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Abstract: This manuscript introduces a new concept of statistical depth function: the compositional
D-depth. It is the first data depth developed exclusively for text data, in particular, for those data
vectorized according to a frequency-based criterion, such as the tf-idf (term frequency–inverse document
frequency) statistic, which results in most vector entries taking a value of zero. The proposed data
depth consists of considering the inverse discrete Fourier transform of the vectorized text fragments
and then applying a statistical depth for functional data, D. This depth is intended to address the
problem of sparsity of numerical features resulting from the transformation of qualitative text data
into quantitative data, which is a common procedure in most natural language processing frameworks.
Indeed, this sparsity hinders the use of traditional statistical depths and machine learning techniques
for classification purposes. In order to demonstrate the potential value of this new proposal, it is applied
to a real-world case study which involves mapping Consolidated Framework for Implementation
and Research (CFIR) constructs to qualitative healthcare data. It is shown that the DDG-classifier
yields competitive results and outperforms all studied traditional machine learning techniques (logistic
regression with LASSO regularization, artificial neural networks, decision trees, and support vector
machines) when used in combination with the newly defined compositional D-depth.

Keywords: compositional depth; multivariate data; natural language processing; qualitative data;
statistical depth; supervised classification; text mining

MSC: 62G99; 62H30; 68T50; 62P15; 62H30; 68T10; 91C20

1. Introduction

Text Mining (TM) and Natural Language Processing (NLP) have seen a boom in
recent decades. This is largely due to the increasing amount of qualitative data that is
available, as well as the advances in computing power and algorithms that have made
working with these data much easier [1]. TM is the process of extracting information
from text data [2]. This can be achieved in a number of ways, but typically involves using
some kind of NLP to understand the text. NLP is a field of computer science that deals
with understanding human language [3]. It is mainly used to build systems that can
automatically read, generate, classify and understand text.

In recent years, NLP has been successfully applied to a variety of tasks in social
science research that would be difficult or impossible to obtain through traditional methods.
For instance, NLP can be used to automatically identify and categorize different types
of entities mentioned in a text (e.g., people [4], organizations [5] and locations [6]), to
analyze the sentiment of a text (e.g., students feedback [7], newspaper headlines [8] and
patient feedback [9]), to automatically extract information from unstructured text data (e.g.,
social media posts [10]), or to automate the process of hand-labeling texts (e.g., consumer
complaints [11], patient feedback [12] and social media posts [13]). In the latter case,
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specific types of classification analyses include naive Bayes [14], decision trees [15], logistic
regression with LASSO regularization [16], support vector machines [17,18] and various
neural networks, including artificial [19], recurrent [20] or convolutional [21,22].

Importantly, recent applications are not limited to the English language. For exam-
ple, social media texts in Arabic [23] were classified using a multi-task learning model
and research proposals in Korean [24] using bidirectional encoder representations from
transformers. Moreover, logistic LASSO regularization, artificial neural networks, support
vector machines and decision-tree-like procedures have been recently applied in order to
automate the process of classifying a Spanish-language focus group transcription based on
context-defined categories [25].

Text data are complex qualitative data that can be difficult to use in Machine Learning
(ML) for a few reasons [11,26,27]. First, text data are generally unstructured, meaning
it does not fit neatly into the rows and columns of a traditional dataset. This makes it
hard to apply to standard ML algorithms. Second, text data are, in most cases, very high
dimensional, meaning there are a lot of features (words) to consider. This makes it difficult
to train a model and can also lead to overfitting. Finally, text data are predominantly noisy,
meaning there are a lot of misspellings, typos and other errors. This noise makes it hard
for an ML model to learn from the data [28]. Consequently, it is extremely important to
pre-process text datasets to remove noise and structure it in a way that will make it easier
for an ML algorithm to learn from. The first step of this pre-process is the so-called text
vectorization, which consists of transforming text data into quantitative data.

There are a number of approaches for vectorizing text, including the Bag-Of-Words
model [29], Latent Semantic Analysis [30], Random Indexing [31] and Feature Hashing [32].
One of the most widespread methods for vectorizing text is the term frequency–inverse
document frequency (tf-idf ) statistic, which takes into account not only the frequency of
each word in a text, but also its frequency in the entire corpus. The resulting vectors are
usually very sparse, with most of the values being zero. This is because most words in a
document only appear once or a few times. Thus, this vectorization is challenging when
using some ML algorithms that require dense vectors [33], but there are ways to work
around it.

In this manuscript, we propose the usage of statistical depth functions to tackle the
sparsity problem that arises when text fragments are vectorized according a frequency-
based technique such as the tf-idf or the bag-of-words vectorization. To the best of our
knowledge, this is an approach that has not been exploited to date. Real numbers have
an intrinsic order. Thus, given the numbers −2, 3 and 5, we have the following assertions
among others: (i) −2 is smaller than 3 and 5, (ii) 3 is smaller than 5 and lies between −2
and 5. In spaces of higher complexity, there is no intrinsic notion of order. Therefore,
some notions in terms of axiomatic properties have been provided to establish order in
multivariate spaces [34], functional metric spaces [35] and in the fuzzy framework [36].
They are generally known as statistical depth notions.

As previously stated, vectorization processes eventually result in multivariate data
with certain specificities such as sparsity. Because of these specificities, the existing depth
functions defined for other frameworks do not provide the expected order. Thus, in
this manuscript, the first concept of statistical depth function for text data is proposed:
the compositional D-depth. Furthermore, this paper shows that classification methods
based on statistical depth, such as the DDG-classifier [37], provide competitive results
when dealing with text data, especially when used in combination with the newly defined
compositional D-depth. To this end, a proof-of-concept analysis was conducted with
qualitative healthcare data collected from a focus group evaluation of the Prescribe Vida
Saludable (PVS; Prescribing Health Life) Programme [38] implemented in primary care
centers in the Basque Country (Spain). In short, this manuscript shows that the newly
defined compositional D-depth can help reduce the noise in text data, make it easier to
analyze, and help identify patterns and trends that would otherwise be difficult to see as
they could be masked by sparsity. Thus, this paper contains two key contributions:
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• The first depth function aimed for text data, in particular for text data vectorized
through the tf-idf statistic.

• The usefulness of this depth function in depth-based supervised classification of text data.

The remainder of this manuscript is arranged as follows. Section 2 summarizes
the theoretical framework behind statistical depth functions and depth-based classifiers.
Section 3 describes the dataset and the proposed methodology. Section 4 is devoted to
the results of the conducted analysis and, finally, Section 5 presents the conclusions. The
analysis was performed making use of the R software, in particular version 4.0.3.

2. Theoretical Framework
2.1. Statistical Data Depth: Formal Definition

The notion of statistical depth for multivariate spaces was introduced in [34]. To define
it, let us denote by BP p the family of distributions on the Borel sets of Rp and by PX the
distribution associated with a random vector X.

Definition 1 ([34]). The bounded and non-negative mapping

D(·, ·) : Rp ×BP p −→ R

is a statistical depth function if it satisfies the following properties:

P1. Affine invariance: For any p × p nonsingular real matrix A, any vector b ∈ Rp, any
PX ∈ BP p and any x ∈ Rp,

D(Ax + b, PAX+b) = D(x, PX).

P2. Maximality at center: For any distribution P ∈ BP p with a unique center of symmetry θ,
with respect to some notion of symmetry,

D(θ, P) = sup
x∈Rp

D(x, P).

P3. Monotonicity relative to deepest point: For any distribution P ∈ BP p having deepest point θ,

D(x, P) ≤ D(θ + t(x− θ), P),

for all t ∈ [0, 1] and x ∈ Rp.
P4. Vanishing at infinity: For each distribution P ∈ BP p, D(x, P) 7−→ 0 as ‖x‖ 7−→ ∞.

Note that the above definition reflects the properties that a statistical depth function
should ideally have. However, the fact that the properties mentioned in Definition 1 are not
satisfied in their entirety does not preclude the literature to refer to this type of functions as
statistical depths. In fact, the simplicial depth is a well-known statistical depth that does
not satisfy properties P2 and P3 above in their full generality [34].

2.2. Statistical Data Depths for Functional Data

Since the notion of statistical depth for multivariate spaces was introduced, the notion
of depth function has also been generalized to other more complex spaces, such as metric
(functional) spaces [35] and the fuzzy framework [36]. In the following, the definitions of
three statistical depth functions for functional data are included, namely: the Fraiman and
Muniz (FM) depth, the random projection (RP) depth and the random Tukey (RT) depth.

2.2.1. Fraiman and Muniz Depth

The FM depth [39] was the first introduced functional depth in the literature, being
proposed by R. Fraiman and G. Muniz in 2001. Let X1, . . . , Xn be independent and identi-
cally distributed stochastic processes with continuous trajectories defined on an interval
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[a, b]. In the following, Pt denotes the marginal univariate distribution function of the
stochastic process X1(t), for any t ∈ [a, b]. The FM depth is defined as

FM(x, P) =
∫ b

a
Dt(x(t), Pt)dt

where Dt denotes the univariate depth with respect to the univariate distribution Pt. In [39],
it is considered

Dt(x(t), Pt) := 1−
∣∣∣∣12 − Pt(−∞, x(t)]

∣∣∣∣. (1)

The sample version of the FM depth is defined by replacing Pt in (1) with the empirical
distribution function Pn,t. Note that this is the version used for the computations in
Section 4.

2.2.2. Random Projection Depth

The RP depth [40] is the sample version of the integrated dual depth [41], and was
presented by A. Cuevas and collaborators in 2007. In what follows, the definition of the
RP depth is included, rather than that of the integrated dual depth, because we deal with
samples in this manuscript. Consider X1, . . . , Xn: independent and identically distributed
random variables whose observations are in a Hilbert space H with the scalar product 〈·, ·〉.
Let us denote by Pn the empirical distribution associated with X1, . . . , Xn.

The RP depth consists in drawing a set of independent and identically distributed
vectors {v1, . . . , vk} from a normal distribution, in the space, standardized to norm 1
and projecting X1, . . . , Xn onto the one-dimensional space generated by each vector. As a
default choice, it is considered the standard normal distribution and k = 50. In this situation,
the sample depth of an observation x ∈ H is the sample mean of the univariate depth
of the projections Πvi (x) := 〈vi, x〉 with respect to the projected sample {Πvi (Xj)}n

j=1 :=
{〈vi, Xj〉}n

j=1. In particular, the RP depth uses the univariate Tukey (or halfspace) depth [42].
Then, the RP depth of x ∈ H with respect to Pn is

RP(x, Pn) :=
1
k

k

∑
i=1

D1

(
Πvi (x), Pn ◦Π−1

vi

)
,

where Pn ◦Π−1
vi

is the marginal of Pn on the one-dimensional subspace generated by vi ∈ H
and D1

(
Πvi (x), Pn ◦Π−1

vi

)
is the Tukey depth associated with the i-th projection:

D1

(
Πvi (x), Pn ◦Π−1

vi

)
:= min{Pn ◦Π−1

vi
(−∞, Πvi (x)], Pn ◦Π−1

vi
[Πvi (x),+∞)}. (2)

2.2.3. Random Tukey Depth

The random Tukey depth [43,44] was proposed by J.A. Cuesta-Albertos and A. Nieto-
Reyes in 2008. In addition to being a depth function on its own merit, the random Tukey
depth approximates the Tukey depth, or halfspace depth. In fact, as the Tukey depth is not
computationally feasible in practice for dimensions larger than eight [45], the random Tukey
depth is computed instead. Therefore, we use here the acronym HS to refer to the random
Tukey depth. Let H be a separable Hilbert space, k ∈ N and ν be an absolutely continuous
distribution on H. The HS depth of x ∈ H with respect to a probability distribution P on H
based on a set R = {v1, . . . , vk} of independent and identically distributed random vectors
with distribution ν is

DT,R(x, P) = min
{

D1

(
Πvi (x), P ◦Π−1

vi

)
: vi ∈ R for i = 1, . . . , k

}
.

D1 denotes the univariate Tukey depth, as in (2), and P ◦ Π−1
vi

is the marginal of P on
the one-dimensional subspace generated by vi ∈ H. It is worth mentioning that, for the
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distribution ν of the random vectors, different possibilities can be considered. In the
particular case of this manuscript, a Gaussian distribution is used. Note that this depth
function can be applied in both multivariate and functional spaces.

2.3. Depth-Based Classification: The DDG-Classifier

A number of methods have been proposed in the literature that use statistical depths
for classification purposes. One method is the maximum depth classifier [46]. Given a
depth D(·, ·) and two probability measures P and Q, this method classifies a given point
x in the feature space as drawn from P if D(x, P) > D(x, Q) [46]. In 1999, a very useful
tool for graphical comparison of two multivariate distributions by statistical depths was
developed: the DD-plots [47]. It is presented below.

Let X := {X1, . . . , Xn} and Y := {Y1, . . . , Ym} be two random samples taken, respec-
tively, from distributions P and Q defined on Rp (p ≥ 1). The DD-plot is a two-dimensional
graph (independently of the dimension p) that plots the pairs (D(x, P), D(x, Q)) for any
x ∈ X ∪ Y . In accordance with the above, the maximum depth classifier assigns to P the
points under the main diagonal of the DD-plot, and to Q the ones above.

Let us consider a binary classification problem, such as the one we analyze in Section 4.
For that, in 2012, the DD-classifier [48] was proposed. This method uses the observations
of the DD-plot in order to identify the groups. The classification rule originally proposed
in [48] consists of a polynomial up to order k passing through the origin of the DD-plot. One
of the main drawbacks of this method is that it becomes very computationally expensive
as the sample size and the degree of the polynomial increase. Another disadvantage is
that generalizing to multi-class problems requires a majority vote scheme involving many
pairwise comparisons.

In 2017, an improved version of the DD-classifier, the DDG-classifier, was proposed
in [37]. Let us consider a multi-class classification problem with g groups, G1, . . . , Gg, and
denote by D(x, Gi), with i = 1, . . . , g, the depth of the observation x with respect to the
distribution of the i-th group. The DDG-classifier consists in computing the mapping

x 7−→ (D(x, G1), . . . , D(x, Gg)) ∈ Rg.

and classifying the g-dimensional resulting data into g groups. Therefore, any classifier that
works in this setting can be used, for example, linear discriminant analysis ([49], Chapter 4),
generalized linear models ([49], Chapter 9) or non-parametric classification methods such
as k-nearest neighbors (kNN) [50].

3. Materials and Methodology

The main research question that we address in this section is whether a depth function
designed for text data can be defined. To that end, in Section 3.1, we describe a text dataset
and, in Section 3.2, we comment on the challenges presented when it is transformed into
quantitative data through the tf-idf statistic. Section 3.2 also comments on an existing
multivariate depth function that, in theory, would seem appropriate for the text dataset.
Then, Section 3.2.1 includes our proposed depth function. The validity of the proposed
depth function is studied in Section 4, where depth-based classifiers based on the proposed
depth function are compared with others based on existing depth functions and with
well-known machine learning procedures analyzed in a previous paper by the authors.
These steps are illustrated in the block diagram represented in Figure 1.
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Figure 1. Block diagram representing the steps followed to obtain and validate the proposed depth
function designed for text data.

3.1. Dataset

This manuscript analyses a qualitative dataset consisting of a focus group transcrip-
tion from an evaluation study of the Prescribe Vida Saludable (PVS; Prescribing Health
Life) Programme [38] implemented in primary care centers in the Basque Country (Spain).
Specifically, the transcription gathers the opinions of several professionals working at
primary care centers on the degree of implementation of the PVS program. Furthermore,
relevant parts of this transcription are allocated Consolidated Framework for Implementa-
tion Research (CFIR) [51] constructs agreed upon by trained qualitative research coders.
The CFIR is used to quantify the qualitative text data to understand the themes (or factors)
that facilitated or hindered implementation of the program.

This particular dataset has previously been analyzed in [25] by means of well-known
machine learning methods such as artificial neural networks (ANNs), logistic regression
with least absolute shrinkage and selection operator regularization (LASSO), support vector
machines (SVMs) and decision trees (DTs). However, it has never been analyzed using
depth-based techniques.

Pre-processing of the raw qualitative dataset to obtain a quantitative dataset that can
serve as input to classification methods is beyond the scope of this manuscript. The reader
can refer directly to ([25], Section 3) for detailed information on the pre-processing of the
dataset used in this analysis. Nonetheless, there are two aspects of this pre-processing that
are important:

1. It allows the dataset to be divided into 184 text fragments of participant intervention,
each of which is assigned a category labeled with 1 or 0 depending on whether it has
at least one CFIR construct assigned to it or not, respectively. In particular, 85 of the
184 fragments are labeled as 1, while the remaining 99 are labeled as 0. The moderator
statements were removed.

2. It allows transforming variable length text fragments into fixed length numerical
vectors through a vectorization process based on the tf-idf statistic [52]. The length of
these numerical vectors is exactly the number of unique words in the corpus or set of
text fragments considered in each case (see [25] for further details). For instance, if
the training set is composed of 848 unique words, as is the case in Section 4, each text
fragment is transformed into a vector in R848 whose coordinates are the values of the
tf-idf statistic of each unique word (which depends both on the text fragment and the
corpus under consideration) sorted alphabetically.

Therefore, once the set of text fragments that will constitute the training set is fixed,
prior pre-processing allows the transformation into an s × (h + 1) matrix whose rows
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are the h-dimensional vectors (where h is the number of unique words in the training
set) representing the various text fragments D1, . . . , Ds in the training set, along with the
corresponding label. In short, the above pre-processing enables the transformation of text
datasets into multivariate data.

One of the objectives of the analysis conducted in [25] was to study to what extent it is
necessary to manually code the text fragments constituting the participant transcription, so
that the labels of the remaining text fragments can be successfully predicted using well-
known supervised classification methods. In doing so, the qualitative researcher would be
offered a validated approach to speed up the coding process because the proposed method
outputs a class label for each text fragment that indicates if the considered text fragment
potentially contains a CFIR construct or not.

In [25], different case studies are analyzed depending on the amount of text fragments
used in the training set. In that paper, we conclude that manually coding just the first 65%
of the participants’ transcription is enough to automatically label the remaining 35% with
a success rate of more than 80% using ANNs, SVMs and LASSO. Henceforth, in order to
compare the performance of the depth-based approaches with the results obtained using
traditional machine learning methods, the training set here consists of the first 65% of
the 184 text fragments that compose the entire dataset, while the test set comprises the
remaining fragments. Thus, the training set is

T := {D1, . . . , D119},

and the test sample is its complement

E := {D120, . . . , D184}.

Before proceeding, it is important to know that the number of unique words in the
training set is 848. Therefore, using the pre-processing described above and in ([25],
Section 3), the training set is converted into a 119× 849 matrix and the test set is converted
into a 65× 849 matrix.

3.2. Data Depths for Text Data

In the case study used in this manuscript, it would be very interesting to make use of
a depth designed exclusively for dealing with text data. The reason is that, despite the fact
that text datasets eventually become multivariate data, they are very specific multivariate
data. Because the multivariate data are obtained from text vectorization via the tf-idf
statistic, they are, for instance, very sparse. Figure 2 shows the sparsity of the vectorized
training sample. In particular, it follows that, on average, each vector representing a text
fragment in the training set has approximately 824 coordinates that are zero. This represents
more than 97% of its entries.

To further describe the feature distribution of the dataset, Figure 3 displays a histogram
containing the number of non-zero coordinates in the vectorized text fragments contained
in the training sample. The plot illustrates the low amount of non-zero coordinates. The
average of non-zero coordinates in the training sample is represented by the red dashed
line with a value below 25.

Figure 4, in turn, shows a vectorized representation of two specific text fragments, D1
and D7, of the training set. Note that parallel coordinates [53] are used for the graphical
representation. This figure helps to illustrate once again the sparsity of the dataset under
study. Moreover, the latter representation suggests that the information of interest is
actually concentrated in the peaks. Consequently, as can be seen in Section 4, conventional
statistical depths designed for multivariate data do not produce competitive results with
this type of data or, at the very least, the results are not optimized.
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Figure 2. Histogram showing the sparsity of the vectorized training set. The horizontal axis shows
the number of coordinates that are zero in the vectors resulting from the vectorization of the text
fragments conforming the training set, while the vertical axis shows the absolute frequency of
occurrence. The red vertical dashed line represents the average number of coordinates that are zero
in the vectorized text fragments that form the training set.
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Figure 3. Histogram showing the small concentration of non-zero coordinates in the vectorized
training set. The horizontal axis shows the number of coordinates that are non-zero in the vectors
resulting from the vectorization of the text fragments conforming the training set, while the vertical
axis shows the absolute frequency of occurrence. The red vertical dashed line represents the average
number of coordinates that are non-zero in the vectorized text fragments that form the training set.
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Figure 4. Vectorized representation of text fragments D1 (red line) and D7 (blue line) of the training
set. Note that parallel coordinates are used. The horizontal axis represents each of the unique words
in the training set sorted alphabetically (instead of the word itself, we represent the order number
that results from sorting all words alphabetically, so that for example the word “a” is represented by
a 1), while the vertical axis shows their tf-idf statistic.

In an attempt to develop a statistical depth function for text data, the first possibility
one may think of is to consider directional data on the sphere. The reason is that, in this
type of data, it is not the magnitude of the different variables resulting from the tf-idf
vectorization that is important, but the orientation of the vectorized text fragments in
the feature space. Thus, the most similar observations would be expected to lie in the
same region of the unit sphere, i.e., the angle between the vectors representing the two
observations to be as parallel as possible. In order to achieve this, it would be enough
to normalize each observation of the available data. In doing so, the observations would
be transformed into points on the surface of the unit hypersphere, Sp−1, where p is the
dimension of the data under study.

This idea had already been explored in the literature. In [54], an analysis of distance-
based depths for directional data was performed. There, the directional d-depth, which is a
generalization of the above expressed idea, is introduced.

Definition 2 ([54]). Let F be a distribution on Sp−1. Let d(·, ·) be a bounded distance on Sp−1

and let dsup := sup{d(θ, φ) : θ, φ ∈ Sp−1} be the upper bound of the distance between any two
points on Sp−1. Then, the directional d-depth of θ ∈ Sp−1 with respect to F is

Dd(θ,F ) := dsup − EF [d(θ, Z)], (3)

where EF is the expectation under the assumption that Z has distribution F .

Even though any bounded distance can be used in the previous definition, in [54]
a proposal is made to consider rotation-invariant distances, i.e., distances satisfying
d(Oθ, Oφ) = d(θ, φ) for any θ, φ ∈ Sp−1 and any p× p orthogonal matrix O. In particular,
they suggest considering the chord distance depth, Ddchord

(·, ·), which is the dchord-depth with
dchord(θ, φ) := ‖θ − φ‖2 =

√
2(1− θTφ), for any θ, φ ∈ Sp−1.

This proposal seems promising because, in principle, it would be expected to fit text
data very well. Indeed, (3) has already been used to study patterns in text mining [55].
Moreover, it has been proved that chord distance depth has very good properties, e.g., that
it is invariant to rotations (see Theorem 1 of [54]), or that there is a (non-unique) point
which is the deepest (see Theorem 2 of [54]). However, as can be seen in Section 4, the
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results are not competitive in the dataset under study. Moreover, because the data are very
sparse, the same is likely to occur when applying any existing statistical depth function
without a prior transformation of the data.

3.2.1. Compositional Depth: The Inverse Fourier Transform

We propose a radically different alternative to deal with text data. It is inspired by
signal theory and consists of using the inverse Fourier transform of the vectorized text
fragments and then applying a statistical depth function for functional data. To the best of
our knowledge, this methodology has not been considered in the literature before.

It is well known that the Fourier transform is a useful tool to move from the time
domain to the frequency domain. Similarly, the inverse Fourier transform allows the
reverse transformation, i.e., from the frequency domain to the time domain. In a sense, the
process of vectorizing a text fragment using the tf-idf statistic provides a representation
in the frequency domain. Indeed, each entry of a vectorized text fragment represents the
tf-idf statistic of one of the unique words in the corpus computed within the text fragment
and the corpus under consideration, as discussed in Section 3 and further detailed in ([25],
Section 3). Since the tf-idf statistic is precisely an approximate measure of the frequency of a
word, it can be assumed that the vectorized representation of a text fragment is a frequency
spectrum. Thus, by computing the modulus of the inverse Fourier transform, we obtain
the representation of the text fragment in the “time domain”. In analogy to signal theory,
this is equivalent to the transition from the frequency decomposition to the original signal.
Thus, with this procedure, sparse multivariate data can be easily converted into non-sparse
functional data, allowing the application of statistical depth functions for functional data.
In the following, this composition is referred to as compositional depth.

Figure 5 shows the curves resulting from considering the modulus of the inverse
Fourier transform applied to the vectorized text fragments shown in Figure 4. Furthermore,
Figure 6 summarizes the proposal on which compositional depth is based. It is shown how,
when considering the inverse Fourier transform, one goes from a very sparse comb-like
representation to a representation that is no longer sparse.
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Figure 5. Modulus of the inverse Fourier transform applied to the vectorized text fragments shown
in Figure 4. Again, the red and blue curves correspond to the text fragments D1 and D7 of the
training set.
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FT

IFT

IFT

Figure 6. Schematic representation of the idea behind the compositional depth. The upper part
shows the frequency decomposition of a wave in the time domain via the Fourier transform (FT). The
inverse is also represented (IFT). The lower part illustrates how the inverse Fourier transformation
affect text fragments D1, in red, and D7, in blue, of the training set.

This section concludes with the formal definition of the compositional depth, which
makes use of the discrete inverse Fourier transform. The discrete inverse Fourier transform of
x := (x1, . . . , xp)

′ ∈ Rp ⊂ Cp is given by

F−1 : Rp ⊂ Cp −→ Cp

x 7−→ x̂ := (x̂1, . . . , x̂p)
′
, with x̂j :=

1
p

p

∑
k=1

xkei 2π
p (k−1)j for j = 1, . . . p. (4)

Definition 3. Let x ∈ Rp and let D be a statistical depth function. The compositional D-depth
of x with respect to PX ∈ BP p is

ĈD(x, P) := D(|F−1(x)|e, P|F−1(X)|e) : Rp ×BP p 7−→ R, (5)

where F−1(x) is the discrete inverse Fourier transform of x ∈ Rp and | · |e : Cp 7−→ Rp is an
operator that, given a complex vector, computes the module of each of its components.

Making use of the notation in (4), we have thatF−1(x) = Wx, where W := (Wjk)j,k=1,...p
is a matrix with entries in the complex numbers

Wjk =
1
p

ei 2π
p (k−1)j.

If W were to have real entries and D in Definition 3 would be a multivariate depth satisfying
the corresponding properties (Definition 1), applying W would not affect the results. That
is because of the affine invariance property, which implies that D(Wx, PWX) = D(x, PX)
for any non-singular matrix W in the real numbers.
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A notion of depth, with the corresponding properties, for the complex numbers do
not yet exist in the literature. Therefore, Definition 3 proposes to make use of the module
operator, which results in

|F−1(xj)|e =
1
p
{‖x‖2 + 2

p

∑
k,l=1; k 6=l

xkxl cos[i
2π

p
j(k− l)]}1/2 for j = 1, . . . p,

where ‖ · ‖ denotes the Euclidean norm. Having applied this module greatly increases
the difficulty in studying the satisfaction of the depth properties. Note, however, that it
is customary in the statistical depth area to call a function a depth function if it orders
data, regardless of whether or not it satisfies all of the properties of the notion in the
corresponding space. This is due to the fact that, for multivariate and functional spaces,
depth instances were published before the corresponding notion of depth was provided.

Considering that |F−1(x)|e ∈ Rp for each x ∈ Rp, it could be logical to select for D(·, ·)
in (5) a multivariate depth (Definition 1). However, taking into account that, in practice, the
elements in a functional space are not fully observed, being observed only at a finite set of
discretization points, both the frequency and the time domain in (5) could be considered as
functions, with F−1(·) the inverse Fourier transform. We follow this reasoning in Section 4
when making use of functional depths.

4. Results

This section is devoted to reporting the results obtained by applying the depth-based
classification methods to the dataset under study. Furthermore, a comparative study
between these results and those obtained in [25] using more traditional supervised classifi-
cation techniques is conducted. At this point, the reader is reminded that:

1. The training set, T , consists of the first 65% of the text fragments in the entire dataset
and the test set, E , is its complement. In particular, the training set consists of 119
observations. It is worth noting that the distribution of observations in this training
dataset is relatively balanced, with 66 observations labeled as “1” (indicating the
presence of at least one associated CFIR construct) and 53 labeled as “0” (indicating
the absence of an associated CFIR construct). This results in a proportion of 55.5% of
the training sample being labeled as “1” and 44.5% being labeled as “0”. The balanced
nature of the data suggests that the model’s performance may not be significantly im-
pacted by imbalanced class distribution, which can often be a concern when working
with classification tasks. For further details, see Section 3.1.

2. A text fragment belongs to class 1 if it has at least one CFIR construct assigned to it.
Conversely, an observation belongs to class 0 if a CFIR construct is not allocated to it.

First, the DDG-classifier is applied directly to the multivariate data resulting from the
vectorization of the original dataset (no Fourier transform is performed yet). In particular,
two depth functions for multivariate data (the HS depth and the Mahalanobis depth [56])
and different classification rules (kNN, linear discriminant analysis and the maximum
depth classifier) are used. Among the used combinations, it was found that the DDG-
classifier with the HS depth and the kNN (the choice of k is made by cross-validation) as
the classification rule gives the least misclassification rate in the training sample, which is
0.17, and in the test sample, 0.25. These results are included in Table 1. In addition, Figure 7
displays the results of the combination of HS depth and kNN in more detail.

The blue points and red crosses in the DD-plot (left plot of Figure 7) represent the
observations in the training sample and indicate the class to which they belong. In this
case, the red crosses correspond to class 1, and the blue points to class 0. Similarly, the
background image is light blue or light red, and represents the classification rule induced,
in this case, by kNN. In particular, test data points would be assigned to class 1 if they fall
into the light red regions when plotted, and to class 0 if they fall into the light blue ones.
Note that, in this particular case, we observe less than 119 points/crosses in the DD-plot,
which is precisely the training sample size. The reason is that some observations in the
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training sample have the same halfspace depth and, therefore, are superimposed (this is
clearly illustrated when there is a cross over a point). However, even if it is not possible to
distinguish them, they have been taken into account in the training process. Lastly, when
we say Depth with respect to Sample 1 we mean that the depth is computed with regard to the
distribution originated by the training observations belonging to class 1. The same applies
to Depth with respect to Sample 0 and class 0.

Table 1. Summary table including the results obtained in the analysis carried out in this manuscript,
and those obtained in [25] using LASSO, SVMs, ANNs and DT for 65/35% training–test split. The
first column indicates the used classifier, the second column indicates the misclassification rate in the
training sample and the third column indicates the misclassification rate in the test sample. The row
in bold refers to the classifier that performed best in the test sample.

Classifier Misclassification Rate
(Training Sample)

Misclassification Rate
(Test Sample)

LASSO – 0.11
SVMs – 0.14
ANNs – 0.17

DTs – 0.22

DDG-classifier(HS, maxD) 0.27 0.68
DDG-classifier(HS, lda) 0.29 0.31
DDG-classifier(HS, knn) 0.17 0.25

DDG-classifier(MhD, maxD) 0.29 0.49
DDG-classifier(MhD, lda) 0.23 0.71
DDG-classifier(MhD, knn) 0.25 0.69

DDG-classifier(ChordDist, RF) 0.16 0.38
DDG-classifier(ChordDist, knn) 0.21 0.46

DDG-classifier(compFM, maxD) 0.35 0.17
DDG-classifier(compFM, lda) 0.29 0.15
DDG-classifier(compFM, knn) 0.34 0.25

DDG-classifier(compRP, maxD) 0.35 0.18
DDG-classifier(compRP, lda) 0.32 0.09
DDG-classifier(compRP, knn) 0.38 0.31

DDG-classifier(compHS, maxD) 0.34 0.17
DDG-classifier(compHS, lda) 0.36 0.37
DDG-classifier(compHS, knn) 0.38 0.32

The right plot of Figure 7 represents the confusion matrix that results from applying
the latter procedure to the test sample. It follows from the confusion matrix in Figure 7 that
the prediction accuracy of the DDG-classifier(HS,kNN) applied directly to the vectorized
test sample is 75%. Thus, all the traditional supervised classification methods analyzed
in ([25], Section 5) outperform this depth-based proposal, as can be seen in the row labeled
with a percentage 65% of Tables 5 and 6 of [25], where the accuracies in classifying the
test sample for the methods LASSO, SVM, ANN and DT are 89%, 86%, 83% and 78%,
respectively. In order to make this manuscript self-contained, Table 1 also includes the
results obtained in [25] with LASSO, SVMs, ANNs and DTs for the same 65/35% training–
test split. In particular, for each classification method, we report the misclassification rates
in both training and test samples.

Next, the DDG-classifier using the chord distance depth is analyzed. The results are
shown in Figure 8. There, the DD-plot using the chord distance depth (left plot), and
the confusion matrix that results from applying random forests (RF) classifier to the test
sample (right plot) are represented. The red and blue points indicate whether the training
observations belong to class 1 or 0, respectively. Moreover, the green crosses are the test
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observations belonging to class 1, while the orange ones are the test observations belonging
to class 0.

Figure 7. Results of applying the DDG-classifier(HS,kNN) to the multivariate text data (no Fourier
transformation is performed yet). That is, the DDG-classifier with the HS depth and the kNN as the
classification rule is used. The DD-plot (left plot) represents the training data and the confusion
matrix (right plot) the test data.

--- Training 1
--- Training 0
--- Test 1
--- Test 0

Classification rule: Random Forests

--- Training 0
--- Training 1
--- Test 0
--- Test 1

Figure 8. Results of applying the DDG-classifier(ChordDist,RF) to the multivariate text data (no
Fourier transform is performed yet). The DD-plot on the left uses the chord distance depth, and
random forest as the classification rule. The right plot represents the confusion matrix resulting from
applying the former procedure to the test sample. The red and blue points indicate whether the
observations in the training sample belong to class 1 or 0, respectively. The green and orange crosses
are the test observations corresponding to class 1 and 0, respectively.

As observed in the DD-plot in Figure 8, the maximum depth classifier (the main
diagonal) achieves complete separation between groups for the training sample. However,
it is clear that the performance drops dramatically for the test sample, since the maximum
depth classifier assigns most test observations to class 1. Consequently, other classifica-
tion rules were tested, namely: kNN and random forests. Among these, random forests
provided the best performance for the training sample, achieving an out-of-bag error (the
error of the data not selected in the bootstrap sampling process and therefore not used
to grow the trees, see ([49], Chapter 15) for further details on random forests) of 0.84%.
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However, this particular case shows a clear example of overfitting, as the training sample
is classified almost perfectly, but the misclassification rate for the test sample drastically
increases to 0.38 (as can be inferred from the confusion matrix in Figure 8; and reported
in Table 1). Thus, the conventional supervised classification methods analyzed in ([25],
Section 5) outperform the DDG-classifier(ChordDist,RF).

Finally, the DDG-classifier is applied in combination with the compositional D-depth,
that is, being D a statistical depth function applied to the functional data resulting from
considering the modulus of the inverse Fourier transform of the vectorized dataset. Specifi-
cally, the compositional D-depth is used together with FM depth, RP depth and HS depth.
The best results were obtained with FM depth and RP depth. They are shown in Figure 9.
Note that the selected classification rules are the ones that have the lowest misclassification
rates among the analyzed rules (maximum depth classifier, linear discriminant analysis and
kNN) within the training sample. In particular, the DDG-classifier(compFM,lda) has a mis-
classification rate of 0.29 in the training sample, and that of the DDG-classifier(compRP,lda)
is 0.32. These results are reported in Table 1.

DD-plot(compFM,lda)

DD-plot(compRP,lda)

Figure 9. Results of applying the DDG-classifier to the Fourier-transformed text data i.e., together
with the compositional D-depth. The DD-plot in the upper left corner uses compositional FM-
depth, while the DD-plot in the lower left corner uses compositional RP-depth. In both cases, linear
discriminant analysis is used as the classification rule. The top right plot shows the confusion matrix
that results when the DDG-classifier (compFM,lda) is applied to the test sample. Similarly, the bottom
right plot shows the confusion matrix that results when the DDG-classifier (compRP,lda) is applied
to the test sample.
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Based on the confusion matrix in the top-right corner of Figure 9, it follows that
the prediction accuracy of the DDG-classifier(compFM,lda) in the test sample is 85%.
This means that its performance is comparable to that of SVM (which was 86%), and is
better than the scores obtained by the decision tree and ANN (which were 78% and 83%,
respectively). Similarly, the confusion matrix in the bottom-right corner of Figure 9 shows
that the prediction accuracy of the DDG-classifier(compRP,lda) in the test sample is 91%.
Therefore, this setting is more generalizable and outperforms the results obtained with all
classifiers analyzed in [25] for this particular training–test split of text fragments, where the
best prediction accuracy in the test sample was achieved by LASSO and was 89%.

In addition to the misclassification rate, the following performance metrics are also
reported in order to assess the overall effectiveness: precision, recall, F1-score, and the
area under the ROC curve (AUC). These results are displayed in Table 2, where Column
1 lists the type of performance metric. The results for the DDG-classifier with linear
discriminant analysis using compositional FM-depth in the training and test samples are
shown in Columns 2 and 3, respectively. Similarly, the results for the DDG-classifier using
compositional RP-depth in the training and test samples are shown in Columns 4 and 5,
respectively.

Overall, the DDG-classifier using compositional FM-depth and/or RP-depth has
demonstrated good performance based on the evaluation metrics of precision, recall, F1
score, and misclassification rate. Precision measures the proportion of correctly classified
positive samples out of all samples classified as positive, with a value of around 0.7
indicating that the classifier is correctly identifying approximately 70% of the positive
samples. Recall measures the proportion of correctly classified positive samples out of
all actual positive samples, with a value of around 0.8, suggesting that the classifier is
correctly identifying approximately 80% of the actual positive samples. The F1-score is a
combination of precision and recall, and a value of around 0.75 indicates a good balance
between the two. The AUC is a metric that measures the model’s ability to distinguish
between positive and negative samples, with a higher value indicating better performance.
In this case, the AUC is around 0.69 in the training sample and 0.8 in the test sample,
indicating good performance in both cases. The slightly higher values for the performance
metrics in the test sample suggest that the model may have slightly better generalizability,
or ability to perform well on unseen data.

Table 2. Table summarizing the performance of the DDG-classifier using compositional FM-depth
(Columns 2 and 3) and compositional RP-depth (Columns 4 and 5), with linear discriminant analysis
as the classification rule. Column 1 lists the type of metric, while Columns 2 and 4 show the results of
the metrics for the training sample and Columns 3 and 5 show the results for the test sample.

DDG-Classifier (compFM, lda) DDG-Classifier (compRP, lda)

Metric Training Sample Test Sample Training Sample Test Sample

Misclassification rate 0.29 0.15 0.32 0.09
Precision 0.71 0.71 0.71 0.88

Recall 0.80 0.79 0.76 0.79
F1-score 0.75 0.75 0.74 0.83

AUC 0.69 0.83 0.69 0.85

Consequently, the use of depth-based classifiers such as the DDG-classifier together
with the newly proposed compositional D-depth provides better results than conventional
supervised classification techniques such as LASSO, SVMs, ANNs or DTs. Likewise, the
classifiers based on the compositional D-depth rather than on ordinary statistical depths
are more generalizable, as the misclassification rates in the test sample are lower. These
results are promising for the use of this approach based in the compositional depth in text
classification problems, not necessarily limited to healthcare-related data.
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5. Conclusions

This manuscript introduces the compositional D-depth, a new concept of statistical
depth function appropriate for text data. This statistical depth arises from the need to find
a specific depth for handling text datasets, especially when text fragments are vectorized
with the tf-idf statistic. The reason is that the previous vectorization process has been
shown to result in very sparse datasets, hindering the application of other known statistical
data depths.

The proposed depth is inspired by signal theory and consists of the composition of a
known statistical depth function and the inverse discrete Fourier transform. This particular
process allows very sparse datasets to be transformed into curves so that statistical depths
for functional data can be applied to them. The rationale is that the inverse Fourier
transform is a tool to move from frequency space (in a sense, the space defined by the tf-idf
statistic) to time space.

In order to show the potential value of the compositional D-depth, a proof-of-concept
analysis is conducted using qualitative data from the healthcare sector that has already been
analyzed in [25] using traditional supervised classification methods such as ANNs, LASSO,
SVMs and DTs. The case study analyzed in this manuscript—and also in [25]—revolves
around a binary classification problem, which involves predicting whether or not a text
fragment is assigned a CFIR construct. Explaining the process of converting qualitative
data into quantitative data so that it can be used as input to classification methods is beyond
the scope of this paper, but is described in detail in ([25], Section 3). It is worth mentioning,
however, that given a training set consisting of s text fragments and containing h unique
words, the output of the above pre-processing is an s× (h + 1) matrix, whose rows are
the vectorized representation of each text fragment (using the tf-idf statistic) along with its
corresponding label (1 if it has been assigned at least one CFIR construct, or 0 if not). In
the present case, the training sample consisted of the first 65% of the text fragments in the
participants’ transcription, while the test sample consisted of the remaining 35%.

In this manuscript, the approach to the above binary classification problem is based
on the application of the DDG-classifier (see Section 2). Even though this depth-based
classification method has been applied with different well-known statistical depths, the
best results have been obtained by combining the DDG-classifier with the newly defined
compositional D-depth. In particular, the most favorable situation is obtained when
considering the compositional depth together with the random projection depth (ĈRP), as
well as linear discriminant analysis as the classification rule for the DD-plots. The previous
setup yields a success rate of 91% for the 65/35% training–test split under study. The
results so far show not only that compositional depth works well on the text dataset under
study, but also that it outperforms the results obtained using all other tested traditional
machine learning methods (see [25], Section 5) for more details). In addition, it was found
to be a great improvement over other statistical data depths, such as those developed for
multivariate data or based on directional data on the hypersphere.

The results obtained in this proof-of-concept analysis are promising and highlight
the utility of the compositional D-depth for dealing with text datasets. Furthermore, the
analysis conducted in this manuscript leaves the door open to apply the same depth-based
methodology to other text datasets that are not necessarily from the healthcare sector and,
in general, to any dataset that is very sparse.

Future work will also include the study of the theoretical properties of the newly
defined compositional D-depth. The study of these properties will lead to determine other
applications in which the compositional D-depth could be successfully used.
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The following abbreviations are used in this manuscript:

ANNs Artificial Neural Networks
AUC Area under the ROC curve
CFIR Consolidated Framework for Implementation Research
ChordDist Chord Distance
DTs Decision Trees
FM Fraiman–Muniz
FT Fourier Transform
HS halfspace
IFT Inverse Fourier Transform
kNN k-Nearest Neighbors
LASSO Least Absolute Shrinkage and Selection Operator
ML Machine Learning
NLP Natural Language Processing
PVS Prescribing Health Life
RF Random Forests
RP Random Projection
RT Random Tukey
SVMs Support Vector machine
tf-idf Term frequency–inverse document frequency
TM Text Mining
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