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Abstract: A fair curve with exceptional properties, called the log-aesthetic curves (LAC) has been
extensively studied for aesthetic design implementations. However, its implementation in terms
of functional design, particularly hydrodynamic design, remains mostly unexplored. This study
examines the effect of the shape parameter α of LAC on the drag generated in an incompressible fluid
flow, simulated using a semi-implicit backward difference formula coupled with P2 − P1 Taylor–
Hood finite elements. An algorithm was developed to create LAC hydrofoils that were used in this
study. We analyzed the drag coefficients of 47 LAC hydrofoils of three sizes with various shapes in
fluid flows with Reynolds numbers of 30, 40, and 100, respectively. We found that streamlined LAC
shapes with negative α values, of which curvature with respect to turning angle are almost linear,
produce the lowest drag in the incompressible flow simulations. It also found that the thickness
of LAC objects can be varied to obtain similar drag coefficients for different Reynolds numbers.
Via cluster analysis, it is found that the distribution of drag coefficients does not rely solely on the
Reynolds number, but also on the thickness of the hydrofoil.

Keywords: log-aesthetic curves; aesthetic curve; drag

MSC: 65D17, 68U05, 35Q30, 76-05

1. Introduction

Log-aesthetic curve (LAC), first proposed by Yoshimoto and Harada [1], refers to
a family of aesthetically pleasing curves with monotonic curvatures. Harada et al. [2]
found that the manufactured and natural shapes that are deemed beautiful have a linear
Logarithmic Distribution Diagram of Curvature (LDDC). Thus, Miura [3] derived the LAC
fundamental equation by equating the gradient of the Logarithmic Curvature Graph (LCG),
the analytical form of LDDC, to a constant α, which is the parameter determining the shape
of the LAC. A designer usually interrogates curves using the curvature profiles, which
involve second derivatives of curves, whereas LCG involves third derivatives, which are
thus suitable for higher-order shape interrogation [4].

LAC has since then been proposed for many applications such as car design [5], mod-
eling transitional curves [6], path planning [7], Computer-Aided Design (CAD) systems [8],
and architecture design [9]. The success of LAC is due to its underlying properties; it
has a sufficient degree of freedom and shape parameters to represent various spirals [10].
However, there is still much to be discovered about its fluid dynamics properties. It is
unknown how fluid flow and drag changes with the change in the LAC’s shape, which is
determined by its shape parameter α. To the best of our knowledge, there is not yet any
literature that elucidates this relationship.

Takuma et al. [11] studied how curvature affects the energy absorption characteristic
of cylindrical corrugated tubes, showing that curve properties such as curvature have
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more to offer than contributing solely to aesthetic appeals. Likewise, we wish to elucidate
how LACs’ shape properties, e.g., LCG gradient and curvature, affect fluid dynamics
of incompressible fluid flows. Hence, we constructed hydrofoil-like objects using LAC
and investigated their drag coefficient in an incompressible fluid flow using numerical
simulation. The information obtained from this study may aid in designing submerged
structures, objects, or vehicles, especially in drag reduction.

Lift and drag evaluations were based on the volume integral formulation found
in [12,13]. The volume integral formulation has been known to provide better lift and
drag coefficient estimations than conventional line integrals along our streamlined-shaped
object. Furthermore, volume integral formulation is known to be less sensitive to a slight
change in the mesh generated around the object. Recently, [14] reported the behavior of
streamlines and fluid flow around streamlined-shaped objects constructed with LAC.

The contribution of this paper is two-fold. This paper completes the work of Wo
et al. [14] to report how an LAC’s shape, dictated by its shape parameter, influences the
drag of an incompressible fluid flow. An effect of the Reynolds number on the drag
coefficient trend is also observed. Furthermore, an algorithm was developed to create LAC
that satisfies given length, height, G1 Hermite data on one end, and G0 Hermite data on
the other. This algorithm is used to construct LAC hydrofoils used in this study.

The rest of the paper is organized as follows. Section 2 discusses the numerical
method used to simulate the incompressible non-stationary fluid flow. Section 3 elucidates
the creation of an LAC hydrofoil with user-specified thickness and shape parameter α.
Section 4 specifies the computational and domain settings used for the simulations. The
simulation results and their drag coefficient distribution are presented and discussed in
Sections 5 and 6, respectively. Finally, a conclusion is made, and future work is briefly
discussed at the end of this paper. The results are expected to serve as a stepping stone in
preparing LACs for hydrodynamic design.

2. Modeling Incompressible Fluid Flow and the Drag Coefficient

To solve an incompressible two-dimensional fluid flow problem using a numeri-
cal scheme, we first rewrite the Navier–Stokes Equation (NSE) in its weak formulation
form [13]:

∂u
∂t

+ u · ∇u− ν∆u +
1
ρ
∇p = f on Ω× (0, T),

∇ · u = 0 on Ω× (0, T),

u(x, 0) = u0 in Ω,

u(x, t) = g on Γ× (0, T),

(1)

where u is the velocity vector field, ν is the kinematic viscosity, p is the pressure, f represents
any external force (which is usually zero), u0 is the initial velocity, T is the maximum time
(t), and g is the condition (velocity field) enforced on the boundary Γ of domain Ω. The
additional f in the equation will not affect any of the subsequent analyses [15]. We set
ρ = 1 and assume the effect of gravity is negligible for the problem.

We choose the Finite Element Method (FEM) for the space approximation of NSE. The
semi-discrete form for Equation (1) is given as follows:∫

Ω

d
dt

uĥ(t) · vĥdx +
∫

Ω
ν∇uĥ(t) : ∇vĥdx +

∫
Ω

(
uĥ(t) · ∇uĥ(t)

)
· vĥdx (2)

−
∫

Ω
pĥ(t)∇ · vĥdx =

∫
Ω

fĥ(t) · vĥdx, ∀ vĥ ∈ Vĥ,

−
∫

Ω
qĥ∇ · uĥ(t)dx = 0, ∀ qĥ ∈ Mĥ, (3)

uĥ(0) = u0
ĥ, (4)
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where u0
ĥ

is an approximation of u0 [13]. Our goal is to find uĥ (t) ∈ Vĥ and pĥ(t) ∈ Mĥ
for all t ∈ (0, T). We follow the standard notation for Sobolev spaces for the rest of
this paper [16]. Using the Taylor–Hood discretization of space, the following spaces are
obtained [13]:

Vĥ = Xĥ ∩
[

H1
0(Ω)

]2
, Xĥ =

{
vĥ ∈

[
C0(Ω̄)

]2
|vĥ|K ∈ P2, ∀K ∈ Tĥ

}
,

Mĥ = Yĥ ∩ L2
0(Ω), Yĥ =

{
qĥ ∈ C0(Ω̄)|qĥ|K ∈ P1, ∀K ∈ Tĥ

}
,

(5)

where qĥ is a continuous function, 〈pĥ, qĥ〉 =
∫

Ω pĥqĥdΩ, and ‖qĥ‖0 = 〈qĥ, qĥ〉
1
2 . The

notation H1
0 denotes the subset of the Sobolev space H1 (of functions with at least one weak

derivative), whose members are equal to zero at the boundaries of the domain. Meanwhile,
C0 denotes the space of continuous functions defined in Ω.

The Taylor–Hood elements satisfy the inf-sup condition, also known as the Ladyzhen-
skaya–Babuška–Brezzi condition (LBB), indicating that the system is well-posed [17,18].
The Taylor–Hood elements consist of continuous piece-wise quadratic polynomials for
velocity and linear polynomials for pressure (see Figure 1). The notation Tĥ represents a
regular triangulation of Ω, while Pk denotes the Lagrange polynomials space of k-degree
on the triangles K. The pressure, p, is taken into L2

0 (Ω) for both Stokes equation and
NSE. The notation L2

0 (Ω) stands for the space of (generalized) functions L2 (Ω), which are
square-integrable and have a zero average on Ω [13,19]. This is because p is only unique
up to a constant when the velocity’s Dirichlet boundary condition is imposed on all ∂Ω.
To counter this, we penalize the pressure to restrain the constant such that a non-singular
algebraic system can be acquired [13]. The solution (uε,pε), where ε > 0 is the penalized
parameter, produced by the penalized system, converges to the non-penalized system’s
(u, p) [20].

The application of the second-order semi-implicit time-stepping method onto the NSE
can produce the following problem [13]: given values {uj}1

j=0 and a constant time step, ∆t,
find the solution (un+2, pn+2) of

The discretization of timederivative︷ ︸︸ ︷
1

∆t

(
αun+2 +

k

∑
j=i

β jun+2−j

)
−ν∆un+2+

Nonlinear advection extrapolated at t=tn+2︷ ︸︸ ︷
k

∑
j=1

γjun+2−j · ∇un+2−j

+∇pn+2 = fn+2.

(6)

The coefficients α, {β j}2
j=1 ∈ R, where R represents real numbers, are the result of

applying the backward differentiation formula on the time derivative with α + ∑2
j=1 β j = 0.

Meanwhile, the coefficients {γj}2
j=1 ∈ R generate the extrapolation formula for the non-

linear term, which satisfies ∑2
j=1 γj = 0. The terms ∇pn+2 and ∇ · un+2 used in the

velocity–pressure coupling are taken implicitly to strictly enforce the discrete incompress-
ibility condition. The diffusion term−∇un+2 is taken implicitly as well, to prevent stringent
stability conditions in O(ν−1ĥ2) on the time step.

This study employs the second-order semi-implicit backward difference formula
(SBDF) [13]. The SBDF does not self-start and hence requires a proper initialization for
{uj}2

j=1, in other words, obtainin u1 from u0, which can be achieved by simply employing
the first-order SBDF. The time-discretized momentum equation when second-order SBDF
is applied is written as [13]: given the initial solution u0

h and a proper initialization, u1
ĥ
, we

can find the solution (un+2
ĥ

, pn+2
ĥ

) of

3un+2
ĥ
− 4un+1

ĥ
+ un

ĥ
2∆t

− ν∆un+2
ĥ

+∇pn+2
ĥ

= fn+2
ĥ
− 2B

(
un+1

ĥ

)
+ B

(
un

ĥ

)
, (7)
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for all n ∈ N, where the nonlinear advection term is denoted by B(uĥ) = uĥ · ∇uĥ. The
notation N denotes the set of natural numbers.

Velocity Pressure

P2 P1

Figure 1. Conventional representation of the Taylor–Hood P2 − P1 element.

3. Creating Same-Sized LAC Hydrofoils with Various Shapes

The hydrofoils are generated using the LAC Equation [21]:

P(θ) =

{∫ θ
0 e(Λ+i)ψ dψ, if α = 1∫ θ
0 ((α− 1)Λψ + 1)

1
α−1 eψi dψ, otherwise

(8)

where α dictates the type and shape of the LAC generated, Λ is the rate of change of
curvature with respect to the curve’s arc length, and θ is the turning angle of the curve.
It is well known that LACs with α = −1, 0, and 1 are the Euler spiral, logarithmic spiral,
and Nielsen’s spiral, respectively. LACs with α < 0 are curves classified as divergent,
α = 0 as neutral, and α > 0 as convergent. These classifications are based on the designers’
impression of the curve [22].

The hydrofoils used in this study were generated using Equation (8) by fixing the
length (c) and height of the LAC, which makes up the upper half of the hydrofoil, through
manipulating Λ and scaling the LAC while ensuring the tangent vector (~T) at the leading
edge is orthogonal to the x-axis (see Figure 2). The generated curve is then reflected along
the x-axis to produce the complete hydrofoil shape. The generated shape is G2-continuous
everywhere except at the trailing edge [23]. The thickness of the thickest section of the
hydrofoil is denoted by h.

h

2

T

Figure 2. An LAC that makes up half of the hydrofoil.

The steps for generating the hydrofoils are elucidated in Algorithm 1. Two examples
of the output are shown in Figures 3 and 4. The size difference in the figure refers to the
difference between the size of the LAC of the input α value (orange) and the size of the
LAC of α = 0 (grey).
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Algorithm 1: Building LAC Hydrofoil with User-specified Size

The tangential angles {θ0, θ1} at the start and end of a LAC curve
segment, (r(θ, Λ)), a preferred shape parameter, α, and tolerance,
tol, are given. The shape parameter Λ is searched to fit the LAC
segment to the specified h and c. An LAC segment with its leading
edge tangent parallel to the y-axis and leading and trailing edge
points lying on y = 0 is rendered. The segment is then reflected
along the x-axis to complete the hydrofoil shape. The rotation

function is defined by R(Θ) =

(
cos (Θ) − sin (Θ)
sin (Θ) cos (Θ)

)
. Let the function

V(a, b) = a·b
‖a‖‖b‖ be the vector angle between arbitrary vectors a and

b.
Data: θ0, θ1, h0 = h2, α, tol
Result: LAC segment
y← 1;
X ← x;
N ← n;
while ε > tol do

τ(θ, Λ)← (−x′(θ,Λ),y′(θ,Λ))
‖r′(θ,Λ)‖ ;

θ1 ← Solve V
(

R
(
V
(
(1, 0), r

(
θ̂, Λ

)))
. τ
(
θ̂, Λ

)
, (0, 1)

)
= 0 for θ̂;

Set1 ← for i < imax, i ++ do
Evaluate

(
x
(

θ0 + i (θ1−θ0)
imax

, Λ
)

, y
(

θ0 + i (θ1−θ0)
imax

, Λ
))

end
Rotate the LAC segment such that y(θ0, Λ) = 0 and y(θ1, Λ) = 0;
scalar ← |x(θ0,Λ )−x(θ1,Λ )|

c ;
Set1 ← xi, yi ∀ i ∈ [0, imax]← scalar.Set1;
ε← |max yi − h0| ∀ i ∈ [0, imax];
Λ← Increase or decrease Λ;

end
Set2 ← Reflect Set1 along the x-axis;
Plot LAC hydrofoil;

-1.0 -0.8 -0.6 -0.4 -0.2

-0.10

-0.05

0.05

0.10

Size difference = 5.1209× 10-15

Figure 3. Example output of Algorithm 1 (input α = 0.75).

-1.0 -0.8 -0.6 -0.4 -0.2

-0.10

-0.05

0.05

0.10

Size difference = 1.49912× 10-12

Figure 4. Example output of Algorithm 1 (input α = 0.25).
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4. Simulation and Domain Settings

The simulation domain comprises a rectangular boundary and the boundary of
the hydrofoil-shaped object in it. The rectangular boundary has vertices (−12.5,−12.5),
(−12.5, 12.5), (21, 12.5), and (21,−12.5). This is 33.5 times the chord length, c, of the
LAC hydrofoil in length and 25 times c in height to ensure a sufficiently accurate simula-
tion and drag coefficient computation [24,25]. The leading edge of the hydrofoil is set at
(−1.05551, 0), and the trailing edge at (0, 0).

The boundary conditions for the rectangular boundary’s edges (L1, L2, L3, L4) and the
hydrofoil (L5) are shown in Figure 5. Each meshed domain has approximately 75,000 nodes.
The maximum mesh spacing is 0.6 units on the rectangular boundary. The minimum
mesh spacing is approximately 0.0004 units on the LAC hydrofoil. The meshed domain is
illustrated in Figure 6. FreeFem++ [26] was employed to solve the incompressible Navier–
Stokes equations. The space approximation was carried out using the Taylor–Hood finite
element (P2 − P1) while a second-order semi-implicit backward difference formula was
chosen for time integration. The combined method provides fairly accurate approximations
for both velocity and pressure [13]. The drag coefficients are then recorded upon reaching a
steady state or when the first derivative for velocity with respect to time (in the Navier–
Stokes equation) is less than 10−5.

L
2:
u
=
1,
v
=
0

L1: u=1,v=0

L3: u=1,v=0

L5: u=0,v=0

L
4:
fr
ee

Figure 5. FEM domain with the LAC hydrofoil (α = 1) and boundary conditions.

Three experiments (cases) were designed in which the hydrofoils had different thick-
nesses at the thickest section of the hydrofoil-shaped object. The objects’ thickness h for
Case 1, Case 2, and Case 3 are 0.234185, 0.3, and 0.4, respectively. In each case, the flow is
simulated around hydrofoils with the same maximum thickness but different α values to
find their drag coefficients CD. These hydrofoils have different shapes and leading-edge
curvatures (see Figures 7–9). The α values of the hydrofoils in Figure 7 (Case 1) are {−0.05,
−0.025, −0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1}. The hydrofoil with
the smallest α value is colored in blue, and the color gradually changes into yellow as α
increases. The α values of the hydrofoil in Figure 8 (Case 2) are {−0.05, 0, 0.05, 0.1, 0.15, 0.25,
0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1, 1.2} whereas for Figure 9 (Case 3), they are {−0.25, −0.05,
0, 0.05, 0.1, 0.15, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1, 1.5}. Note that the LACs with α = 0
and α = 1 are also known as the Nielsen’s spiral and Logarithmic spiral, respectively [21].
We need to fulfill the G2 data at the leading edge, the G0 data at the trailing edge, and the
thickness of the hydrofoil to generate the hydrofoil shapes. However, due to the lack of
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the single-segment LACs’ degree of freedom, we can only create profiles within a specific
range of α in each case, thus resulting in the difference between the range of α values used
in the three cases.

Figure 6. Meshed FEM domain with the LAC hydrofoil (α = 0.5).

Figure 7. Comparison of Case 1 (h = 0.234185) hydrofoil shapes from α = −0.05 (blue) to α = 1
(yellow).

Figure 8. Comparison of Case 2 (h = 0.3) hydrofoil shapes from α = −0.05 (blue) to α = 1.2 (yellow).

Figure 9. Comparison of Case 3 (h = 0.4) hydrofoil shapes from α = −0.25 (blue) to α = 1.5 (yellow).

Three simulations were run using different Reynolds numbers (Re): 30, 40, and 100.
While Re = 30 was chosen arbitrarily, the other two Re values were chosen to examine how
the LAC hydrofoils’ drag coefficients change when there is a small increment in Re, i.e., from
30 to 40, and a large increment from 40 to 100. It is also notable that at Re = 100, the fluid’s
viscosity is similar to that of water at 20 degrees Celsius, assuming 1 unit equals 0.1 m.
The flows are assumed to be laminar, meaning the streamlines were smooth and regular.
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The Reynolds number is a similarity parameter that measures the ratio of inertial forces
to viscous forces in a flow [27]. The fluid at Re = 100 is deemed to produce less viscous
flows than Re = 30 and 40. We ran nine sets of simulations comprising 141 individual
simulations in total. The results are presented and discussed in the following section.

5. Results and Discussion

The drag coefficients denoted as CD for each simulation are listed in Tables 1–3 and
plotted in Figures 10–12. The difference between the lowest CD and the highest is shown
on the right side of Figures 10–12.

Table 1. α and CD for simulations with Re = 30.

α Case 1 Case 2 Case 3

−0.25 - - 0.521258
−0.05 0.446640 0.475329 0.522634
−0.025 0.446800 - -

0 0.446969 0.475734 0.522961
0.05 0.447340 0.476112 0.523232
0.1 0.447697 0.476487 0.523516

0.15 0.448072 0.476843 0.523750
0.2 0.448431 - -

0.25 0.448761 0.477721 0.524190
0.3 0.449071 0.47815 0.524372
0.4 0.449556 0.478454 0.524683
0.5 0.449860 0.478641 0.524931
0.6 0.450000 0.47869 0.525093

0.75 0.449951 0.47866 0.525211
0.8 0.449783 0.478519 0.525236
0.9 0.449555 0.478327 0.525195
1 0.449168 0.477669 0.525139

1.2 - 0.475734 -
1.5 - - 0.524178

Table 2. α and CD for simulations with Re = 40.

α Case 1 Case 2 Case 3

−0.25 - - 0.448448
−0.05 0.37942 0.405816 0.449585
−0.025 0.379562 - -

0 0.379712 0.406168 0.449856
0.05 0.380041 0.406495 0.450076
0.1 0.380358 0.406821 0.450311

0.15 0.38069 0.407127 0.450501
0.2 0.381008 - -

0.25 0.381299 0.407885 0.450860
0.3 0.381575 0.408255 0.451006
0.4 0.382005 0.408515 0.451255
0.5 0.382276 0.408674 0.451452
0.6 0.382403 0.408714 0.451575

0.75 0.382372 0.408688 0.451655
0.8 0.382229 0.408566 0.451671
0.9 0.38204 0.408403 0.451623
1 0.381712 0.407844 0.451566

1.2 - 0.407665 -
1.5 - - 0.450725
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Table 3. α and CD for simulations with Re = 100.

α Case 1 Case 2 Case 3

−0.25 - - 0.285798
−0.05 0.230045 0.250844 0.286243
−0.025 0.230138 - -

0 0.230236 0.251051 0.286353
0.05 0.230454 0.251242 0.286429
0.1 0.230660 0.251431 0.286522

0.15 0.230879 0.251607 0.286585
0.2 0.231089 - -

0.25 0.231278 0.251917 0.286711
0.3 0.231461 0.252042 0.286755
0.4 0.231748 0.252250 0.286825
0.5 0.231933 0.252394 0.286874
0.6 0.232026 0.252478 0.286883

0.75 0.232035 0.252487 0.286845
0.8 0.231950 0.252469 0.286833
0.9 0.231858 0.252392 0.286756
1 0.231678 0.252301 0.286686

1.2 - 0.251984 -
1.5 - - 0.286111

(a) Case 1: Re30

(b) Case 2: Re30

(c) Case 3: Re30
Figure 10. The drag coefficient of objects for various α values (Re = 30).
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(a) Case 1: Re40

(b) Case 2: Re40

(c) Case 3: Re40

Figure 11. Drag coefficient of objects for various α values (Re = 40).
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(a) Case 1: Re100

(b) Case 2: Re100

(c) Case 3: Re100

Figure 12. CD of objects for various α values (Re = 100).

It is observed that for each simulation of a different Re, the CD values for shapes of
different α exhibit a similar trend, as shown in Case 1 and Case 2. This is reflected in the
sudden drop in CD values for shapes of α = 0.8. The CD values for these cases peaked
around α = 0.6 to α = 0.75. However, for Case 3, the peak of the CD graph with Re = 100
shifted left, from α = 0.8 to α = 0.6, obviously deviating from the simulations with Re = 30
and Re = 40. The standardized CD graphs are plotted in Figure 13. The standardization
shifts and rescaled CD values of LAC hydrofoils with the same thickness but different Re
have zero mean and unit sample variance for better comparison of the CD trends. The
α values of the LAC shape that creates the most drag are shown in Table 4, along with
the corresponding CD values. The rate of change of the drag coefficient decreases as Re
increases. This statement is true for Cases 1–3.
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Figure 13. Comparison of the CD graph shape of all simulations.

Table 4. α values of the LAC shape that create the highest CD and the corresponding CD.

Case 1 (h ≈ 0.2) Case 2 (h = 0.3) Case 3 (h = 0.4)

α CD α CD α CD

Re = 30 0.6 0.450000 0.75 0.478660 0.8 0.525236
Re = 40 0.6 0.382403 0.75 0.408688 0.8 0.451671
Re = 100 0.75 0.232035 0.75 0.252487 0.6 0.286883

The streamlines (flow lines), which show the local directions of the vector field of
the simulations with the lowest and highest CD values at a steady state are shown in
Figures 14–16. The rainbow color in the background shows the scalar field, i.e., flow speed,
with red indicating low speed and purple indicating higher speed. The detachment of a
boundary layer from a surface is known as flow separation [28]. Flow separation is most
apparent in the simulation of Case 3 with Re = 100. More separation is seen in the shape,
which creates a more substantial drag. As such, most of the drag force is made up of skin
friction drag. The possible onset of wakes or flow separation in the simulation of Case 3
(Re = 100) could be the reason for the change in the CD trend observed earlier.
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(a) Case 1, from left to right: shapes with the lowest (α = −0.05) and the highest CD (α = 0.6).

(b) Case 2, from left to right: shapes with the lowest (α = −0.05) and the highest CD (α = 0.75).

(c) Case 3, from left to right: shapes with the lowest (α = −0.25) and the highest CD (α = 0.8).

Figure 14. Streamline plots (Re = 30).
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(a) Case 1, from left to right: shapes with the lowest (α = −0.05) and the highest CD (α = 0.6).

(b) Case 2, from left to right: shapes with the lowest (α = −0.05) and the highest CD (α = 0.75).

(c) Case 3, from left to right: shapes with the lowest (α = −0.25) and the highest CD (α = 0.8).

Figure 15. Streamline plots (Re = 40).

Figure 17 presents the curvature profiles of each LAC shape and its corresponding
case with different colors. The darker blue curves represent the curvature profile κ(θ) of the
LAC shapes with lower α values, where θ is the turning angle of the curve. As α increases,
the color of the κ(θ) curve turns yellow. The purple-, red-, and orange-colored curves are
the κ(θ) curves for the LAC shape with the highest CD. Shapes with the lowest CD have
an almost linear curvature κ(θ). However, CD also decreases as the κ(θ) of the LAC shape
bends more.
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(a) Case 1, from left to right: shapes with the lowest (α = −0.05) and the highest CD (α = 0.75).

(b) Case 2, from left to right: shapes with the lowest (α = −0.05) and the highest CD (α = 0.75).

(c) Case 3, from left to right: shapes with the lowest (α = −0.25) and the highest CD (α = 0.6).

Figure 16. Streamline plots (Re = 100).

Thus, it is clear that CD values for hydrofoils constructed with neutral (Nielsen’s Spiral
α = 0) and divergent LACs (α < 0) are lower than those of convergent LACs (α > 0)
and decrease as α decreases. The CD for hydrofoil constructed with convergent LACs
(α > 0) does not increase or decrease monotonically as α increases or decreases. Instead, it
gradually increases until it peaks at around α = 0.6 to 0.8 and decreases as α increases.

Figures 18–20 illustrates the distribution of time taken to reach steady state for each α.



Mathematics 2023, 11, 103 16 of 22

Figure 17. Curvature profiles of the objects.

(a) Case 1: Re30

(b) Case 1: Re40

(c) Case 1: Re100
Figure 18. Final time (T) for each simulation with shapes of h ≈ 0.2 (Case 1).
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(a) Case 2: Re30

(b) Case 2: Re40

(c) Case 2: Re100
Figure 19. Final time (T) for each simulation with shapes of h = 0.3 (Case 2).
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(a) Case 3: Re30

(b) Case 3: Re40

(c) Case 3: Re100
Figure 20. Final time (T) for each simulation with shapes of h = 0.4 (Case 3).

6. Cluster Analysis of Drag Distribution

In this section, we clustered drag coefficients in Tables 1–3 using agglomerative hierar-
chical cluster analysis [29]. This step groups a similar drag distribution among the three
different thicknesses of LAC hydrofoils with different Reynolds numbers. In this analysis,
we employed the complete linkage approach [30], which merges two clusters with the
closest maximum distance:

dAB = max
i∈A, j∈B

(
di j
)

(9)

where di j is the distance and i and j are observations in clusters A and B. The complete
linkage method is coupled with the dissimilarity distance matrix obtained from Dynamic
Time Warping (DTW) [31,32]. DTW is an algorithm that measures the similarity or distance
between two arrays or time series of different lengths [32]. The difference between DTW
and Euclidean distance is elucidated in Figure 21. Two data vectors were connected based
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on their minimal distance using DTW (green) and Euclidean (gray) distance [33]. The DTW
method provides more accurate results than the Euclidean distance. DTW does not require
the data sets to be equal in length and is not affected by shifting, unlike Euclidean distance.
The detailed algorithm of DTW can be found in [32].

Figure 21. Visual comparison of matched points based on DTW (green) and Euclidean (gray) distance.

Since we have computed drag coefficients with different h values from different α
values, the DTW algorithm matches it in a direction that minimizes the distance of drag
coefficients between various α values without losing information. Figure 22 shows a
dendrogram illustrating the clusters obtained. The x-axis is labeled based on the cases,
and their corresponding Reynolds number, e.g., C1_30, represents Case 1 with LAC object
thickness h ≈ 0.2 and Re = 30.

Figure 22. Dendrogram with two distinct clusters at a phenon line of distance 2.3.

The dendrogram has two distinct clusters at the phenon line of distance 2.1 onward
with a Cophenetic correlation coefficient (CCC) value equal to 0.86. The CCC measuring
close to 1 indicates that the accuracy of the resulting dendrogram preserves the pair-wise
distances between the drag distributions. The first cluster in orange consists of Case 3
with Re = 100. We observed this cluster with the drag that may demonstrate the onset of
unsteady flows at Re = 100 regardless of the LAC shapes. The second cluster (green) is
the combination of cases with Re between 30 and 40, where the steady flow is guaranteed.
Indeed, the two subclusters in green are also grouped based on the Reynolds number.
The exception is C3_40, where the LAC hydrofoil has h = 0.4 and Re = 40. The drag
coefficients of C3_40 have a similar distribution to C1_30, where the LAC hydrofoil has
h ≈ 0.2 and Re = 30. Similarly, the case of C3_30 tends to move away from its own
group of Re = 30. The formation of these two subclusters indicates that the distribution of
drag coefficients does not rely on the Reynolds number alone; the thickness of the LAC
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objects also plays a pivotal role in the distribution of drag coefficients. This shows that
the evaluation of Reynolds numbers based on chord length (or characteristic length) for
streamlined-shape objects may somehow need to be reformulated and is still an open
problem. This is true since the chord length of Case 3 hydrofoils, c ≈ 1, started to become
much closer to its thickness of 0.4. We recall that characteristic length directly influences the
Reynolds numbers besides the mean velocity and the eddy viscosity. In other words, the
“more accurate” Reynolds number for C3_30 can be very close to that of C1_40. Hence, they
form a subcluster. The initial effort of cluster analysis can be helpful to study the resulting
flow behavior (in this case, by only accessing their drag coefficients), even if the Reynolds
numbers are not properly evaluated. Further studies need to be carried out to make the
DTW algorithm more practical for flow characterizations, especially in the post-processing
of CFD results.

7. Conclusions

Simulations of incompressible fluid flow around streamlined shapes built using LAC,
with chord length c ≈ 1 and thickness 0.234185, 0.3, and 0.4, were carried out. The results
indicated that LAC shapes with negative α values, classified as divergent curves, and
with almost linear curvature profiles κ(θ), representing Clothoids, generate the lowest
drag. As α increases, the drag coefficient increases until it reaches a maximum of around
α = 0.6 to 0.8 and then decreases. Flow separation was not observed for any of the three
thickness variations except for the thickest LAC shape (Case 3, h = 0.4) when Re = 100.
The separation may have caused the difference in CD for Case 3 when Re = 100. It was also
observed that the time used for the simulation to reach a steady state for Case 3 exhibits an
entirely different trend compared to the other cases. Furthermore, the thickness of LAC
objects can be varied to obtain similar drag coefficients for different Reynolds numbers.
Thus, LAC with negative α values is better suited for designing submerged structures or
objects that minimize drag.

The findings obtained in this study may help in decision-making in designing ship
hulls or submerged bodies such as hydrofoils, underwater vehicles and structures, and
marine-bio-logging tags [34]. A designer may now opt to prioritize LAC with negative
values in designing such objects to minimize drag. They can also anticipate how the
drag coefficient varies as the shape of the LAC changes. This shall act as a step towards
implementing LACs in submerged objects or ship-hull designs. Additionally, this paper
presents a new algorithm for generating the LAC shapes required to construct a LAC
hydrofoil. The resulting LAC satisfies the user-specified height, length, G1 Hermite data at
one end, and G0 Hermite data at the other.

For future research, we wish to extend our study to incompressible turbulent flow
situations. We also hope to simulate incompressible flows around three-dimensional objects
built with LAC or LA surfaces and examine their hydrodynamics and vector-field topology
using an emerging method called Topological Data Analysis [35].
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