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Abstract: Models of double-source queuing-inventory systems are studied in the presence of a finite
buffer for waiting in the queue of consumer customers, where instant destruction of inventory is
possible. It is assumed that the lead times of orders, as well as the cost of delivery from various
sources, differ from each other. Replenishment of stocks from various sources is carried out according
to the following scheme: if the inventory level drops to the reorder point s, then a regular order for
the supply of inventory to a slow source is generated; if the inventory level falls below a certain
threshold value r, where r < s, then the system instantly cancels the regular order and generates
an emergency order to the fast source. Models of systems that use (s, S) or (s, Q) replenishment
policies are studied. Exact and approximate methods for finding the performance measures of
the models under study are proposed. The problems of minimizing the total cost are solved by
choosing the appropriate values of the parameters s and r when using different replenishment
policies. Numerical examples demonstrated the high accuracy of an approximate method as well as
compared performance measures of the system under various replenishment policies.
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1. Introduction

For the first time, the heading “Queuing-Inventory System” (QIS) was introduced in
the papers [1,2]. These are the systems in which in order to service incoming consumer cus-
tomers (c-customers), along with idle server, some resources are required. These resources
are called inventories.

The QIS theory has been intensively developed in the past three decades. The first
publications in this direction are [3,4]. In [4] an M/G/1 type QIS with exponentially
distributed lead time and under light traffic is considered. They obtained product form
solution for steady-state analysis. In [3] a Markov Decision Process (MDP) approach to
optimize the finite QIS is used where order size is a controllable parameter. They developed
an exact and approximate (for large scale QIS) methods to solution of the constructed MDP.

The current state of QIS theory and its applications are described in detail in a recent
review paper [5]. Therefore, we indicate here only related works published after this review
work, as well as those works that were not included in its bibliography.

This work is related to (i) QIS with destructible stocks, (ii) multi-parametric replen-
ishment policies (RP) in double sources QIS and (iii) multiple type c-customers. In what
follows, we shortly review the relevant literature.

Let us note that here we distinguish between the QISs with destructible and perishable
stocks. In turn, in a class of perishable QISs two sub-classes of systems are differentiated:
(1) QIS with individual life time (ILF) and (2) QIS with common life time (CLT). In QIS
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with ILT each item can perish independently of the others, while in QIS with CLT all items
perish together, e.g., foods with the same expiry date, medicines manufactured with the
same expiry date and so on. In considering perishable QIS with ILT, we draw from a vast
stream of literature, see, e.g., [6–12]. Models of QIS with CLT has been little studied. For
the first time, such a model was examined in [13], next in [14] and recently, in [15]. Some
review of works in this direction can be found in the last paper. Note that QIS with CLT
can be treated as QIS with catastrophes in inventory part (but not in a service facility).

Almost all studies on perishable QIS of both types are devoted to models in which
items can perish within a certain time interval. However, in practice, there are QIS in which
items can be destroyed instantly, e.g., (1) a shop selling breakable items in which destruc-
tion of the items may be the result of a worker’s careless actions; (2) a company selling
electrical/electronic goods in which destruction of the item can occur even during the sale
as a result of a power surge in the electrical network. Models of QIS with destructible
inventory are similar to models of QIS with ILT, but their main difference is as follows:
in QIS with ILT a perish rate of inventory is a linear function of inventory level (i.e., if
inventory level is m, then perish rate is mγ, where γ−1 is a life time of individual item), but
in QIS with destructible inventory, destruction rate is independent on inventory level, i.e.,
it is a constant quantity. In other words, QIS with destructible inventory can be treated as
QIS with ILT in which perish rate is a constant quantity (as in models of retrial queues with
linear and constant retrial rates from orbit). Models of QIS with destructible inventory have
hardly been studied, see [16]. In this paper, we consider models of QIS with destructible
inventory.

In the vast majority of works, models of QIS with a single source are studied. One
problem of optimal choosing of the source from a set of sources with different supply
rates and costs was solved in [17], where the optimality criterion was the total cost. In
this work, it was assumed that in the entire period of the system operation, an order is
made to only one source. However, the models of QIS with multiple sources in which an
order can be sent to different sources depending on the current inventory level represents
important scientific and practical interest. In other words, in such QISs the distribution of
the order between a fast and an expensive supplier and a slow but inexpensive supplier
are very important problems. Solutions to these problems require determining appropriate
replenishment policies (RPs).

Recently, only a few papers have considered models of double-source QISs. Original
RP in double-source QIS was recently proposed in [18,19]. Proposed in these papers, RP
is defined as follows: whenever the inventory level falls to r (>S/2), an order with the
temporary (regular) supplier for Q1 items is placed, Q1 = S − r, where S is maximal
capacity of store: whenever the inventory level reaches s < Q1 < r, s, an order of Q2 =
S− s(> s + 1) items to the regular supplier is placed and immediately cancels the order
for Q1 items from the temporary supplier (to be fair, in [18] do not explicitly state the
cancelation procedure but in [19] this fact is shown clearly). In both papers, the QIS models
with infinite queue for c-customers are considered and Neuts’ matrix-analytic method
(MAM) [20] is used.

Other kinds of RP in double-sources QISs were proposed in [21,22]. The main feature
of the proposed policies is that they are based on classical RPs, i.e., (s, S) and (s, Q) policies
are used for construction of the new RPs. In other words, in both RPs no order is placed
until the inventory level is above the reorder point s, s < S/2.

In [21] two models of double-source QIS with instantly damaging inventory were
proposed: one model uses the (s, S)-policy, and the other model uses the (s, Q)-policy
during the entire period of the system’s operation (for definiteness, we note that (s, S)-
policy (sometimes it is called “Up to S” policy) is a RP in which the order volume is as
much as it is able to bring the level back to S at the replenishment epoch and in (s, Q)-policy
the order volume is fixed and is equal to Q = S-s). In both RPs, choice of the source is made
depending on the current inventory level as follows: a regular order to SS is placed when
the inventory level drops to the value s, and an emergency order to FS is placed when the
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inventory level drops to some critical value r, where 0 ≤ r < s. Similar but hybrid RP in
double-source QIS was proposed in [22]. In hybrid RP, it is assumed that a regular order to
the Slow Source (SS) is placed in accordance with (s, Q)-policy while an emergency order to
the Fast Source (FS) is placed in accordance with (s, S)-policy. In all cases, at the time of
placing an emergency order, the regular order is immediately canceled.

After the publications of papers [21,22], the authors became aware of works [23,24]. It
appears that the first paper dealing with QIS with multiple sources was [23]. In that paper,
the service facility of examined QIS is a M/M/1/∞ queue, and the selection of source
among two sources with different lead times is determined according to Bernoulli trials.
Arriving customers are lost when inventory is out of stock (lost sales scheme) and fixed size
order RP is used. The authors obtained explicit formulas for calculating the steady-state
distribution of constructed 3D Markov chain. Note that the implementation of randomized
source selection schemes in practice encounters certain difficulties, and sometimes becomes
impossible. The following single-server Markovian QIS model with lost sales scheme and a
deterministic rule for source choosing is explored in [22]: a fixed quantity Qi is ordered to
supplier i when on-hand inventory level reaches ri where max

i
(ri) ≤ min

i
(Qi). It is assumed

that when a supplier is about to deliver an order, the existing outstanding order to the other
supplier, if any, is automatically cancelled. By using the results of [25] authors proof that the
stationary distribution of queue length is independent of the inventory level, and is identical
to the stationary distribution of the queue length in a classical M/M/1/distribution of, i.e.,
the joint stationary distribution of queue length and inventory level has multiplicative form.
Note that in order to prove this fact, the key assumption is the use of the lost sales scheme.
It is important to note that in the works [21,22], as well as in this paper, it is assumed that an
arriving c-customer can queue up even if the warehouse is empty, i.e., no lost sale scheme
is used.

Classification of c-customers in QIS can be done by using their various property. So,
models of QIS with high and low priorities of c-customers and with different RPs were
considered in [26–34].

In the indicated above papers the following admission scheme for different types of
c-customers is applied: if inventory level is exceeding some critical level then c-customers
of both types are serviced, but if it is lower than the critical one the service is given only to
high priority c-customers. Another admission scheme was proposed in [35]: high-priority
c-customers are accepted if there is at least one free space in the buffer, and low priority
c-customers are only accepted when the total queue length is less than the given threshold
value. Models of QISs in which c-customers are required various size of inventory was
examined in [36].

Note that the classification of c-customers can be carried out not at the instant of their
arrival, but after the completion of the service process. In other words, in some QIS part of
c-customers may refuse to purchase the item after being served due to some reasons, i.e.,
they require only service and do not require items. Such a multi-class QIS model was first
studied in [37] and since then a series of papers have taken this phenomenon into account;
see, e.g., the recent paper [38] and its reference list. In this paper, we also take into account
this phenomenon.

We refer the readers to [14,39–44] for a discussion of more complex QIS models with
Markovian Arrival Process (MAP) and phase-type distribution of service and/or lead times.

In all available papers devoted to double-source QIS, the models of systems with
infinite queue for c-customers are considered and lost sale scheme is used. In this paper, we
propose novel RPs in double-source QIS with finite room for c-customers and destructible
stocks items to improve its performance measures by switching the order from slow source
to fast one depending on the current level of inventory. Moreover, here unlike the known
papers, no lost sale scheme for c-customers is used.

The main contributions of this paper can be summarized as follows:
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• A novel double-source QIS with finite room for waiting an impatient c-customers
and destructible stocks under no lost sale scheme is formulated as a two-dimensional
Markov process;

• The novel replenishment policies in double-source QIS based on classical (s, S) and (s,
Q) policies are proposed. An additional level-dependent parameter in these policies is
defined that determine switching of order from slow to fast source;

• An approximate method to derive closed-form expressions for the system’s steady-
state probabilities and for its performance measures is developed;

• By numerical experiments it is shown that under certain realistic assumptions related
to the ratio of some system’s load parameters, the developed approximate method has
high accuracy;

• Assuming linear costs for each waiting and losing customer and each stored item,
results of a cost analysis are provided, demonstrating how the optimal values of the
replenishment policies is affected by the load parameters of the system.

The paper has the following structure. In Section 2 we describe the models by spelling
out the assumptions of the underlying variables and proposed replenishment policies.
Exact and approximate approaches to steady-state analysis of the models including the
list of main performance measures are given in Section 3. Results of illustrative numerical
examples along with optimization problems are demonstrated in Section 4. Concluding
remarks are given in Section 5.

2. The Models

Below we accept the following assumptions:

• Single-server QIS contains the store of maximal capacity S, S < ∞, and c-customers
forms the Poisson flow with rate λ;

• An incoming c-customer is accepted for servicing immediately if the server is idle
at that moment and the inventory level is positive; if the inventory level is positive
and the server is busy, then this c-customer is placed in a queue of finite length. The
maximum buffer size for waiting of c-customers is N − 1, N < ∞; if upon arrival of
the c-customer buffer is full, then this c-customer is lost with probability (w.p.) one;

• An incoming c-customer can join the queue even when the inventory level is zero, i.e.,
if upon arrival of the c-customer an inventory level is zero, but there is free space in
the buffer, then it either joins the queue w.p. ϕ1, or leaves the system w.p.ϕ2, where
ϕ1 + ϕ2 = 1;

• After the service is completed, each c-customer either does not receive items w.p.
σ1, or receives items w.p. σ2, where σ1 + σ2 = 1. In both cases, the service time of
c-customers has exponential distribution function (d.f.) with different mean values,
i.e., if the c-customer does not receive the items, then the average time of its service is
equal to µ−1

1 ; otherwise, this time is equal to µ−1
2 ;

• The c-customer at the head of the queue becomes impatient if the inventory level
drops to zero, i.e., in such cases, the c-customer at the head of the queue waits for a
random time, which has an exponential d.f. with an average τ−1, and after this time it
leaves the system without items;

• Along with c-customers, the system receives a Poisson flow of destructive customers
(d-customers) with rate κ, i.e., upon arrival of d-customers, the inventory level is
instantly reduced by one. It is assumed that the d-customer may even destroy the item
that is in the release status to the c-customer; if the inventory level is equal to zero,
then the arrived d-customer does not affect the operation of the system;

• Replenishment can be done either from the SS or from the FS. The lead time from each
source has an exponential d.f., i.e., if an order is made to SS, then the average waiting
time for the supply of stock is ν−1

1 , and if an order is made to FS, then the average
waiting time for the supply of stock is ν−1

2 , where ν2 > ν1;
• The system can use either (s, S) or (s, Q) replenishment policies. In both policies, it is

assumed that if the stock level drops to the order point s, 0 < s < (S/2), then an order
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is made to SS, and when the stock level drops to the threshold value r, 0 ≤ r < s, then
the order is instantly canceled from SS and the order is sent to FS. The time required for
a cancellation issue is negligible, i.e., this time is zero. It is also assumed that canceling
an order from an SS results in certain penalties.

The problem is to find the joint distribution of the number of c-customers in the
system and the inventory level of the system and to determine the main performance
measures: average inventory level, average supply from each source, average reorder rate
to each source, average destruction rate of inventory due to the receipt of d-customers,
average length of queue of c-customers and loss probability of c-customers. In addition,
the problems of optimizing the system by choosing the optimal values of the reorder point
s and the threshold value r are of interest.

3. The Steady State Analysis of the Models

First consider the model QIS under (s, S) policy. Mathematical model of this QIS is
two dimensional Markov chain (2D MC) with states (n, m), where n is the total number
of c-customers in the system (in buffer or being serviced), n = 0, 1, . . . , N, and m is
on-hand inventory level, m = 0, 1, . . . , S. State space of this 2D MC is given as E =
{0, 1, . . . , N} × {0, 1, . . . , S}.

Transition rates from state (n1, m1) ∈ E to state (n2, m2) ∈ E are denoted by q((n1, m1);
(n2, m2)). So, the investigated 2D MC has an infinitesimal generator Q1 = (q1(n1, m1); (n2, m2)) :
(n1, m1), (n2, m2) ∈ E with the following transition rates for (n1, m1) ∈ E:

q1((n1, m1); (n1 + 1, m1)) = λϕ1 I(n1 < N)·I(m1 = 0); (1)

q1((n1, m1); (n1 + 1, m1)) = λI(n1 < N)·I(m1 > 0); (2)

q1((n1, m1); (n1 − 1, m1)) = µ1σ1·I(m1 > 0) (3)

q1((n1, m1); (n1 − 1, m1 − 1)) = µ2σ2·I(m1 > 0) (4)

q1((n1, m1); (n1, m1 − 1)) = κ·I(m1 > 0) (5)

q1((n1, m1); (n1 − 1, m1)) = τ·I(n1 > 0)·I(m1 = 0) (6)

q1((n1, m1); (n1, S)) = ν1·I(r < m1 ≤ s) (7)

q1((n1, m1); (n1, S)) = ν2·I(0 ≤ m1 ≤ r). (8)

Hereinafter, I(A) is the indicator function of the event A, which is 1 if A is true and 0
otherwise.

Based on relations (1)–(8) we conclude that the constructed 2D MC is a reducible chain,
i.e., for any positive values of the initial parameters, stationary mode is existing. Let p(n, m)
represent the probability of the state (n, m) ∈ E. The system of global balance equations
(SGBE) is expressed as follows:

p(n1, m1) ∑
(n2,m2)∈E+

(n1,m1)

q((n1, m1), (n2, m2)) = ∑
(n2,m2)∈E−

(n1.m1)

q((n2, m2), (n1, m1))p(n2, m2), (n1, m1) ∈ E (9)

In Equation (9) the following notations are used: E+
(n1,m1)

is the subset of states of E,

that can be reached from state (n1, m1) in one step; E−
(n1,m1)

is the subset of states of E, from
which it is possible to go to the state (n1, m1) in one step.

Normalizing condition should be added to SGBE (9):

∑
(n,m)∈E

p(n, m) = 1. (10)
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Note that SGBE (9), (10) represent the system of linear algebraic equations with
dimension (N + 1)(S + 1). For moderate values of the parameters N and S, constructed
SGBE (9), (10) can be solved by using existing software. However, certain computational
difficulties arise in cases where the dimension of the SGBE is large. To overcome these
difficulties, an approximate method for calculating the steady-state probabilities is proposed
below.

The method developed below can be correctly applied to models of QIS in which
the following assumption is fulfilled: the rate of c-customers exceeds both the rate of
d-customers and the replenishment rate, λ > max(κ, ν). Note that this assumption corre-
sponds to the working mode of real QISs. In addition, as a rule, in real QISs, the average
service time of c-customers that receive inventory is much longer than the average service
time of c-customers that receive only service, i.e., µ1 > µ2.

Under these assumptions, consider the following splitting of the initial state space E
of the studied 2D MC:

E =
S
∪

m=0
Em, Em1 ∩ Em2 = ∅, m1 6= m2, (11)

where Em = {(n, m) ∈ E : n = 0, 1, . . . , N} , m = 0, 1, . . . , S.

Note 1. From relations (1)–(8) we conclude that when indicated above assumptions are fulfilled,
the transitions intensities between the states within classes Em, m = 0, 1, . . . , S, is greater than
the transitions intensities between the states from different classes. Therefore, the application of the
space merging method for the examined 2D MC is correct, see Appendix of the book [45].

Next, each subset of states Em is combined into one merged state 〈m〉, and the following
merging function is determined in the initial state space E : U(n, m) = 〈m〉 , (n, m) ∈ E.
The merged states form the set Ê = {〈m〉 : m = o, 1, . . . , S}.

Below we show that when using the (s, S)-policy, the approximate values of the
steady-state probabilities are calculated as

p(n, m) ≈ ρm(n)π1(〈m〉), (12)

where

ρm(n) =

{
θn 1−θ

1−θN+1 , m > 0, n = 0, 1, . . . , N,

ψn 1−ψ

1−ψN+1 , m = 0, n = 0, 1, . . . , N,
(13)

θ = λ/µ1σ1, ψ = ϕ1/τ;

π1(〈m〉) =


αmπ1(〈0〉), 1 ≤ m ≤ r,
βmπ1(〈0〉), r + 1 ≤ m ≤ s,
βsπ1(〈0〉), s + 1 ≤ m ≤ S,

π1(〈0〉) =
(

1 + ∑r
m=1 αm + ∑s

m=r+1 βm + (S− s)βs

)−1
;

αm = a2(1 + a2)
m−1 , βm = a2(1 + a2)

r(1 + a1)
m−r−1 ; ak =

νk
µ2σ2(1− ρ(0)) + κ

, k = 1, 2; (14)

Note 2. Since the values of state probabilities ρm(n) for cases m > 0 do not depend on parameter
m (see first row of the Formula (13)), in the rest of the paper in their notations subscript m for cases
m > 0 is omitted for simplification. Additionally, note that in cases θ = 1 and/or ψ = 1, all state
probabilities ρm(n) = 1/(N + 1) for any n, n = 0, 1, . . . , N and m, m = 0, 1, . . . , S.

Indeed, when using splitting (11) from relations (1)–(8), we conclude that the station-
ary distribution of all split models with state spaces Em, m = 1, . . . , S, coincide with
the stationary distribution of a single-server Markov queuing system M/M/1/N with a
load θ = λ/µ1σ1. Stationary probability of state (n, m) ∈ Em within these split models
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are denoted by ρm(n). These quantities do not depend on m = 1, . . . , S, and they are
calculated as

ρ(n) = θn 1− θ

1− θN+1 , n = 0, 1, . . . , N. (15)

In addition, from relations (1)–(8) we conclude that the stationary distribution of a
split model with state space E0 coincide with the stationary distribution of a single-server
Markov queuing system M/M/1/N with a load ψ = λϕ1/τ. In other words, stationary
probabilities of states (n, 0) ∈ E0 within this split model are calculated as

ρ0(n) = ψn 1− ψ

1− ψN+1 , n = 0, 1, . . . , N. (16)

Combining Formulas (15) and (16), we obtain Formula (13).
Merged model represents 1D MC with state space Ê. Transition rate from merged state

〈m1〉 ∈ Ê to other merged state 〈m2〉 ∈ Ê is denoted by q(〈m1〉, 〈m2〉). These quantities are
calculated as

q(〈m1〉, 〈m2〉) = ∑(n2,m2)∈Em2
q((n1, m1), (n2, m2))ρm1(n1). (17)

By taking into account relations (1)–(8), (15)–(17), after some algebra we obtain:

q(〈m1〉, 〈m2〉) =


ν2, 0 ≤ m1 ≤ r, m2 = S,
ν1, r + 1 ≤ m1 ≤ s, m2 = S,

µ2σ2(1− ρ(0)) + κ, m1 > 0, m2 = m1 − 1.
(18)

From (18) after some algebra we obtain that the stationary probabilities of merged
states, π1(〈m〉), 〈m〉 ∈ Ê, are calculated by (14).

Finally, according to the space merging algorithm, we obtain that the steady-state
probabilities of the initial 2D MC are calculated from Formula (12).

Now consider the model under (s, Q)-policy. For this model state space is also defined
by the set E. Here, the infinitesimal generator

Q2 = (q2(n1, m1); (n2, m2)) : (n1, m1), (n2, m2) ∈ E

of the appropriate 2D MC are determined via (1)–(6), but here Formulas (7) and (8) are
replaced by the following formulas:

q1((n1, m1); (n1, m1 + S− s)) = ν1·I(r < m1 ≤ s)

q1((n1, m1); (n1, m1 + S− s)) = ν2·I(0 ≤ m1 ≤ r)

Similarly, we can prove that the when using the (s, Q)-policy, the approximate values
of the steady-state probabilities are calculated as

p(n, m) ≈ ρm(n)π2(〈m〉), (19)

where

π2(〈m〉) =


αmπ2(〈0〉), 1 ≤ m ≤ r,
βmπ2(〈0〉), r + 1 ≤ m ≤ s,
βsπ2(〈0〉), s + 1 ≤ m ≤ S− s,
ηmπ2(〈0〉), S− s + 1 ≤ m ≤ S,

(20)

π2(〈0〉) =
(

1 +
r

∑
m=1

αm +
s

∑
m=r+1

βm + (S− 2s)βs +
S

∑
m=S−s+1

ηm

)−1

,

ηm =
1

µ2σ2(1− ρ(0)) + κ

s

∑
i=m−S+s

χixi, S− s + 1 ≤ m ≤ S;
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χi =

{
αi, 1 ≤ i ≤ r,
βi, r + 1 ≤ i ≤ s;

xi =

{
ν2, 1 ≤ i ≤ r,
ν1, r + 1 ≤ i ≤ s.

4. Performance Measures

Desired performance measures are calculated via steady-state probabilities as follows.
Average inventory level (Sav) is

Sav =
S

∑
m=1

m
N

∑
n=0

p(n, m). (21)

Average supply from source-i when using (s, S)-policy (Vav(i)) are

Vav(1) = ∑S
m=r+1(S−m)∑N

n=0 p(n, m) ; Vav(2) =
r

∑
m=0

(S−m)
N

∑
n=0

p(n, m); (22)

Average supply from source-i when using (s, Q)-policy are

Vav(1) = (S− s)
s

∑
m=r+1

N

∑
n=0

p(n, m) ; Vav(2) = (S− s)
r

∑
m=0

N

∑
n=0

p(n, m); (23)

Average number of c-customers in system (Lav) is

Lav =
N

∑
n=1

n
S

∑
m=0

p(n, m); (24)

Average destruction rate of the stock (DRS) is

DRS = κ

(
1−

N

∑
n=0

p(n, 0)

)
; (25)

Average reorder rate of regular supply (RR1) is

RR1 = κp(0, s + 1) + (µ2σ2 + κ)
N

∑
n=1

p(n, s + 1); (26)

Average reorder rate of emergency supply (RR2) is

RR2 = κp(0, r + 1) + (µ2σ2 + κ)
N

∑
n=1

p(n, r + 1). (27)

Note 3. The average rate of emergency orders is equal to the average rate of cancellation (RC) of
regular orders.

Loss probability of c-customers (PL) is

PL = ϕ2

N

∑
n=0

p(n, 0) + ∑S
m=0 p(N, m) +

τ

τ + λϕ1 + ν2

N−1

∑
n=1

p(n, 0) +
τ

τ + ν2
p(N, 0). (28)

In (28), the first and second terms of the sum estimate the loss probabilities of c-
customers when they enter the system, provided that at this moment the inventory level
is zero and there is no free space in the buffer, respectively, the third and fourth terms
determine the loss probabilities c-customers due to their impatience in the queue, provided
that before the start of their service, the inventory level drops to zero.
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Taking into account relations (12)–(14), after standard transformations, it can be shown
that when using the (s, S)-policy, the approximate values of the performance measures are
calculated as

Sav ≈
S

∑
m=1

mπ1(〈m〉); (29)

Vav(1) ≈
s

∑
m=r+1

(S−m)π1(〈m〉) ; Vav(2) ≈
r

∑
m=0

(S−m)π1(〈m〉); (30)

Lav ≈
N

∑
n=1

n((1− π1(〈0〉))ρ(n) + π1(〈0〉)ρ0(n)); (31)

DRS ≈ κ(1− π1(〈0〉)); (32)

RR1 ≈ π1(〈s + 1〉)(κρ(0) + (µ2σ2 + κ)(1− ρ(0))); (33)

RR2 ≈ π1(〈r + 1〉)(κρ(0) + (µ2σ2 + κ)(1− ρ(0))); (34)

PL ≈ ϕ2π(0)(1− ρ0(N)) + τ
τ+λϕ1+ν2

π(0)(1− ρ0(0)− ρ0(N))

+ τ
τ+ν2

ρ0(N)π(0)(1− π(0))ρ(N) + π(0)ρ0(N).
(35)

In a similar way, taking into account relations (19) and (20), we can show that when
using the (s, Q)-policy, the approximate values of the performance measures are calculated
via (29), (31)–(35), where the quantities π1(m) are replaced by the π2(m), and an average
supply from various sources are calculated as

Vav(1) = (S− s)
s

∑
m=r+1

π2(〈m〉); Vav(2) = (S− s)
r

∑
m=0

π2(〈m〉); (36)

Below, we consider the results of numerical experiments carried out using the obtained
formulas.

5. Numerical Results

This section is threefold. Firstly, we study the accuracy of the developed approximate
formulas to calculate the steady-state probabilities, secondly, we investigate the behavior
of performance measures versus initial parameters of the model and thirdly, we consider
the optimization problem.

Consider the first goal of the numerical experiments. Analytical investigation of
the accuracy of the developed approximate formulas is impossible. Therefore, we con-
sider solution of the problem via numerical experiments. Exact values of the steady-state
probabilities are calculated via SGBE (9), (10). Some results of numerical experiments are
demonstrated in Table 1. From this table, we conclude that under both RPs the accuracy of
the developed formulas to calculation of the steady-state probabilities are sufficiently high
for practice. Results of numerical experiments show that the accuracy of the developed
approximate formulas systematically increases with the increases in the dimension of the
system, i.e., when N and S take on large values. The last fact is very important, since the
approximate approach was developed specifically for large scale models.

Now, consider the second goal of the numerical experiments. The proposed approach
makes it possible to carry out numerical experiments to study the behavior of performance
measures (21)–(28) versus any initial system’s parameter. Below, in Tables 2–10, we present
the results of appropriate calculations where in each column the top row corresponds to
the (s, S)-policy, and the lower one, to the (s, Q)-policy. Due to the limited size of the paper,
conclusions regarding the behavior of performance measures are left to the reader.

In all numerical experiments (in Tables 2–9), it is assumed that σ1 = 0.4, ϕ1 = 0.6 and
S = 30, N = 100. The values of other parameters are indicated in the title of the tables.
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Table 1. Dependence of the absolute error of the steady-state probabilities on parameter s; λ = 8,
κ = 2, µ1 = 45, µ2 = 15, τ = 1.5, ν1 = 2, ν2 = 8, r = 5, S = 22, N = 100.

s
Max of Error

(s, S)-Policy (s, Q)-Policy

6 1.06 × 10−2 1.31 × 10−2

7 1.15 × 10−2 1.66 × 10−2

8 1.26 × 10−2 1.98 × 10−2

9 1.38 × 10−2 2.26 × 10−2

10 1.37 × 10−2 2.54 × 10−2

Table 2. Dependence of the performance measures on parameter λ; µ1 = 45, µ2 = 15, κ = 2, τ = 1.5,
ν1 = 2, ν2 = 8, r = 5, s = 10.

λ Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

8
10.968 0.262 18.770 0.815 2.000 0.258 8.1520 × 10−2 8.1520 × 10−2

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.2171 × 10−5

9
10.993 0.306 18.701 1.021 2.000 0.278 9.4923 × 10−2 9.4923 × 10−2

3.399 0.095 5.783 1.007 2.000 0.086 2.9353 × 10−2 6.4781 × 10−5

10
11.013 0.352 18.635 1.280 1.999 0.297 1.0882 × 10−1 1.0882 × 10−1

3.501 0.112 5.923 1.259 2.000 0.095 3.4592 × 10−2 9.4994 × 10−5

11
11.030 0.399 18.572 1.611 1.999 0.317 1.2315 × 10−1 1.2315 × 10−1

3.596 0.130 6.056 1.584 2.000 0.103 4.0156 × 10−2 1.3405 × 10−4

12
11.042 0.447 18.510 2.053 1.999 0.337 1.3785 × 10−1 1.3785 × 10−1

3.687 0.149 6.181 2.018 2.000 0.112 4.6028 × 10−2 1.8316 × 10−4

Table 3. Dependence of the performance measures on parameter κ; λ = 8, µ1 = 45, µ2 = 15, τ = 1.5,
ν1 = 2, ν2 = 8, r = 5, s = 10.

κ Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

2
10.968 0.262 18.770 0.815 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.2171 × 10−5

3
11.013 0.352 18.635 0.830 2.999 0.297 1.0882 × 10−1 2.8717 × 10−4

3.501 0.112 5.923 0.809 3.000 0.095 3.4592 × 10−2 9.1282 × 10−5

4
11.042 0.447 18.510 0.853 3.998 0.337 1.3785 × 10−1 5.1361 × 10−4

3.687 0.149 6.181 0.818 3.999 0.112 4.6028 × 10−2 1.7150 × 10−4

5
11.058 0.548 18.394 0.886 4.996 0.375 1.6813 × 10−1 8.3369 × 10−4

3.856 0.191 6.413 0.830 4.998 0.131 5.8624 × 10−2 2.9069 × 10−4

6
11.064 0.652 18.283 0.930 5.992 0.413 1.9935 × 10−1 1.2579 × 10−3

4.011 0.237 6.628 0.847 5.997 0.150 7.2263 × 10−2 4.5597 × 10−4

Finally, consider the third aim of the numerical experiments, i.e., minimization of the
expected total cost (TC), which is calculated as follows:

TC(s, r) =
2

∑
i=1

(Ki + cr(i)Vav(i))RRi + ccRR2 + chSav + cdDRS + clλPL + cwLav, (37)

where Ki are the fixed costs of one order from Source-i; cr(i) are the procurement costs per
unit inventory from Source-i, i = 1, 2; cc is the cost due to order cancellation from Source-1;
ch is the holding cost of an inventory unit per unit time; cd is the cost due to damage per
unit inventory; cl is the cost of losing a c-customer; cw is the waiting cost of a c-customer
per unit time.
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Table 4. Dependence of the performance measures on parameter µ1; λ = 8, κ = 2, µ2 = 15, τ = 1.5,
ν1 = 2, ν2 = 8, r = 5, s = 10.

µ1 Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

45
10.968 0.262 18.770 0.815 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.2171 × 10−5

50
10.944 0.229 18.827 0.677 2.000 0.242 7.1212 × 10−2 1.0050 × 10−4

3.199 0.067 5.504 0.670 2.000 0.071 2.0819 × 10−2 2.9382 × 10−5

55
10.922 0.202 18.876 0.579 2.000 0.228 6.3090 × 10−2 7.4425 × 10−5

3.120 0.058 5.392 0.574 2.000 0.065 1.8023 × 10−2 2.1261 × 10−5

60
10.901 0.181 18.918 0.506 2.000 0.217 5.6559 × 10−2 5.6757 × 10−5

3.051 0.051 5.294 0.502 2.000 0.061 1.5828 × 10−2 1.5883 × 10−5

65
10.882 0.164 18.954 0.449 2.000 0.208 5.1217 × 10−2 4.4383 × 10−5

2.989 0.045 5.207 0.446 2.000 0.057 1.4070 × 10−2 1.2192 × 10−5

Table 5. Dependence of the performance measures on parameter µ2; λ = 8, κ = 2, µ1 = 45, τ = 1.5,
ν1 = 2, ν2 = 8, r = 5, s = 10.

µ2 Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

15
10.968 0.262 18.770 0.815 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.2171 × 10−5

20
11.025 0.383 18.592 0.837 1.999 0.310 1.1833 × 10−1 3.5303 × 10−4

3.565 0.124 6.012 0.812 2.000 0.100 3.8266 × 10−2 1.1416 × 10−4

25
11.054 0.514 18.432 0.874 1.998 0.362 1.5792 × 10−1 7.1588 × 10−4

3.801 0.177 6.338 0.825 1.999 0.125 5.4305 × 10−2 2.4617 × 10−4

30
11.064 0.652 18.283 0.930 1.997 0.413 1.9935 × 10−1 1.2579 × 10−3

4.011 0.237 6.628 0.847 1.999 0.150 7.2263 × 10−2 4.5597 × 10−4

35
11.060 0.796 18.144 1.007 1.996 0.464 2.4198 × 10−1 1.9972 × 10−3

4.201 0.302 6.891 0.879 1.998 0.176 9.1906 × 10−2 7.5854 × 10−4

Table 6. Dependence of the performance measures on parameter τ; λ = 8, κ = 2, µ1 = 45, µ2 = 15,
ν1 = 2, ν2 = 8, r = 5, s = 10.

τ Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

1.5
10.968 0.262 18.770 0.815 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.2171 × 10−5

3
10.968 0.262 18.770 0.814 2.000 0.258 8.1520 × 10−2 1.2463 × 10−4

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.1657 × 10−5

4.5
10.968 0.262 18.770 0.812 2.000 0.258 8.1520 × 10−2 1.0370 × 10−4

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.1100 × 10−5

6
10.968 0.262 18.770 0.800 2.000 0.258 8.1520 × 10−2 9.6548 × 10−5

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 4.0504 × 10−5

7.5
10.968 0.262 18.770 0.800 2.000 0.258 8.1520 × 10−2 9.3768 × 10−5

3.291 0.079 5.633 0.804 2.000 0.077 2.4463 × 10−2 3.9870 × 10−5

Let us assume that controllable are only parameters s and r. Then, the optimization
problem is formulated as follows: it is required to find such pairs of optimal values (s∗, r∗)
in order to minimize the functional (37). In other words, we need to solve the following task:

(s∗, r∗) = arg min
(s,r)∈X

TC(s, r). (38)
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Some results of solving this problem for a model when using the (s, S) and (s, Q)-
policies are shown in Table 11. The optimal solution of the problem for both policies is
(s∗, r∗) = (6, 1).

Table 7. Dependence of the performance measures on parameter ν1; λ = 8, κ = 2, µ1 = 45, µ2 = 15,
τ = 1.5, ν2 = 8, r = 5, s = 10.

ν1 Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

2
10.968 0.262 18.770 0.815 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 0.079 0.804 2.000 0.077 2.4463 × 10−2 4.2171 × 10−5

3
10.782 0.168 19.050 0.809 2.000 0.264 5.2089 × 10−2 8.9793 × 10−5

2.774 0.043 0.043 0.802 2.000 0.068 1.3401 × 10−2 2.3102 × 10−5

4
10.650 0.112 19.238 0.806 2.000 0.268 3.4710 × 10−2 5.9835 × 10−5

2.419 0.025 0.025 0.801 2.000 0.061 7.8834 × 10−3 1.3590 × 10−5

5
10.553 0.077 19.370 0.804 2.000 0.271 2.3967 × 10−2 4.1315 × 10−5

2.156 0.016 0.016 0.801 2.000 0.055 4.8959 × 10−3 8.4397 × 10−6

6
10.479 0.055 19.466 0.803 2.000 0.273 1.7058 × 10−2 2.9405 × 10−5

1.950 0.010 0.010 0.801 2.000 0.051 3.1749 × 10−3 5.4731 × 10−6

Table 8. Dependence of the performance measures on parameter ν2; λ = 8, κ = 2, µ1 = 45, µ2 = 15,
τ = 1.5, ν1 = 2, r = 5, s = 10.

ν2 Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

8
10.968 0.262 18.770 0.815 2.000 2.5764 × 10−1 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.804 2.000 7.7317 × 10−2 2.4463 × 10−2 4.2171 × 10−5

9
10.980 0.233 18.787 0.809 2.000 2.5793 × 10−1 8.1612 × 10−2 8.7411 × 10−5

3.285 0.070 5.620 0.803 2.000 7.7163 × 10−2 2.4415 × 10−2 2.6150 × 10−5

10
10.990 0.209 18.801 0.806 2.000 2.5817 × 10−1 8.1686 × 10−2 5.6393 × 10−5

3.280 0.062 5.610 0.802 2.000 7.7041 × 10−2 2.4376 × 10−2 1.6828 × 10−5

11
10.998 0.190 18.812 0.804 2.000 2.5836 × 10−1 8.1747 × 10−2 3.7529 × 10−5

3.275 0.057 5.602 0.801 2.000 7.6942 × 10−2 2.4345 × 10−2 1.1176 × 10−5

12
11.005 0.174 18.821 0.803 2.000 2.5852 × 10−1 8.1798 × 10−2 2.5653 × 10−5

3.272 0.052 5.596 0.801 2.000 7.6860 × 10−2 2.4319 × 10−2 7.6268 × 10−6

Table 9. Dependence of the performance measures on parameter s; λ = 8, κ = 2, µ1 = 45, µ2 = 15,
τ = 1.5, ν1 = 2, ν2 = 8, r = 5.

s Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

6
7.662 0.750 13.588 0.860 1.999 0.338 0.338 5.8271 × 10−4

7.760 0.739 13.502 0.859 1.999 0.333 0.333 5.7427 × 10−4

7
7.625 0.576 13.799 0.846 1.999 0.347 0.260 4.4808 × 10−4

7.887 0.575 13.538 0.846 1.999 0.346 0.259 4.4733 × 10−4

8
7.485 0.447 14.068 0.836 1.999 0.359 0.202 3.4767 × 10−4

7.868 0.449 13.683 0.836 1.999 0.360 0.202 3.4895 × 10−4

9
7.270 0.350 14.380 0.828 1.999 0.374 0.158 2.7185 × 10−4

7.753 0.351 13.896 0.828 1.999 0.375 0.158 2.7264 × 10−4

10
7.000 0.275 14.725 0.822 2.000 0.392 0.124 2.1406 × 10−4

7.582 0.274 14.144 0.822 2.000 0.391 0.124 2.1338 × 10−4
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Table 10. Dependence of the performance measures on parameter N; λ = 8, κ = 2, µ1 = 45, µ2 = 15,
τ = 1.5, ν1 = 2, ν2 = 8, r = 5, s = 10.

N Vav(1) Vav(2) Sav Lav DRS RR1 RR2 PL

50
10.968 0.262 18.770 0.807 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.632 0.799 2.000 2.000 2.4457 × 10−2 2.0923 × 10−4

70
10.968 0.262 18.770 0.810 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.802 2.000 2.000 2.4463 × 10−2 4.2171 × 10−5

90
10.968 0.262 18.770 0.813 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.803 2.000 2.000 2.4463 × 10−2 4.2171 × 10−5

110
10.968 0.262 18.770 0.816 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.804 2.000 2.000 2.4463 × 10−2 4.2171 × 10−5

130
10.968 0.262 18.770 0.819 2.000 0.258 8.1520 × 10−2 1.4053 × 10−4

3.291 0.079 5.633 0.806 2.000 2.000 2.4463 × 10−2 4.2171 × 10−5

Table 11. Results of the task (38); λ = 8, κ = 2, µ1 = 45, µ2 = 15, τ = 1.5, ν1 = 2, ν2 = 8, S = 22 ,
K1 = 100, K2 = 200, cr(1) = 50, cr(2) = 100, cc = 50, ch = 35, cd = 75, cl = 200, cw = 50. The
minimal value of TC is indicated in bold.

Total Cost
r s 10 9 8 7 6 5 4 3 2

1
896.90 885.21 875.95 869.80 867.73 871.11 881.95 903.24 939.62
870.62 850.90 835.46 824.94 820.45 823.69 837.22 864.91 912.74

2
896.22 884.54 875.36 869.44 867.88 872.30 885.20 910.49
872.35 853.23 838.68 829.49 827.00 833.34 851.80 887.57

3
899.59 889.07 881.50 877.89 879.71 889.26 910.23
879.47 862.48 850.85 845.75 849.10 863.98 895.31

4
906.67 898.44 894.07 895.01 903.51 923.23
892.02 878.78 872.33 874.49 888.29 918.65

5
917.85 913.31 914.16 922.68 942.6
910.98 903.58 905.28 919.10 950.08

6
934.27 935.39 944.45 965.31
938.43 939.84 954.14 986.50

7
958.00 967.89 990.1
977.88 992.76 1026.87

8
992.67 1016.55

1035.16 1071.21

9
1044.60
1120.16

6. Conclusions

Models of double-source QIS are studied, where the delivery rates from various
sources differ from each other. They use two replenishment policies, i.e., with a fixed
supply volume and with a variable supply volume. In each policy, along with the order
point, a threshold parameter is introduced that determines the moment when an order
is canceled from a slow source and at the same time a new order is generated to a fast
source. Models with a finite buffer for c-customers are studied in which c-customers are
queued even if inventory level is zero and there is free space in the waiting room. However,
c-customers in the queue can be impatient when the inventory level drops to zero before
their service is started. After the service is completed, part of the c-customers, according
to the Bernoulli trials, either leaves the system without receiving items, or receives items.
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Along with c-customers, d-customers also enter the system, the appearance of which leads
to an instant decrease in the system’s inventory level by one.

Exact and approximate methods for calculating the performance measures of the
considered QIS are proposed. The exact method is based on the balance equations of the
constructed 2D MC, while the approximate method uses the space merging approach for
the 2D MC. When using the approximate method, explicit formulas for calculating both
the steady-state probabilities and the performance measures are obtained. The conducted
numerical experiments demonstrate the high accuracy of the developed approximate
formulas. By the numerical experiments, the behavior of the performance measures versus
initial parameters of the models was also studied. In addition, the problems of finding the
optimal values of the parameters of the used RPs to minimize the total cost were solved.

Suggestions for future directions of research are:

• Development and investigation of replenishment policies in double source QIS in
which switching the order from slow source to fast depends both on inventory level
and number of c-customers in the system;

• Investigation of similar QIS models with more complex d.f. for c- and d-customers,
service time of c-customers, lead times etc.;

• Investigation of similar QIS models with common life times of the items.

Author Contributions: Conceptualization, A.M., R.M. and J.S.; methodology, A.M., R.M. and J.S.;
software, R.M.; validation, R.M.; formal analysis, A.M., R.M. and J.S.; investigation, A.M., R.M. and
J.S.; writing-original draft preparation, A.M., R.M. and J.S.; writing-review and editing, A.M., R.M.
and J.S.; supervision, A.M.; project administration, A.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Did not report any data.

Acknowledgments: The authors are very grateful to the reviewers for their valuable comments and
suggestions, which improved the quality and the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schwarz, M.; Daduna, H. Queuing Systems with Inventory Management with Random Lead Times and with Backordering. Math.

Meth. Oper. Res. 2006, 64, 383–414. [CrossRef]
2. Schwarz, M.; Sauer, C.; Daduna, H.; Kulik, R.; Szekli, R. M/M/1 Queuing Systems with Inventory. Queuing Syst. 2006, 54, 55–78.

[CrossRef]
3. Melikov, A.Z.; Molchanov, A.A. Stock optimization in transportation/storage systems. Cybern. Syst. Anal. 1992, 28, 484–487.

[CrossRef]
4. Sigman, K.; Simchi-Levi, D. Light traffic heuristic for anM/G/1 queue with limited inventory. Ann. Oper. Res. 1992, 40, 371–380.

[CrossRef]
5. Krishnamoorthy, A.; Shajin, D.; Narayanan, W. Inventory with Positive Service Time: A Survey. In Advanced Trends in Queueing

Theory; Series of Books “Mathematics and Statistics” Sciences; Anisimov, V., Limnios, N., Eds.; ISTE & Wiley: London, UK, 2021;
pp. 201–238.

6. Hanukov, G.; Avinadav, T.; Chernonog, T.; Spiegel, U.; Yechiali, U. A queueing system with decomposed service and inventoried
preliminary services. Appl. Math. Model. 2017, 47, 276–293. [CrossRef]

7. Hanukov, G.; Avinadav, T.; Chernonog, T.; Spiegel, U.; Yechiali, U. Improving efficiency in service systems by performing and
storing “preliminary services”. Int. J. Prod. Econ. 2018, 197, 174–185. [CrossRef]

8. Hanukov, G.; Avinadav, T.; Chernonog, T.; Yechiali, U. Performance improvement of a service system via stocking perishable
preliminary services. Eur. J. Oper. Res. 2018, 274, 1000–1011. [CrossRef]

9. Hanukov, G.; Avinadav, T.; Chernonog, T.; Yechiali, U. A multi-server QIS with stock-dependent demand. IFAC PapersOnLine
2019, 52, 671–676. [CrossRef]

10. Hanukov, G.; Avinadav, T.; Chernonog, T.; Yechiali, U. A service system with perishable products where customers are either
fastidious or strategic. Int. J. Prod. Econ. 2020, 228, 107696. [CrossRef]

http://doi.org/10.1007/s00186-006-0085-1
http://doi.org/10.1007/s11134-006-8710-5
http://doi.org/10.1007/BF01125431
http://doi.org/10.1007/BF02060488
http://doi.org/10.1016/j.apm.2017.03.008
http://doi.org/10.1016/j.ijpe.2018.01.004
http://doi.org/10.1016/j.ejor.2018.10.027
http://doi.org/10.1016/j.ifacol.2019.11.124
http://doi.org/10.1016/j.ijpe.2020.107696


Mathematics 2023, 11, 226 15 of 16

11. Ko, S.S. A Nonhomogeneous Quas-Birth Process Approach for an (s, S) Policy for a Perishable Inventory System with Retrial
Demands. J. Ind. Manag. Opt. 2020, 16, 1415–1433. [CrossRef]

12. Melikov, A.; Shahmaliyev, M.; Nair, S.S. Matrix-geometric Method to Study Queuing System with Perishable Inventory. Autom.
Remote Control. 2021, 82, 2168–2181. [CrossRef]

13. Lian, Z.; Liu, L.; Neuts, M.F. A Discrete-Time Model for Common Lifetime Inventory Systems. Math. Oper. Res. 2005, 30, 718–732.
[CrossRef]

14. Chakravarthy, S.R. An inventory system with Markovian demands, phase type distributions for perishability and replenishment.
Opsearch 2010, 47, 266–283. [CrossRef]

15. Shajin, D.; Krishnamoorthy, A.; Manikandan, R. On a queueing-inventory system with common life time and Markovian lead
time process. Oper. Res. 2020, 1–34. [CrossRef]

16. Melikov, A.; Aliyeva, S.; Nair, S.S.; Kumar, B.K. Retrial Queuing-Inventory Systems with Delayed Feedback and Instantaneous
Damaging of Items. Axioms 2022, 11, 241. [CrossRef]

17. Melikov, A.; Krishnamoorthy, A.; Shahmaliyev, M. Numerical Analysis and Long Run Total Cost Optimization of Perishable
Queuing Inventory Systems with Delayed Feedback. Queuing Model. Serv. Manag. 2019, 2, 83–111.

18. Soujanya, M.L.; Laxmi, P.V. Analysis on Dual Supply Inventory Model Having Negative Arrivals and Finite Lifetime Inventory.
Reliab. Theory Applications 2021, 16, 295–301.

19. Vinitha, V.; Anbazhagan, N.; Amutha, S.; Jeganathan, K.; Shrestha, B.; Song, H.-K.; Joshi, G.P.; Moon, H. Analysis of a Stochastic
Inventory Model on Random Environment with Two Classes of Suppliers and Impulse Customers. Mathematics 2022, 10, 2235.
[CrossRef]

20. Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach; Johns Hopkins University Press: Baltimore,
MD, USA, 1981.

21. Melikov, A.Z.; Mirzayev, R.R.; Nair, S.S. Numerical Study of a Queuing-Inventory System with Two Supply Sources and
Destructive Customers. J. Comput. Syst. Sci. Int. 2022, 61, 581–598. [CrossRef]

22. Melikov, A.; Mirzayev, R.; Nair, S.S. Double Sources Queuing-Inventory System with Hybrid Replenishment Policy. Mathematics
2022, 10, 2423. [CrossRef]

23. Saffari, M.; Haji, R.; Hassanzadeh, F. A queueing system with inventory and mixed exponentially distributed lead times. Int. J.
Adv. Manuf. Technol. 2010, 53, 1231–1237. [CrossRef]

24. Saffari, M.; Sajadieh, M.S.; Hassanzadeh, F. A queuing system with inventory and competing suppliers. Eur. J. Ind. Eng. 2019, 13,
420–433. [CrossRef]

25. Saffari, M.; Asmussen, S.; Haji, R. The M/M/1 queue with inventory, lost sale, and general lead times. Queueing Syst. 2013, 75,
65–77. [CrossRef]

26. Dekker, R.; Hill, R.; Kleijn, M.; Teunter, R. On the (S-1, S) lost sales inventory model with priority demand classes. Nav. Res. Logist.
(NRL) 2002, 49, 593–610. [CrossRef]

27. Ha, A.Y. Stock-rationing policy for a make-to-stock production system with two priority classes and backordering. Nav. Res.
Logist. (NRL) 1997, 44, 457–472. [CrossRef]

28. Ha, A.Y. Inventory rationing in a make-to-stock production system with two priority classes and backordering. Manag. Sci. 1997,
43, 1093–1103. [CrossRef]

29. Ha, A.Y. Stock rationing in an M/Ek/1 make-to-stock queue. Manag. Sci. 2000, 46, 77–87. [CrossRef]
30. Isotupa, K.P.S. An (S, Q) Markovian inventory system with lost sales and two demand classes. Math. Comp. Model. 2006, 43,

687–694. [CrossRef]
31. Isotupa, K.P.S. An (S, Q) inventory system with two demand classes of customers. Int. J. Oper. Res. 2011, 12, 12–19. [CrossRef]
32. Karthick, T.; Sivakumar, B.; Arivarignan, G. An inventory system with two types of customers and retrial demands. Int. J. Syst.

Sci. Oper. Logist. 2015, 2, 90–112. [CrossRef]
33. Kranenburg, A.; van Houtum, G. Cost optimization in the (S−1, S) lost sales inventory model with multiple demand classes.

Oper. Res. Lett. 2007, 35, 493–502. [CrossRef]
34. Melikov, A.Z.O.; Ponomarenko, L.A.; Aliyev, I.A.O. Markov Models of Queuing-Inventory Systems with Different Types of

Retrial Customers. J. Autom. Inf. Sci. 2019, 51, 1–15. [CrossRef]
35. Melikov, A.Z.O.; Ponomarenko, L.A.; Aliyev, I.A.O. Analysis and Optimization of Models of Queuing-Inventory Systems with

Two Types of Requests. J. Autom. Inf. Sci. 2018, 50, 34–50. [CrossRef]
36. Melikov, A.; Fatalieva, M. Situational Inventory in Counter-Stream Serving Systems. Eng. Simul. 1998, 15, 839–848.
37. Krishnamoorthy, A.; Manikandan, R.; Lakshmy, B. A revisit to queueing-inventory system with positive service time. Ann. Oper.

Res. 2013, 233, 221–236. [CrossRef]
38. Shajin, D.; Krishnamoorthy, A.; Melikov, A.Z.; Sztrik, J. Multi-Server Queuing Production Inventory System with Emergency

Replenishment. Mathematics 2022, 10, 3839. [CrossRef]
39. Chakravarthy, S.R. Queueing-Inventory Models with Batch Demands and Positive Service Times. Autom. Remote Control 2020, 81,

713–730. [CrossRef]
40. Chakravarthy, S.R. Analysis of a Queueing Model with M AP Arrivals and Heterogeneous Phase-Type Group Services. Mathematics

2022, 10, 3575. [CrossRef]

http://doi.org/10.3934/jimo.2019009
http://doi.org/10.1134/S0005117921120080
http://doi.org/10.1287/moor.1040.0133
http://doi.org/10.1007/s12597-010-0025-y
http://doi.org/10.1007/s12351-020-00560-y
http://doi.org/10.3390/axioms11050241
http://doi.org/10.3390/math10132235
http://doi.org/10.1134/S1064230722030091
http://doi.org/10.3390/math10142423
http://doi.org/10.1007/s00170-010-2883-0
http://doi.org/10.1504/EJIE.2019.100006
http://doi.org/10.1007/s11134-012-9337-3
http://doi.org/10.1002/nav.10032
http://doi.org/10.1002/(SICI)1520-6750(199708)44:5&lt;457::AID-NAV4&gt;3.0.CO;2-3
http://doi.org/10.1287/mnsc.43.8.1093
http://doi.org/10.1287/mnsc.46.1.77.15135
http://doi.org/10.1016/j.mcm.2005.09.027
http://doi.org/10.1504/IJOR.2011.041856
http://doi.org/10.1080/23302674.2014.1001004
http://doi.org/10.1016/j.orl.2006.04.004
http://doi.org/10.1615/JAutomatInfScien.v51.i8.10
http://doi.org/10.1615/JAutomatInfScien.v50.i12.30
http://doi.org/10.1007/s10479-013-1437-x
http://doi.org/10.3390/math10203839
http://doi.org/10.1134/S0005117920040128
http://doi.org/10.3390/math10193575


Mathematics 2023, 11, 226 16 of 16

41. Chakravarthy, S.; Rao, B. Queuing-Inventory Models with MAP Demands and Random Replenishment Opportunities. Mathematics
2021, 9, 1092. [CrossRef]

42. Chakravarthy, S.R.; Maity, A.; Gupta, U.C. Modeling and Analysis of Bulk Service Queues with an Inventory under (s, S) Policy.
Ann. Oper. Res. 2017, 258, 263–283. [CrossRef]

43. Chakravarthy, S.R.; Rumyantsev, A. Analytical and simulation studies of queueing-inventory models with MAP demands in
batches and positive phase type services. Simul. Model. Pract. Theory 2020, 103, 102092. [CrossRef]

44. Choudhary, A.; Chakravarthy, S.R.; Sharma, D.S. Analysis of M AP/PH/1 Queueing System with Degrading Service Rate and
Phase Type Vacation. Mathematics 2021, 9, 2387. [CrossRef]

45. Ponomarenko, L.; Kim, C.S.; Melikov, A. Performance Analysis and Optimization of Multi-Traffic on Communication Networks; Springer:
London, UK, 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/math9101092
http://doi.org/10.1007/s10479-015-2041-z
http://doi.org/10.1016/j.simpat.2020.102092
http://doi.org/10.3390/math9192387

	Introduction 
	The Models 
	The Steady State Analysis of the Models 
	Performance Measures 
	Numerical Results 
	Conclusions 
	References

