . , xi−1) ∈ pr(1,2,...,i−1)Supp
(

f(X1,...,Xi)

)
, the probabil-

ity density funcion of (Xi| X1 = x1, . . . , Xi−1 = xi−1) is

f
(Xi | X1=x1,...,Xi−1=xi−1)

(t) =
f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, t)

f
(X1,...,Xi−1)

(x1, . . . , xi−1)

Now, let x, y ∈ pr(1,2,...,i−1)

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

))
with x ≤ y. Then,

(Xi| X1 = x1, . . . , Xi−1 = xi−1) ≺lr (Yi| Y1 = y1, . . . , Yi−1 = yi−1)⇐⇒

t 7−→
f
(Yi | X1=x1,...,Xi−1=xi−1)

(t)

f
(Xi | X1=x1,...,Xi−1=xi−1)

(t)
is increasing on

pri

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

))
⇐⇒

t 7−→
f
(Y1,...,Yi−1,Yi)

(y1, . . . , yi−1, t)

f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, t)
·

f
(X1,...,Xi−1)

(x1, . . . , xi−1)

f
(Y1,...,Yi−1)

(y1, . . . , yi−1)

is increasing on pri

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

))
⇐⇒

t 7−→
f
(Y1,...,Yi−1,Yi)

(y1, . . . , yi−1, t)

f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, t)
is increasing on

pri

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

))
.

Proposition 4. Let the d-dimensional random vectors X and Y with µX and µY be absolutely
continuous with respect to the Lebesgue measure. Then, X ≺lr Y =⇒ X ≺clr Y.

Proof. X ≺lr Y =⇒ X1 ≺lr Y1 and X ≺lr Y =⇒ fX(x) · fY(y) ≤ fX(y) · fY(x) ∀ x, y ∈
Supp( fX) ∪ Supp( fY) with y ≤ x

=⇒ t 7−→ fY(t)
fX (t)

is increasing on Supp( fX) ∪ Supp( fY)

=⇒ f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, s) f(Y1,...,Yi−1,Yi)
(y1, . . . , yi−1, t) ≤

f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, t) f(Y1,...,Yi−1,Yi)
(y1, . . . , yi−1, s)

i ∈ {2, . . . , d} xi ≤ yi t ≤ s

=⇒
f(Y1,...,Yi−1,Yi)

(y1, . . . , yi−1, t)
f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, t)
≤

f(Y1,...,Yi−1,Yi)
(y1, . . . , yi−1, s)

f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, s)

=⇒ t 7−→
f(Y1,...,Yi−1,Yi)

(y1, . . . , yi−1, t)
f
(X1,...,Xi−1,Xi)

(x1, . . . , xi−1, t)
is increasing on

pri

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

))
∀ x, y ∈ pr(1,2,...,i−1)Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

)
x ≤ y ∀ i ∈ {2, . . . , d}.



Mathematics 2023, 11, 102 8 of 14

Proposition 5. ≺clr is an antisymmetric order relationship on the multivariate random vectors set
with their measure absolutely continuous according to the Lebesgue measure.

Proof. Let the d-dimensional random vectors X and Y with X ≺clr Y and Y ≺clr X.
X1 ≺lr Y1 and Y1 ≺lr X1. ≺lr is an antisymmetric order relationship on the random

variables set; therefore,
fX1 = fY1 .

Now, let i ∈ {2, . . . , d}.

t 7−→
f(Y1,...,Yi−1,Yi)

(x1,...,xi−1,t)

f
(X1,...,Xi−1,Xi)

(x1,...,xi−1,t) and t 7−→
f(X1,...,Xi−1,Xi)

(x1,...,xi−1,t)

f(Y1,...,Yi−1,Yi)
(x1,...,xi−1,t) are increasing on

priSupp
(

f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

)
.

Thus, t 7−→
f(Y1,...,Yi−1,Yi)

(x1,x2,...,xi−1,t)

f
(X1,...,Xi−1,Xi)

(x1,x2,...,xi−1,t) is constant.

f(Y1,...,Yi−1,Yi)
(x)

f
(X1,...,Xi−1,Xi)

(x)
= k ∀ x ∈ Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

)

=⇒ f(Y1,...,Yi−1,Yi)
(x) = k f

(X1,...,Xi−1,Xi)
(x) ∀ x ∈ Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

)
=⇒

∫
Ri

f(Y1,...,Yi−1,Yi)
dλi = k

∫
Ri

f
(X1,...,Xi−1,Xi)

dλi =⇒ k = 1

=⇒ f(Y1,...,Yi−1,Yi)
= f

(X1,...,Xi−1,Xi)

Therefore ≺clr is an antisymmetric order relationship on the multivariate random
vectors set.

Proposition 6. ≺clr is a transitive order relationship on the multivariate random vectors set with
their measure absolutely continuous according to the Lebesgue measure.

Proof. ≺lr is a transitive-order relationship on the random variables set.
Let the d-dimensional random vectors X, Y and Z with X ≺clr Y and Y ≺clr Z.
Then, X1 ≺lr Y1 and Y1 ≺lr Z1. Thus, X1 ≺lr Z1.
Now, let i ∈ {2, . . . , d} and
x, y, z ∈ pr(1,2,...,i−1)

(
Supp

(
f(X1,...,Xi)

)
∪ Supp

(
f(Y1,...,Yi)

)
∪ Supp

(
f(Z1,...,Zi)

))
with

x ≤ y ≤ z.

(Xi| X1 = x1, . . . , Xi−1 = xi−1) ≺lr (Yi| Y1 = y1, . . . , Yi−1 = yi−1)

and
(Yi| Y1 = y1, . . . , Yi−1 = yi−1) ≺lr (Zi| Z1 = z1, . . . , Zi−1 = zi−1).

Then,

(Xi| X1 = x1, . . . , Xi−1 = xi−1) ≺lr (Zi| Z1 = z1, . . . , Zi−1 = zi−1).

Therefore, ≺clr is a transitive-order relationship on the multivariate random vectors
set.

Proposition 7. Let the bivariate random vector X with µX be absolutely continuous with respect
to the Lebesgue measure. Then, X ≺clr X if and only if fX is MTP2.

Proof. t 7−→
f(Y1,Y2)

(y1,t)

f
(X1,X2)

(x1,t) is increasing on pr2

(
Supp

(
f(X1,X2)

)
∪ Supp

(
f(Y1,Y2)

))
∀ x, y ∈ R

x ≤ y.
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Thus,
f(Y1,Y2)(y1, t)
f
(X1,X2)

(x1, t)
≤

f(Y1,Y2)(y1, s)
f
(X1,X2)

(x1, s)
∀ x, y, t, s ∈ R x ≤ y t ≤ s

⇐⇒ f
(X1,X2)

(x1, s) f(Y1,Y2)(y1, t) ≤ f
(X1,X2)

(x1, t) f(Y1,Y2)(y1, s) ∀ x, y, t, s ∈ R x ≤ y t ≤ s

⇐⇒ f
(X1,X2)

(x1, s) f(Y1,Y2)(y1, t) ≤ f
(X1,X2)

(min((x1, s), (y1, t))) f(Y1,Y2)(max((x1, s), (y1, t)))

∀ (x1, s), (y1, t) ∈ R2

Thus, X ≺clr X if and only if fX is MTP2.

Remark 2. ≺clr is not a reflexive relationship on the multivariate random vectors set.

4. Conditional Likelihood Ratio Order of the Marshall–Olkin Exponential
Distributions Family

Theorem 4 gives necessary and sufficient conditions for the conditional likelihood
ratio order of the bivariate Marshall–Olkin exponential distributions family.

Theorem 4. Let, X ∼ MOExp(α1, α2, α12) and Y ∼ MOExp(β1, β2, β12). Then, X ≺clr Y if
and only if αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2} and α2 ≥ β2.

Proof.
fY1 (t)
fX1 (t)

= e[(α1+α12)−(β1+β12)]t, t ∈ (0, ∞).

Then, X1 ≺lr Y1 if and only if α1 + α12 ≥ β1 + β12.
Now, let x1, y1 ∈ pr1

(
Supp

(
f(X1,X2)

)
∪ Supp

(
f(Y1,Y2)

))
with x1 ≤ y1. Then,

f
(Y1,Y2)

(y1, t)

f
(X1,X2)

(x1, t)
=

β1(β2 + β12)e−β1y1−(β2+β12)t · 1{s∈R2 :0<s1≤s2}(y1, t) + β2(β1 + β12)e−(β1+β12)y1−β2t · 1{s∈R2 :0<s2<s1}(y1, t)

α1(α2 + α12)e−α1x1−(α2+α12)t · 1{s∈R2 :0<s1≤s2}(x1, t) + α2(α1 + α12)e−(α1+α12)x1−α2t · 1{y∈R2 :0<s∈R2 :0<s2<s1}(x1, t)

If (y1, t) ∈
{

s ∈ R2 : 0 < s1 ≤ s2
}

then x1 ≤ y1 ≤ t.
Thus, (x1, t) ∈

{
s ∈ R2 : 0 < s1 ≤ s2

}
.

Thus,

f
(Y1,Y2)

(y1, t)

f
(X1,X2)

(x1, t)
=

β1(β2 + β12)e−β1y1−(β2+β12)t

α1(α2 + α12)e−α1x1−(α2+α12)t
=

β1(β2 + β12)

α1(α2 + α12)
· e(α1x1−β1y1)+[(α2+α12)−(β2+β12)]t

and in this case, t 7−→
f
(Y1,Y2)

(y1,t)

f
(X1,X2)

(x1,t) is increasing on [y1, ∞) ∀ 0 < x1 ≤ y1 if and only if

α2 + α12 ≥ β2 + β12.
If (y1, t) /∈

{
s ∈ R2 : 0 < s1 ≤ s2

}
then t < y1.

Case 1: t < x1 ≤ y1
Then, (x1, t) ∈

{
s ∈ R2 : 0 < s2 < s1

}
Thus,

f
(Y1,Y2)

(y1, t)

f
(X1,X2)

(x1, t)
=

β2(β1 + β12)e−(β1+β12)y1−β2t

α2(α1 + α12)e−(α1+α12)x1−α2t
=

β2(β1 + β12)

α2(α1 + α12)
· e[(α1+α12)x1−(β1+β12)y1]+(α2−β2)t

and in this case t 7−→
f
(Y1,Y2)

(y1,t)

f
(X1,X2)

(x1,t) is increasing on (−∞, x1) ∀ 0 < x1 ≤ y1 if and only if

α2 ≥ β2.
Case 2: x1 ≤ t < y1
Then, (x1, t) ∈

{
s ∈ R2 : 0 < s1 ≤ s2

}
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Thus,

f
(Y1,Y2)

(y1, t)

f
(X1,X2)

(x1, t)
=

β2(β1 + β12)e−(β1+β12)y1−β2t

α1(α2 + α12)e−α1x1−(α2+α12)t
=

β2(β1 + β12)

α1(α2 + α12)
· e[α1x1−(β1+β12)y1]+[(α2+α12)−β2]t

and in this case t 7−→
f
(Y1,Y2)

(y1,t)

f
(X1,X2)

(x1,t) is increasing on [x1, y1) ∀ 0 < x1 ≤ y1 because α2 + α12 >

α2 ≥ β2.

Thus, t 7−→
f
(Y1,Y2)

(y1,t)

f
(X1,X2)

(x1,t) is increasing on pr2

(
Supp

(
f(X1,X2)

)
∪ Supp

(
f(Y1,Y2)

))
if and

only if α2 ≥ β2 and α2 + α12 ≥ β2 + β12.

5. Likelihood Ratio Order of the Marshall–Olkin Exponential Distributions Family

Theorem 5 describes a property of the probability density function of a Marshall–Olkin
Exponential distribution and Theorem 6 gives necessary and sufficient conditions for
multivariate likelihood ratio order of the bivariate Marshall–Olkin exponential distribu-
tions family.

Theorem 5. Let X ∼ MOExp(α1, α2, α12). Then, fX is MTP2.

Proof. We have ∂2

∂x1∂x2
ln fX(x) = 0 ∀ x ∈ R2. From Lemma 1, it follows that fX is

MTP2.

Theorem 6. Let X ∼ MOExp(α1, α2, α12) and Y ∼ MOExp(β1, β2, β12). Then
X ≺lr Y if and only if αi ≥ βi and αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2}.

Proof. fX and fY are MTP2. From Remark 1, it follows that

X ≺lr Y ⇐⇒ (x1, x2) 7−→
fY(x1, x2)

fX(x1, x2)
is increasing on (0, ∞)2.

Now, we have

fY(x1, x2)

fX(x1, x2)
=

β1(β2 + β12)

α1(α2 + α12)
· e(α1−β1)x1−(α2+α12−β2−β12)x2 · 1{y∈R2 :0<y1≤y2}(x1, x2)+

β2(β1 + β12)

α2(α1 + α12)
· e(α1+α12−β1−β12)x1−(α2−β2)x2 · 1{y∈R2 :0<y2<y1}(x1, x2).

However,
(x1, x2) 7−→ fY(x1,x2)

fX(x1,x2)
is increasing on

{
y ∈ R2 : 0 < y1 ≤ y2

}
and on{

y ∈ R2 : 0 < y2 < y1
}

is equivalent to

αi ≥ βi and αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2}.

Obviously, if (x1, x2) 7−→ fY(x1,x2)
fX(x1,x2)

is increasing on
{

y ∈ R2 : 0 < y2 < y1
}

then, from

the continuity of this function on (0, ∞)2, it is increasing on
{

y ∈ R2 : 0 < y2 ≤ y1
}

.
If (x1, x2) ∈

{
y ∈ R2 : 0 < y1 ≤ y2

}
and (t1, t2) ∈

{
y ∈ R2 : 0 < y2 < y1

}
with

(x1, x2) ≤ (t1, t2), then there exists the point

(s1, s2) ∈
{

y ∈ R2 : 0 < y1 = y2

}
with

(x1, x2) ≤ (s1, s2) ≤ (t1, t2).
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Thus,
fY(x1, x2)

fX(x1, x2)
≤ fY(s1, s2)

fX(s1, s2)
≤ fY(t1, t2)

fX(t1, t2)
.

Similarly, we prove that if (x1, x2) ∈
{

y ∈ R2 : 0 < y2 < y1
}

and

(t1, t2) ∈
{

y ∈ R2 : 0 < y1 ≤ y2
}

with (x1, x2) ≤ (t1, t2) then fY(x1,x2)
fX(x1,x2)

≤ fY(t1,t2)
fX(t1,t2)

.

Therefore, (x1, x2) 7−→ fY(x1,x2)
fX(x1,x2)

is increasing on (0, ∞)2 if and only if αi ≥ βi and
αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2}.

It follows that X ≺lr Y ⇐⇒ αi ≥ βi and αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2}.

Remark 3. From Proposition 4, Theorem 4, and Theorem 6 we have that X ≺clr Y < X ≺lr Y.

6. Weak Hazard Rate Order of the Marshall–Olkin Exponential Distributions Family

Theorem 7 describes the multivariate weak hazard rate order of the bivariate Mar-
shall–Olkin exponential distributions family.

Theorem 7. Let X ∼ MOExp(α1, α2, α12) and Y ∼ MOExp(β1, β2, β12). Then,
X ≺whr Y ⇐⇒ αi ≥ βi and αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2}.

Proof. Let us suppose that X ≺whr Y.
We have

α1 · 1{y∈R2 :0<y1≤y2}
(

n, n2
)
+ (α1 + α12) · 1{y∈R2 :0<y2<y1}

(
n, n2

)
≥

β1 · 1{y∈R2 :0<y1≤y2}
(

n, n2
)
+ (β1 + β12) · 1{y∈R2 :0<y2<y1}

(
n, n2

)
,

α1 · 1{y∈R2 :0<y1≤y2}
(

n2, n
)
+ (α1 + α12) · 1{y∈R2 :0<y2<y1}

(
n2, n

)
≥

β1 · 1{y∈R2 :0<y1≤y2}
(

n2, n
)
+ (β1 + β12) · 1{y∈R2 :0<y2<y1}

(
n2, n

)
,

α2 · 1{y∈R2 :0<y1≤y2}
(

n, n2
)
+ (α2 + α12) · 1{y∈R2 :0<y2<y1}

(
n, n2

)
≥

β2 · 1{y∈R2 :0<y1≤y2}
(

n, n2
)
+ (β2 + β12) · 1{y∈R2 :0<y2<y1}

(
n, n2

)
and

α2 · 1{y∈R2 :0<y1≤y2}
(

n2, n
)
+ (α2 + α12) · 1{y∈R2 :0<y2<y1}

(
n2, n

)
≥

β2 · 1{y∈R2 :0<y1≤y2}
(

n2, n
)
+ (β2 + β12) · 1{y∈R2 :0<y2<y1}

(
n2, n

)
, where n ∈ Z, n ≥ 2.

Thus, αi ≥ βi and αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2}.
Let us prove the converse.
From αi ≥ βi and αi + α12 ≥ βi + β12 ∀ i ∈ {1, 2}, it follows that

α1 · 1{y∈R2 :0<y1≤y2}(x1, x2) + (α1 + α12) · 1{y∈R2 :0<y2<y1}(x1, x2) ≥

β1 · 1{y∈R2 :0<y1≤y2}(x1, x2) + (β1 + β12) · 1{y∈R2 :0<y2<y1}(x1, x2) ∀ x ∈ R2

and
α2 · 1{y∈R2 :0<y1≤y2}(x1, x2) + (α2 + α12) · 1{y∈R2 :0<y2<y1}(x1, x2) ≥

β2 · 1{y∈R2 :0<y1≤y2}(x1, x2) + (β2 + β12) · 1{y∈R2 :0<y2<y1}(x1, x2) ∀ x ∈ R2

Thus,
rX(x) ≥ rY(y) ∀ x ∈ Supp(F∗X) ∩ Supp(F∗Y).
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Remark 4. From Theorem 4 and Theorem 7 we have that X ≺clr Y ; X ≺whr Y.

7. Application in the Study of Reliability of Bridges Affected by Earthquakes

Suppose that we analyze the reliability of two bridges that cross each of the two areas
with significant seismic risk. It is obvious that there is an area of each bridge that can be
affected by earthquakes in both areas of the bridge, but there are also areas that can be
affected only by earthquakes in that area. The risk of the first (respectively, the second)
bridge collapsing suddenly due to significant damage caused by an earthquake after a
period t ≥ 0 from the construction of the bridge is represented by the bivariate vector
X ∼ MOExp(α1, α2, α12) (respectively, Y ∼ MOExp(β1, β2, β12)).

Eu(X1, X2) is increasing when αi + α12 is decreasing for all i ∈ {1, 2}, and only α2 is
decreasing. Thus, from Theorem 4 we have that if αi + α12 ≥ βi + β12 for all i ∈ {1, 2}
and α2 ≥ β2, then X ≺clr Y, thus X ≺st Y. We can interpret that the second bridge will
last longer.

From Theorem 7, we have that the risk of the bridge collapsing is increasing when
αi + α12 and αi are decreasing for all i ∈ {1, 2}.

Now, we have the parameters of the bivariate Marshall–Olkin exponential distribution
in Table 1, which describes the lifetime of a bridge. The parameters were randomly gener-
ated in the interval (0, 1) and will be used to illustrate the application of multivariate para-
metric inequalities for estimating the probability of an earthquake after another earthquake.

Table 1. The lifetime of a bridge.

Name of the Bridge α1 α2 α3

Golden Gate bridge 0.32 0.26 0.21
Brooklyn bridge 0.25 0.28 0.22
London bridge 0.40 0.32 0.28

Sunshine Skyway bridge 0.21 0.23 0.22
Williamsburg bridge 0.24 0.45 0.31
Bixby Creek bridge 0.23 0.40 0.39

New River Gorge bridge 0.22 0.21 0.24

Let us consider Xi ∼ MOExp(α1, α2, α12), where α1, α2, α12 are the values from the
(i + 1)-th row of the table, i ∈ {1, 2, . . . , 7}.

Then, we have:
X3 ≺whr X1 ≺whr X2 ≺whr X4; X5 ≺whr X6 ≺whr X4; X6 ≺whr X7
but X1 ⊀whr X7; X4 ⊀whr X7;
Therefore, among the Golden Gate, Brooklyn, London, and Sunshine Skyway bridges

and after a t > 0 time interval, the London bridge has the highest probability of collapsing
suddenly due to significant damage caused by an earthquake and the Sunshine Skyway
bridge has the the lowest probability.

Additionally, among the Bixby Creek and New River Gorge bridges and after a t > 0
period, the Bixby Creek bridge has the higher probability of collapsing suddenly due to
significant damage caused by an earthquake than the New River Gorge bridge.

Between the Golden Gate and New River Gorge bridges, it cannot be determined which
probability of collapsing suddenly due to significant damage caused by an earthquake after
a t > 0 period is greater;

X4 ≺lr X2 ≺lr X1 ≺lr X3; X4 ≺lr X6 ≺lr X5; X7 ≺lr X6
but X1 ⊀lr X7; X4 ⊀lr X7;
These order relations imply that
X4 ≺clr X2 ≺clr X1 ≺clr X3; X4 ≺clr X6 ≺clr X5; X7 ≺clr X6; X1 ⊀lr X7; X4 ⊀lr X7.
Additionally, X4 ⊀clr X7 and X7 ⊀clr X4.



Mathematics 2023, 11, 102 13 of 14

8. Conclusions

In this article, we proposed and studied a new stochastic order for multivariate
distributions. The study was focused on absolutely continuous distributions according
to the Lebesgue measure. This new order, namely, the conditional likelihood ratio order,
involves the multivariate stochastic ordering; it resembles the likelihood ratio order in the
univariate case but is much easier to verify than the likelihood ratio order in the multivariate
case. Additionally, the likelihood ratio order in the multivariate case implies this ordering.
However, the conditional likelihood ratio order does not imply the weak hard rate order,
and it is not an order relation on the multivariate distributions set.

The new conditional likelihood ratio order, together with the likelihood ratio order
and the weak hazard rate order, were studied in the case of the bivariate Marshall–Olkin
exponential distributions family, which has a lack of memory type property. At the end of
the article, we also presented an application of the analyzed orderings for this bivariate
distributions family to the study of the effects of earthquakes on bridges. New research
directions opened by the present approach include the study of the conditional likelihood
ratio order for other distributions families, together with new applications, including
economics and finance domains.
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