
Citation: Shin, S.-S.; Kim, Y.-H.

Optimal Agent Search Using

Surrogate-Assisted Genetic

Algorithms. Mathematics 2023, 11, 230.

https://doi.org/10.3390/

math11010230

Academic Editor: Ioannis G.

Tsoulos

Received: 21 November 2022

Revised: 29 December 2022

Accepted: 30 December 2022

Published: 2 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimal Agent Search Using Surrogate-Assisted Genetic Algorithms
Seung-Soo Shin 1 and Yong-Hyuk Kim 2,*

1 Department of Computer Science, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu,
Seoul 01897, Republic of Korea

2 School of Software, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
* Correspondence: yhdfly@kw.ac.kr

Abstract: An intelligent agent is a program that can make decisions or perform a service based on its
environment, user input, and experiences. Due to the complexity of its state and action spaces, agents
are approximated by deep neural networks (DNNs), and it can be optimized using methods such as
deep reinforcement learning and evolution strategies. However, these methods include simulation-
based evaluations in the optimization process, and they are inefficient if the simulation cost is high.
In this study, we propose surrogate-assisted genetic algorithms (SGAs), whose surrogate models
are used in the fitness evaluation of genetic algorithms, and the surrogates also predict cumulative
rewards for an agent’s DNN parameters. To improve the SGAs, we applied stepwise improvements
that included multiple surrogates, data standardization, and sampling with dimensional reduction.
We conducted experiments using the proposed SGAs in benchmark environments such as cart-pole
balancing and lunar lander, and successfully found optimal solutions and significantly reduced
computing time. The computing time was reduced by 38% and 95%, in the cart-pole balancing and
lunar lander problems, respectively. For the lunar lander problem, an agent with approximately 4%
better quality than that found by a gradient-based method was even found.

Keywords: surrogate-assisted computation; genetic algorithm; agent optimization

MSC: 68T05; 68T20; 68W50

1. Introduction
1.1. Motivation

Intelligent agents are systems used to achieve various goals in uncertain environ-
ments [1]. They receive states and rewards from the environment and select actions through
policies that constitute their action probability distributions based on the current state. As
the complexity of an agent’s environment space increases, policies can be approximated as
deep neural networks (DNNs) [2]. The parameters of these DNNs are optimized through
evolution strategies or the gradient descent algorithm using backpropagation [3]. However,
these methods are accompanied by simulation-based evaluation for optimization, which
incurs enormous costs when applied to expensive real-world environments. Therefore,
to reduce the simulation cost, we propose surrogate-assisted genetic algorithms (SGAs)
for optimizing the DNN parameters of agents and compare their computational costs and
optimization performance with those of a simulation-based method. The proposed SGAs
replace the real fitness function of the genetic algorithm (GA) [4,5] with surrogate models
that predict cumulative rewards according to the DNN parameters of the agent.

1.2. Contribution

However, SGAs mislead to a false optimum if the fidelity of surrogates is low [6,7].
To solve this problem, we propose three stepwise improvements to increase the surrogate-
assisted efficiency associated with the optimization performance of SGAs. The first is to use
multiple surrogates, which can reduce the prediction error by combining various machine

Mathematics 2023, 11, 230. https://doi.org/10.3390/math11010230 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010230
https://doi.org/10.3390/math11010230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1621-9846
https://orcid.org/0000-0002-0492-0889
https://doi.org/10.3390/math11010230
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010230?type=check_update&version=4

Mathematics 2023, 11, 230 2 of 16

learning-based classifiers and regressors. The second is data standardization to address
overfitting and outlier problems caused by the experimental data. The third is random
sampling with dimensional reduction to address the problem of high-dimensional and
limited samples, wherein a domain is set up through dimensionality reduction and samples
are added to it. We conducted experiments on benchmark environments of cart-pole
balancing and lunar lander using the proposed SGAs, and compared their performance
and computational costs with the gradient-based baseline method for each environment.
The contributions of this paper are as follows: we proposed novel SGAs to optimize DNNs
of intelligent agents to reduce computational costs compared to the double deep Q-network
and we presented three stepwise improvements that successfully solve the misleading
problems of SGAs.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 presents the related
research. In Section 3, the structure and techniques of the proposed SGAs with stepwise
improvements for optimizing the DNN parameters of intelligent agents are introduced, and
the experimental details are presented. In Section 4, the results obtained in the experiments
are presented and discussed. Finally, the conclusions and future research directions are
presented in Section 5.

2. Related Work
2.1. Surrogate-Assisted Genetic Algorithm

The GA is a global optimization method that mimics natural selection and genetics.
Through the computation of the selection and crossover operators, cooperation is achieved
among several solutions, which enables a faster optimization search than simple parallel
search methods. The GA is applicable to nonlinear or incalculable problems, regardless of
the shape of the evaluation functions. Owing to these advantages, the GA is widely used in
various fields such as natural science, engineering, humanities, and social sciences [8–10].
However, it generally requires evaluating all chromosomes in the population at each
generation, which is inefficient if the computational cost of the fitness function is very
high. To reduce the fitness function cost, SGA studies have replaced the surrogate model
with real fitness functions [11–13]. Surrogate-assisted methods have the advantage of
reducing evaluation costs, but they can mislead to false optima [14]. To prevent this,
a strategy for managing the genetic process or the surrogate model is required. In the
genetic process, evolution control involves a hybrid evaluation that evaluates a specific
chromosome of a population as the real fitness function [15,16]. Surrogate and surrogated-
assisted performances can be degraded by problems such as the curse of dimensionality
and lack of environmental data. Degradation of surrogate-assisted performance can be
prevented by employing improvement strategies such as multiple surrogates [17] and
intelligent data sampling [18].

2.2. Neural Network Optimization of Agents

The learning of intelligent agents used to solve problems is performed by maximizing
the cumulative rewards using an unsupervised method [19]. As the problem environment
is complex, when the state and action space are represented in high-dimensional space, the
agent is approximated by a DNN. Optimizing the DNN parameters of an agent involves
two methods. The first is deep reinforcement learning (DRL), wherein the parameters
are optimized by computing or approximating the gradient of an agent’s DNN [20]. DRL
involves directly learning policies, which are the action probability distributions according
to the state, or Q-functions, which represent the state value according to the action in
the given state [21,22]. The second method optimizes the agent DNN parameters for
GA. Unlike DRL, this method can reduce the computation time by configuring a non-
gradient method in parallel. Some studies proposed learning both the topologies and DNN
parameters, and showed performance improvements over DRL [23,24]. In this study, we

Mathematics 2023, 11, 230 3 of 16

collected experimental points through the learning process of the gradient-based double
deep Q-network (DDQN) [25] and designed a surrogate model. We searched for the optimal
agent DNN using GAs, which can reduce computing time by parallel structure and on
which there have been a lot of prior studies [23,24]. Since the collected experimental points
are network parameters of a fixed structure, a conventional GA [26] for optimizing the
structure is considered to be suitable.

3. Materials and Methods
3.1. SGA
3.1.1. Encoding and Fitness

In GAs, the solutions to problems are encoded in chromosomes. Encoding is designed
in various ways, based on the nature of the problem or the GA operator. In this study,
we encoded all weights and biases of DNNs into length-L vectors of 1D real numbers
to represent the agent’s DNN (Figure 1). The network θ is an agent DNN and should
be satisfied with the range of set Θ of training network in the surrogate model. The
first experimental environment, cart-pole balancing, was designed with four architecture
cases that were encoded in real numbers with lengths of 23, 35, 37, and 67. The reason
for these architecture cases is to minimize the number of parameters encoded. A small
number of encoded parameters can avoid the performance degradation of GAs’ computing
time and surrogates. The second experimental environment, the lunar lander, requires
a more complex architecture for problem solving because its action and state space are
more complicated than those of cart-pole balancing. Because the lunar lander has 1476
parameters, the surrogate-assisted performance decreases and the GA computing time
increases when encoding all of them. To address this, we measured their Gini importance
using DNN parameters and encoded the top 100 parameters. Fitness was used to measure
the quality of the solution encoded in the chromosome. Because fitness is used as an
indicator for selecting good-quality solutions in selection operations, it is important to
design a fitness function according to the GA structure and problem characteristics. We
evaluated the chromosome quality using a surrogate model that predicted a cumulative
reward for the agent’s DNN parameters.

Mathematics 2023, 11, 230 3 of 17

DRL involves directly learning policies, which are the action probability distributions ac-
cording to the state, or Q-functions, which represent the state value according to the action
in the given state [21,22]. The second method optimizes the agent DNN parameters for
GA. Unlike DRL, this method can reduce the computation time by configuring a non-
gradient method in parallel. Some studies proposed learning both the topologies and
DNN parameters, and showed performance improvements over DRL [23,24]. In this
study, we collected experimental points through the learning process of the gradient-
based double deep Q-network (DDQN) [25] and designed a surrogate model. We
searched for the optimal agent DNN using GAs, which can reduce computing time by
parallel structure and on which there have been a lot of prior studies [23,24]. Since the
collected experimental points are network parameters of a fixed structure, a conventional
GA [26] for optimizing the structure is considered to be suitable.

3. Materials and Methods
3.1. SGA
3.1.1. Encoding and Fitness

In GAs, the solutions to problems are encoded in chromosomes. Encoding is de-
signed in various ways, based on the nature of the problem or the GA operator. In this
study, we encoded all weights and biases of DNNs into length-𝐿 vectors of 1D real num-
bers to represent the agent’s DNN (Figure 1). The network θ is an agent DNN and should
be satisfied with the range of set Θ of training network in the surrogate model. The first
experimental environment, cart-pole balancing, was designed with four architecture cases
that were encoded in real numbers with lengths of 23, 35, 37, and 67. The reason for these
architecture cases is to minimize the number of parameters encoded. A small number of
encoded parameters can avoid the performance degradation of GAs’ computing time and
surrogates. The second experimental environment, the lunar lander, requires a more com-
plex architecture for problem solving because its action and state space are more compli-
cated than those of cart-pole balancing. Because the lunar lander has 1476 parameters, the
surrogate-assisted performance decreases and the GA computing time increases when en-
coding all of them. To address this, we measured their Gini importance using DNN pa-
rameters and encoded the top 100 parameters. Fitness was used to measure the quality of
the solution encoded in the chromosome. Because fitness is used as an indicator for select-
ing good-quality solutions in selection operations, it is important to design a fitness func-
tion according to the GA structure and problem characteristics. We evaluated the chro-
mosome quality using a surrogate model that predicted a cumulative reward for the
agent’s DNN parameters.

Figure 1. Example of DNN encoding.

3.1.2. Selection and Crossover
The selection operation is used to select the parent chromosomes used for crossover

generation, and the probability of selecting high−quality chromosomes should be high. In

Figure 1. Example of DNN encoding.

3.1.2. Selection and Crossover

The selection operation is used to select the parent chromosomes used for crossover
generation, and the probability of selecting high−quality chromosomes should be high.
In this study, chromosomes were selected based on the quality measured with surrogate
assistance. When a roulette-wheel is directly applied to our SGAs, the fitness range of the
initial population is very wide due to the penalties of classifiers in the surrogates, which
will be described in Section 3.1.4. Therefore, the diversity of GAs may decrease due to
premature convergence. To avoid the problem, we adjusted fitness values to increase the
probability that low-quality solutions will be selected at early generations. The roulette-
wheel method adjusts the population fitness such that the maximum quality is k times

Mathematics 2023, 11, 230 4 of 16

the minimum quality, and the parent chromosomes are selected according to the adjusted
fitness. k is a selection pressure variable that determines convergence, and as the value
increases, the probability deviation selected according to fitness increases. Equation (1)
calculates the adjusted fitness fadj from the existing fitness f is as follows:

fadj = (Cmin − f) +
Cmin − Cmax

k− 1
, . . . k > 1, (1)

where Cmax and Cmin the maximum and minimum in existing fitness.
For populations size P, 2P chromosomes for crossover are selected. Then, the time

complexity of the selection operator becomes Θ(PL), where L is the chromosome length.
In this study, we adopted the extended-box crossover because the chromosomes were
encoded with real numbers [27]. The extended-box crossover extends the maximum and
minimum ranges of each gene of the parent chromosomes using the expansion rate α and
selects random real numbers from the extended ranges. Additionally, to reflect the learning
domain of the surrogate model, the boundary value was set per gene, and the operator
was adjusted such that it did not exceed the boundary. Compared to the box crossover, the
extended-box crossover prevents early convergence and bias problem. The time complexity
of the extended-box crossover is Θ(L). The pseudocode of the extended-box crossover is
shown in Algorithm 1. In this study, the typical selection pressure k and the expansion rate
α were used, as 3 and 0.5, respectively.

Algorithm 1 Extended-box Crossover

Extended-box Crossover (p1, p2)
L:= Chromosome length
for i← 1 to L
m←min(p1i, p2i), M←max(p1i, p2i)
em← m-α(M-m), eM←M+α(M-m)
zi ← a random real number in [max(em, minθ∈Θ θi), min(eM, maxθ∈Θ θi)]
//Θ: set of training networks
//θi: the i-th value of θ encoded by Section 3.1.1
return Z = (z1, z2, . . . , zL)

3.1.3. Mutation and Replacement

The mutation operator adds diversity to the population to reduce chromosomal simi-
larity and prevent convergence to the local optimum. In this study, we generated random
values for each gene in the chromosome, compared them with the threshold to replace
them with a random real number, and verified that the replaced gene satisfied the domain
range. The mutation rate was set to 0.015, and the rate was chosen as showing the best
optimization performance in the range [0, 0.05]. Our mutation operator’s time complexity
is Θ(L). The pseudocode of the mutation is shown in Algorithm 2. The replacement opera-
tor replaces the offspring generated by previous operators with parent chromosomes. In
this study, generational GA, which replaces all offspring with parents, and elitism, which
preserves the highest-quality chromosomes, were used.

Algorithm 2 Mutation

Mutation (Chromosome)
L:= Chromosome length
p:= Mutation rate
for i← 1 to L
if (random [0, 1) < p)
Chromosome[i]← random[minθ∈Θ θi, maxθ∈Θ θi]

Mathematics 2023, 11, 230 5 of 16

3.1.4. Surrogate Model with Stepwise Improvement

The surrogate model performance is not a compulsory evaluation factor of SGA; how-
ever, the optimization performance may degrade in the surrogate-assisted method. In
this study, three stepwise improvements were applied to improve the surrogate-assisted
performance. The first involves using an ensemble with multiple homogeneous surrogates,
rather than a single surrogate, to improve the performance. The second involves stan-
dardization of the input data for surrogate-assisted training. The third involves adding
experimental points other than those in the existing simulation-based methods through
data sampling. Sampling that reflects the problem domain can improve the performance of
the surrogates. We reduced the dimensions through principal component analysis (PCA)
and added experimental points that satisfied the domain. In the following, these three
stepwise improvements are described in more detail:

1. Heuristic Measure using Multiple Surrogates: The advantage of using ensembles
that employ multiple surrogates is that it is possible to address the degradation
problem of a single surrogate, and the predicted performance variance helps avoid
false optima [28]. In this study, we designed multiple homogeneous surrogates that
combine classifiers and regressors designed using the same training data. The fitness
function of the proposed surrogate is expressed as the sum of the predicted values
of the regressor and output of the classifiers that reflects the penalty weights. The
decision boundary of the classifiers is determined by the cumulative reward quality
of an agent based on the problem. The heuristic measure that returns the results for
the input network θ is expressed as Equation (2). c1 and c2 are classifiers for the
input network θ, and have an output value of 1 or 0. r is a regressor and outputs the
cumulative reward prediction for θ. pc1 and pc2 are negative penalty constants such
that pc1 � pc2 � 0.

Heuristic measure(θ) =

r(θ)
r(θ)
r(θ)

+pc1
+pc2

if c1(θ) = 0,
if c1(θ) = 1
if c1(θ) = 1

and c2(θ) = 0,
and c2(θ) = 1

(2)

2. Data Standardization: Because this study collected experimental points through a
gradient-based, we obtained numerous low-quality outliers prior to the convergence
to the optimal solution. To prevent performance degradation of the surrogate owing
to this problem, we calculated the average m and standard deviation σ for each agent’s
DNN parameter and adjusted the input data to have a standard normal distribution.
The standardized value Z for the input random variable X is calculated as follows:

Z =
X−m

σ
(3)

3. Random Sampling using PCA: Training data used for designing surrogate models
for optimizing DNNs of agents are limited and highly dimensional. This could not
sufficiently represent the problem domain, which may deteriorate the quality of
surrogate-assisted computation. Data sampling was applied to address this problem,
reduce biases, and increase robustness to outliers [29]. However, in the case of
higher dimensions, the domain is very wide and it is difficult to add samples. In
this study, we reduced the dimensions through PCA [30] and added experimental
points randomly and uniformly in the reduced domains. PCA analyzes the correlation
between DNN parameters and extracts the principal components representing them,
thereby minimizing information loss in high-dimensional spaces and performing
dimension reduction that reflects the domain. Figure 2 shows an example of data
sampling after 2D reduction through PCA, wherein Figure 2a shows a scatter plot of
training data before sampling and Figure 2b shows the scatter plot after performing
random data sampling through PCA. From Figure 2b, it can be qualitatively confirmed

Mathematics 2023, 11, 230 6 of 16

that the cluster is well-formed according to the decision boundary of the classifier
presented in the heuristic measure using multiple surrogates.

Mathematics 2023, 11, 230 6 of 17

we reduced the dimensions through PCA [30] and added experimental points ran-
domly and uniformly in the reduced domains. PCA analyzes the correlation between
DNN parameters and extracts the principal components representing them, thereby
minimizing information loss in high-dimensional spaces and performing dimension
reduction that reflects the domain. Figure 2 shows an example of data sampling after
2D reduction through PCA, wherein Figure 2a shows a scatter plot of training data
before sampling and Figure 2b shows the scatter plot after performing random data
sampling through PCA. From Figure 2b, it can be qualitatively confirmed that the
cluster is well-formed according to the decision boundary of the classifier presented
in the heuristic measure using multiple surrogates.

(a) (b)

Figure 2. Scatter plots expressed in 2D through PCA: (a) training data and (b) random sampling
added to (a).

The flowchart of the proposed SGA is shown in Figure 3. GA operators designed in
Section 3 optimize the encoded parameters of an agent DNN, and the fitness values of the
chromosomes are evaluated by surrogate model with stepwise improvements of Section
3.1.4.

Figure 2. Scatter plots expressed in 2D through PCA: (a) training data and (b) random sampling
added to (a).

The flowchart of the proposed SGA is shown in Figure 3. GA operators designed
in Section 3 optimize the encoded parameters of an agent DNN, and the fitness values
of the chromosomes are evaluated by surrogate model with stepwise improvements of
Section 3.1.4.

Mathematics 2023, 11, 230 7 of 17

Figure 3. Flowchart of the proposed surrogate-assisted genetic algorithm.

3.2. Experiments
3.2.1. Objective for Optimal Agent Search

The purpose of a general agent is to maximize the cumulative reward according to
the environment. An agent’s reward function typically takes as input a trajectory, which
is a set of sequences of actions and states. The objective function for agent optimization is
as follows: Maximize 𝐸𝑛𝑣 (𝑠 , θ(𝑠)) + 𝐹 𝑠 , θ(𝑠) , (4)

where st+1 = EnvN(st, θ(st)) and EnvR(su, θ(su)) = 0 for u ≥ t if st is not feasible. θ is an agent
DNN, returning an action vector that maximizes the cumulative rewards when st is an
input. The output of EnvR is a loss of the reward calculated through the input of agent’s
actions. EnvN takes a pair of action and state as input and returns the next state vector at
next time step. T is the maximum time step value. F returns the agent’s reward.

3.2.2. Cart-Pole Balancing Problem
In this study, we experimented using cart-pole balancing, a classical continuous con-

trol environment that is mainly used as a benchmark in DRL and neuroevolution. Cart-
pole balancing comprises a pole l attached through a pivot joint on cart M, as shown in
Figure 4. It is a physical system that maintains the attached pole l in a vertical position by
moving M in the left and right directions on a frictionless track. In this study, a simulation

Figure 3. Flowchart of the proposed surrogate-assisted genetic algorithm.

Mathematics 2023, 11, 230 7 of 16

3.2. Experiments
3.2.1. Objective for Optimal Agent Search

The purpose of a general agent is to maximize the cumulative reward according to
the environment. An agent’s reward function typically takes as input a trajectory, which is
a set of sequences of actions and states. The objective function for agent optimization is
as follows:

Maximize ∑T
t=1 EnvR(st, θ(st)) + F

(
T

∏
t=1
{(st, θ(st))}

)
, (4)

where st+1 = EnvN(st, θ(st)) and EnvR(su, θ(su)) = 0 for u ≥ t if st is not feasible. θ is an agent
DNN, returning an action vector that maximizes the cumulative rewards when st is an
input. The output of EnvR is a loss of the reward calculated through the input of agent’s
actions. EnvN takes a pair of action and state as input and returns the next state vector at
next time step. T is the maximum time step value. F returns the agent’s reward.

3.2.2. Cart-Pole Balancing Problem

In this study, we experimented using cart-pole balancing, a classical continuous control
environment that is mainly used as a benchmark in DRL and neuroevolution. Cart-pole
balancing comprises a pole l attached through a pivot joint on cart M, as shown in Figure 4.
It is a physical system that maintains the attached pole l in a vertical position by moving
M in the left and right directions on a frictionless track. In this study, a simulation was
performed using the CartPole-v1 environment of the OpenAI Gym toolkit. The state space
in question comprised a 4D real number vector, constituting the position and velocity
of M and the angle and angular velocity of l. The action space in question comprised a
2D discrete vector constituting the mechanism to push the cart left and right. The end
conditions of the environment were as follows: (1) The position of cart M is outside ±2.4,
(2) the angle of pole l is outside ±24, and (3) the step reward exceeds 500. When an end
condition was not met, the agent received a reward of one for each time step. In this
environment, the optimal solution for DNNs is to achieve a cumulative reward of 500
according to the maximum time step. Table 1 presents the environment characteristics of
the cart-pole balancing experiment. Cart-pole balancing’s objective function as follows:

Maximize ∑T
t=1 EnvR(st, θ(st)), (5)

where st+1 = EnvN(st, θ(st)) and EnvR(su, θ(su)) = 0 for u ≥ t if st is not feasible. st is agent’s
state vector at time step t. θ is an agent DNN, returning an action vector that maximizes
the cumulative rewards when st is an input. EnvR and EnvN are simulation functions that
receive state and action vectors at each time step. EnvR returns a reward of time step, and
EnvN returns a state at next time step. T is a variable representing the maximum time step
value 500.

Mathematics 2023, 11, 230 8 of 17

was performed using the CartPole-v1 environment of the OpenAI Gym toolkit. The state
space in question comprised a 4D real number vector, constituting the position and veloc-
ity of M and the angle and angular velocity of l. The action space in question comprised a
2D discrete vector constituting the mechanism to push the cart left and right. The end
conditions of the environment were as follows: (1) The position of cart M is outside ±2.4,
(2) the angle of pole l is outside ±24, and (3) the step reward exceeds 500. When an end
condition was not met, the agent received a reward of one for each time step. In this envi-
ronment, the optimal solution for DNNs is to achieve a cumulative reward of 500 accord-
ing to the maximum time step. Table 1 presents the environment characteristics of the
cart-pole balancing experiment. Cart-pole balancing’s objective function as follows: Maximize 𝐸𝑛𝑣 (𝑠 , θ(𝑠)), (5)

where st+1 = EnvN(st, θ(st)) and EnvR(su, θ(su)) = 0 for u ≥ t if st is not feasible. st is agent’s state
vector at time step t. θ is an agent DNN, returning an action vector that maximizes the
cumulative rewards when st is an input. EnvR and EnvN are simulation functions that re-
ceive state and action vectors at each time step. EnvR returns a reward of time step, and
EnvN returns a state at next time step. T is a variable representing the maximum time step
value 500.

Figure 4. Example of the cart-pole balancing problem environment.

Table 1. Environment of the cart-pole balancing problem.

Environment Parts Value
Action space Discrete (2)

Observation shape Continuous (4)
Continuous observation range ±[2.4, ∞, 24, ∞]

The following describes the data for surrogate modeling and the design of SGAs in
the cart-pole balancing environment in more detail:
1. Surrogate Modeling Data: For designing a surrogate model, pairs of DNN parame-

ters of agents and cumulative reward data according to the DNNs are required. The
experimental points were collected through DDQN, which is an off-policy DRL tech-
nique. To improve the encoding and computational speed of the SGA, we set it to
have a simple DNN architecture. The minimal topology for collecting good solutions
was 1 hidden layer and 3 hidden nodes. To measure the performance of the proposed
SGAs by network topologies, we set up 4 architecture cases as follows: the number
of hidden layers is 1 or 2, and the number of hidden nodes in each layer is 3 or 5. The
network collected by DDQN is a fully connected network, and the number of the
input and output nodes of cart-pole balancing is 4 and 2, respectively. Therefore, the
number of parameters per architecture case are 23 (= 43 + 3 + 32 + 2), 37 (=

Figure 4. Example of the cart-pole balancing problem environment.

Mathematics 2023, 11, 230 8 of 16

Table 1. Environment of the cart-pole balancing problem.

Environment Parts Value

Action space Discrete (2)
Observation shape Continuous (4)

Continuous observation range ±[2.4, ∞, 24, ∞]

The following describes the data for surrogate modeling and the design of SGAs in
the cart-pole balancing environment in more detail:

1. Surrogate Modeling Data: For designing a surrogate model, pairs of DNN parameters
of agents and cumulative reward data according to the DNNs are required. The exper-
imental points were collected through DDQN, which is an off-policy DRL technique.
To improve the encoding and computational speed of the SGA, we set it to have a
simple DNN architecture. The minimal topology for collecting good solutions was 1
hidden layer and 3 hidden nodes. To measure the performance of the proposed SGAs
by network topologies, we set up 4 architecture cases as follows: the number of hidden
layers is 1 or 2, and the number of hidden nodes in each layer is 3 or 5. The network col-
lected by DDQN is a fully connected network, and the number of the input and output
nodes of cart-pole balancing is 4 and 2, respectively. Therefore, the number of parame-
ters per architecture case are 23 (= 4× 3 + 3 + 3× 2 + 2), 37 (= 4× 5 + 5 + 5× 2 + 2),
35 (= 4× 3 + 3 + 3× 3 + 3 + 3× 2 + 2), and 67 (= 4× 5 + 5 + 5× 5 + 5 + 5× 2 + 2),
respectively. A total of 10,000 data were collected through DDQN learning.

2. Surrogate-assisted GA for the Cart-pole Balancing Problem: Following the stepwise
improvements proposed in Section 3.1.4, we designed surrogate models using the
surrogate modeling data. In Step 1, two classifiers and one regressor were combined
into multiple heuristic surrogates. The classifiers were designed as DNN-based, and
each decision boundary was set as 195 and the median value of the experimental
points exceeding 195. The first decision boundary of the classifiers, 195, was the
threshold of the previous version, CartPole-v0. The regressor of the initial experiment
was a DNN that is a nonlinear method commonly used in surrogates. However,
in the GA performance to be described later, DNN cannot search the solution that
allows it to achieve the maximum reward of 500 for all network architectures. To
improve our SGAs, we replaced the regressor with support vector regression (SVR).
SVR is a method that applies support vector machine to regression, and it adjusts the
regression line to adding as much data as possible inside the margin. In addition, SVR
is robust to outliers and overfitting through an ε-incentive loss function. In Step 2, the
learning data of the surrogate was adjusted through standardization. In Step 3, the
domain of the surrogate was reduced to 2D through PCA, and 10,000 experimental
points were added with the same number as the training data.

Table 2 lists the operators and parameters of the SGA used for the cart-pole balancing
problem. We used the surrogate models designed through stepwise improvements for
fitness evaluation and computed 30 runs in parallel. The fitness and simulation results
of 30 runs were confirmed, and their performances were compared according to the net-
work architecture and surrogate model. Our SGAs’ experiments were conducted in the
environment of Table 3.

Table 2. Operators and parameters of the proposed SGA for the cart-pole balancing problem.

Operator/Parameter Value

Population size 100
Number of generations 1000
Chromosome lengths 23/37/35/67

Selection method Roulette-wheel
Crossover method Extended-box

Mathematics 2023, 11, 230 9 of 16

Table 2. Cont.

Operator/Parameter Value

Mutation rate 1.5%
Replacement Elitism & Generational

Table 3. Experiments environments.

CPU (core) AMD Ryzen Threadripper 2990WX (32)
RAM 64 GB

Operating system Ubuntu 18.04 LTS
Programming language (version) Python (3.7.11)

3.2.3. Lunar Lander

The lunar lander is a classical rocket trajectory problem, wherein the trajectory of
the landing craft must be adjusted to ensure that it lands on the landing pad without
collision. As shown in Figure 5, the simulation was conducted using LunarLander-v2, a
Gym OpenAI Box2D gaming environment. It is evident that the state and action spaces
are more complicated than the cat-pole balancing environment, making the agent’s DNN
more complex. The state space is an 8D mixed vector comprising the lander coordinates,
speed, angle, angular speed, and ground attachment. The action space is a 4D discrete
vector comprising do nothing, fire left orientation engine, fire right orientation engine,
and fire main engine actions. The agent end condition was configured as follows: (1) the
lander touches the ground, (2) the lander is out of the specified x range, and (3) the time
step achieves 1000. If the lander reached the landing pad, the agent received a reward; if it
moved away, the reward was lost. Additional rewards could be scored based on whether
the leg of the lander was in contact with the ground. Finally, if the lander used an engine,
the agent lost the reward. The threshold for solving the lunar lander problem was that
the average reward of the simulation exceeded 200, which is evaluated as the optimal
solution in this environment. The environment characteristics of the lunar lander problem
is presented in Table 4. Lunar lander’s objective function as follows:

Maximize ∑T
t=1 EnvR(st, θ(st)) + F(sT′), (6)

where st+1 = EnvN(st, θ(st)), EnvR(su, θ(su)) = 0 for u ≥ t if st is not feasible, and we meet
the end condition, we set T′ as t. st is agent’s state vector at time step t. θ is an agent DNN,
returning an action vector that maximizes the cumulative rewards when st is an input.
The output of EnvR is a loss of the reward calculated through the input of agent’s actions
(Landers’ engine usage). EnvN takes a pair of action and state as input and returns the next
state vector at next time step. T is the maximum time step value, and 1000 is used in lunar
lander’s environment. F receives sT′ that satisfies the end condition as an input and returns
the agent’s reward.

SGA for the Lunar Lander Problem: Similar to the method described in Section 3.2.2,
in the lunar lander problem, we attempted to construct the agent’s DNN architecture in a
simple manner; however, the architecture that satisfied the threshold comprised 2 hidden
layers and 32 hidden nodes. The number of parameters of the designed DNN was 1476,
which was approximately 22 times higher than that of the structure with the largest number
of parameters in the experimental environment of the cart-pole balancing problem. This
may degrade computational speed and surrogate performance. Therefore, we measured the
Gini importance for all DNN parameters and used the top 100 parameters in the surrogate
model design. In the lunar lander experiment, we designed the surrogate model with Step
3 using SVR, which performed best for the cart-pole balancing problem. The same operator
and parameters used in the cart-balancing problem were used in the SGAs for the lunar
lander problem, and 30 runs were executed in parallel. In the case of the lunar lander
problem, even if optimization is performed through the proposed SGAs, it is necessary to

Mathematics 2023, 11, 230 10 of 16

set the remaining 1376 parameters for the simulation. To solve this problem, a group of
upper experimental points exceeding the threshold value of 200 was selected. We measured
the Euclidean distance of all experimental points of the upper group and the solutions
calculated through the SGAs. The simulation was conducted using the parameters of the
experimental point that showed the highest similarity.

Mathematics 2023, 11, 230 10 of 17

main engine actions. The agent end condition was configured as follows: (1) the lander
touches the ground, (2) the lander is out of the specified x range, and (3) the time step
achieves 1000. If the lander reached the landing pad, the agent received a reward; if it
moved away, the reward was lost. Additional rewards could be scored based on whether
the leg of the lander was in contact with the ground. Finally, if the lander used an engine,
the agent lost the reward. The threshold for solving the lunar lander problem was that the
average reward of the simulation exceeded 200, which is evaluated as the optimal solution
in this environment. The environment characteristics of the lunar lander problem is pre-
sented in Table 4. Lunar lander’s objective function as follows: Maximize 𝐸𝑛𝑣 (𝑠 , θ(𝑠)) + 𝐹(𝑠), (6)

where st+1 = EnvN(st, θ(st)), EnvR(su, θ(su)) = 0 for u ≥ t if st is not feasible, and we meet the
end condition, we set T′ as t. st is agent’s state vector at time step t. θ is an agent DNN,
returning an action vector that maximizes the cumulative rewards when st is an input. The
output of EnvR is a loss of the reward calculated through the input of agent’s actions
(Landers’ engine usage). EnvN takes a pair of action and state as input and returns the next
state vector at next time step. T is the maximum time step value, and 1000 is used in lunar
lander’s environment. F receives sT’ that satisfies the end condition as an input and returns
the agent’s reward.

Figure 5. Example of the lunar lander problem environment.

Table 4. Lunar lander problem environment.

Environments Parts Value
Action space Discrete (4)

Observation shape Mixed (Continuous: 6; Bool: 2)
Continuous observation range ±[1.5, 1.5, 5, 5, 3.14, 5]

SGA for the Lunar Lander Problem: Similar to the method described in Section 3.2.2,
in the lunar lander problem, we attempted to construct the agent’s DNN architecture in a
simple manner; however, the architecture that satisfied the threshold comprised 2 hidden
layers and 32 hidden nodes. The number of parameters of the designed DNN was 1476,
which was approximately 22 times higher than that of the structure with the largest num-
ber of parameters in the experimental environment of the cart-pole balancing problem.
This may degrade computational speed and surrogate performance. Therefore, we meas-
ured the Gini importance for all DNN parameters and used the top 100 parameters in the
surrogate model design. In the lunar lander experiment, we designed the surrogate model

Figure 5. Example of the lunar lander problem environment.

Table 4. Lunar lander problem environment.

Environments Parts Value

Action space Discrete (4)
Observation shape Mixed (Continuous: 6; Bool: 2)

Continuous observation range ±[1.5, 1.5, 5, 5, 3.14, 5]

To help readers reimplement our study, the source codes about our SGAs are available
at the site: https://github.com/GoojungMyeon/Mathematics-Surrogate-assisted-Genetic-
algorithm (accessed on 20 November 2022).

4. Results and Discussion
4.1. Surrogate Modeling Data

The cumulative reward distribution for each architecture case is shown in Figure 6. The
experimental points that achieved the maximum cumulative reward of 500 were collected
for all architecture cases. In the simplest case (1, 3), the solution quality was worst, and
the most returns were lower than the decision threshold of 195 for the first classifier of the
surrogate model described in the cart-pole balancing problem.

4.2. Surrogate-Assisted GA for the Cart-Pole Balancing Problem

We trained and evaluated collecting data of the cart-pole balancing according to
stepwise improvements as shown in Table A2 (see Appendix B). In Step 2, wherein the
learning data of the surrogate was adjusted through standardization, improvements in
both the root mean square error (RMSE) and correlation coefficient were confirmed, except
in the (2, 3, 3) case. For all architectures, the RMSE values were improved compared with
Step 2, and for the (1, 5) case, the RMSE value in Steps 1–3 was improved the most to 19.2%.
Figure 7 shows the RMSE and correlation coefficient values of surrogate models according
to the architectures and stepwise improvements.

https://github.com/GoojungMyeon/Mathematics-Surrogate-assisted-Genetic-algorithm
https://github.com/GoojungMyeon/Mathematics-Surrogate-assisted-Genetic-algorithm

Mathematics 2023, 11, 230 11 of 16

Mathematics 2023, 11, 230 11 of 17

with Step 3 using SVR, which performed best for the cart-pole balancing problem. The
same operator and parameters used in the cart-balancing problem were used in the SGAs
for the lunar lander problem, and 30 runs were executed in parallel. In the case of the
lunar lander problem, even if optimization is performed through the proposed SGAs, it is
necessary to set the remaining 1376 parameters for the simulation. To solve this problem,
a group of upper experimental points exceeding the threshold value of 200 was selected.
We measured the Euclidean distance of all experimental points of the upper group and
the solutions calculated through the SGAs. The simulation was conducted using the pa-
rameters of the experimental point that showed the highest similarity.

To help readers reimplement our study, the source codes about our SGAs are avail-
able at the site: https://github.com/GoojungMyeon/Mathematics-Surrogate-assisted-Ge-
netic-algorithm(assessed on 23 December 2022).

4. Results and Discussion
4.1. Surrogate Modeling Data

The cumulative reward distribution for each architecture case is shown in Figure 6.
The experimental points that achieved the maximum cumulative reward of 500 were col-
lected for all architecture cases. In the simplest case (1, 3), the solution quality was worst,
and the most returns were lower than the decision threshold of 195 for the first classifier
of the surrogate model described in the cart-pole balancing problem.

Figure 6. Return distribution of each neural network architecture.

4.2. Surrogate-Assisted GA for the Cart-Pole Balancing Problem
We trained and evaluated collecting data of the cart-pole balancing according to step-

wise improvements as shown in Table A2 (see Appendix B). In Step 2, wherein the learn-
ing data of the surrogate was adjusted through standardization, improvements in both
the root mean square error (RMSE) and correlation coefficient were confirmed, except in
the (2, 3, 3) case. For all architectures, the RMSE values were improved compared with
Step 2, and for the (1, 5) case, the RMSE value in Steps 1–3 was improved the most to
19.2%. Figure 7 shows the RMSE and correlation coefficient values of surrogate models
according to the architectures and stepwise improvements.

Figure 6. Return distribution of each neural network architecture.

Mathematics 2023, 11, 230 12 of 17

(a) (b)

Figure 7. Performance for each architecture with stepwise improvement. (a) RMSE and (b) Pearson
correlation coefficient.

Table 5 lists the performance results of the proposed SGA for the cart-pole balancing
problem according to the surrogate model and the network. It presents the fitness and
simulation results of 30 runs. In addition, the hypothesis test results between simulation
values according to the SGAs’ surrogate model are also shown. Since the simulation val-
ues of SGA are nonparametric and independent, the method of a hypothesis test is Mann–
Whitney U; most fitness scores are overestimated compared to the simulation score. In
Step 1, multiple surrogates were used, and the regressor was configured as DNN or SVR.
When the DNN regressor was used, the maximum cumulative reward could not be deter-
mined in all the architecture cases. However, the agent DNN achieved a maximum cumu-
lative reward of 500 in all cases except (1, 3) when the SVR regressor was used. This sug-
gests that in the data distribution discussed in Section 4.1, the (1, 3) case achieved a low
optimization performance because many solutions did not satisfy the decision boundary
of the first classifier. The results obtained using the Step 2 surrogate model that applied
input data standardization were enhanced for all architectures. In the (1, 5) network, the
simulation scores of all runs were 500. The last step improved the results for all networks,
and an optimum value of 500 was obtained by all runs in the (1, 5) network. The p-value
is a significant probability, and it can be analyzed that the difference in variance between
two samples is significant when p-value is less than 0.05. When the regressor was changed
from DNN to SVR and improvement on Step 2 was applied, p-values was less than 0.5
except the (1, 3) case. Figure 8 shows the computing times of the proposed SGAs and the
baseline DDQN for cart-pole balancing optimization. Through DDQN, which was used
for collecting experimental points, the time required for searching the maximum cumula-
tive reward was set to the baseline. Although the computing time of the SGAs increased
when the stepwise improvement was applied, it is shown that the computing time was
reduced in all architectures rather than in baseline. The computing time was reduced in
all network experiments using the proposed SGAs, and in the best optimization (1, 5) it
was reduced by approximately 38%.

Table 5. Results of the SGAs for the cart-pole balancing problem according to the network architec-
ture and surrogate model (from 30 runs).

Surrogate Model Network
Fitness Simulation

Best Average STD Best Average STD p-Value

DNN
step 1

(1, 3) 762.602 748.419 77.334 9.480 9.359 0.070 -
(1, 5) 2636.006 2414.450 412.272 88.470 11.990 14.202 -

(2, 3, 3) 1936.146 1893.751 32.744 27.290 13.729 5.578 -
(2, 5, 5) 13117.208 12286.410295.666 9.480 9.345 0.080 -

SVR
step 1

(1, 3) 682.976 682.510 0.276 9.570 9.357 0.075 7.56 × 10−1
(1, 5) 991.123 920.751 151.260500.000 333.722 184.8312.46 × 10−11

(2, 3, 3) 969.271 942.010 92.769 500.000 42.093 122.381 4.62 × 10−3

0

20

40

60

80

100

120

(1,3) (1,5) (2,3,3) (2,5,5)

R
M

SE

Network
step 1 DNN step 1 SVR step 2 SVR step 3 SVR

0.00

0.20

0.40

0.60

0.80

1.00

(1,3) (1,5) (2,3,3) (2,5,5)

C
or

re
la

tio
n

C
oe

f

Network
step 1 DNN step 1 SVR step 2 SVR step 3 SVR

Figure 7. Performance for each architecture with stepwise improvement. (a) RMSE and (b) Pearson
correlation coefficient.

Table 5 lists the performance results of the proposed SGA for the cart-pole balancing
problem according to the surrogate model and the network. It presents the fitness and
simulation results of 30 runs. In addition, the hypothesis test results between simulation
values according to the SGAs’ surrogate model are also shown. Since the simulation values
of SGA are nonparametric and independent, the method of a hypothesis test is Mann–
Whitney U; most fitness scores are overestimated compared to the simulation score. In Step
1, multiple surrogates were used, and the regressor was configured as DNN or SVR. When
the DNN regressor was used, the maximum cumulative reward could not be determined
in all the architecture cases. However, the agent DNN achieved a maximum cumulative
reward of 500 in all cases except (1, 3) when the SVR regressor was used. This suggests that
in the data distribution discussed in Section 4.1, the (1, 3) case achieved a low optimization
performance because many solutions did not satisfy the decision boundary of the first
classifier. The results obtained using the Step 2 surrogate model that applied input data
standardization were enhanced for all architectures. In the (1, 5) network, the simulation
scores of all runs were 500. The last step improved the results for all networks, and an
optimum value of 500 was obtained by all runs in the (1, 5) network. The p-value is a
significant probability, and it can be analyzed that the difference in variance between two
samples is significant when p-value is less than 0.05. When the regressor was changed
from DNN to SVR and improvement on Step 2 was applied, p-values was less than 0.5
except the (1, 3) case. Figure 8 shows the computing times of the proposed SGAs and the

Mathematics 2023, 11, 230 12 of 16

baseline DDQN for cart-pole balancing optimization. Through DDQN, which was used for
collecting experimental points, the time required for searching the maximum cumulative
reward was set to the baseline. Although the computing time of the SGAs increased when
the stepwise improvement was applied, it is shown that the computing time was reduced
in all architectures rather than in baseline. The computing time was reduced in all network
experiments using the proposed SGAs, and in the best optimization (1, 5) it was reduced
by approximately 38%.

Table 5. Results of the SGAs for the cart-pole balancing problem according to the network architecture
and surrogate model (from 30 runs).

Surrogate
Model Network

Fitness Simulation

Best Average STD Best Average STD p-Value

DNN
step 1

(1, 3) 762.602 748.419 77.334 9.480 9.359 0.070 -
(1, 5) 2636.006 2414.450 412.272 88.470 11.990 14.202 -

(2, 3, 3) 1936.146 1893.751 32.744 27.290 13.729 5.578 -
(2, 5, 5) 13,117.208 12,286.410 295.666 9.480 9.345 0.080 -

SVR
step 1

(1, 3) 682.976 682.510 0.276 9.570 9.357 0.075 7.56 × 10−1

(1, 5) 991.123 920.751 151.260 500.000 333.722 184.831 2.46 × 10−11

(2, 3, 3) 969.271 942.010 92.769 500.000 42.093 122.381 4.62 × 10−3

(2, 5, 5) 637.732 614.532 12.041 500.000 165.670 167.801 7.66 × 10−10

SVR
step 2

(1, 3) 649.203 649.139 0.044 13.820 11.937 0.773 2.98 × 10−11

(1, 5) 585.734 573.516 3.355 500.000 500.000 0.000 5.37 × 10−6

(2, 3, 3) 574.514 557.821 47.189 500.000 469.507 73.103 5.29 × 10−9

(2, 5, 5) 534.788 514.015 6.391 500.000 327.571 199.072 7.00 × 10−4

SVR
step 3

(1, 3) 649.197 649.145 0.036 25.850 13.065 2.677 9.26 × 10−3

(1, 5) 578.489 574.012 2.166 500.000 500.000 0.000 N.A.
(2, 3, 3) 574.635 567.215 17.360 500.000 491.200 20.261 1.22 × 10−1

(2, 5, 5) 534.798 510.536 6.585 500.000 259.955 201.400 1.80 × 10−1

Note: The results of “Fitness” were calculated by each SGA’s surrogate model, and the results of “Simulation”
were calculated by a real simulator of cart-pole balancing.

Mathematics 2023, 11, 230 13 of 17

(2, 5, 5) 637.732 614.532 12.041 500.000 165.670 167.8017.66 × 10−10

SVR
step 2

(1, 3) 649.203 649.139 0.044 13.820 11.937 0.773 2.98 × 10−11
(1, 5) 585.734 573.516 3.355 500.000 500.000 0.000 5.37 × 10−6

(2, 3, 3) 574.514 557.821 47.189 500.000 469.507 73.103 5.29 × 10−9
(2, 5, 5) 534.788 514.015 6.391 500.000 327.571 199.072 7.00 × 10−4

SVR
step 3

(1, 3) 649.197 649.145 0.036 25.850 13.065 2.677 9.26 × 10−3
(1, 5) 578.489 574.012 2.166 500.000 500.000 0.000 N.A.

(2, 3, 3) 574.635 567.215 17.360 500.000 491.200 20.261 1.22 × 10−1
(2, 5, 5) 534.798 510.536 6.585 500.000 259.955 201.400 1.80 × 10−1

* The results of “Fitness” were calculated by each SGA’s surrogate model, and the results of “Sim-
ulation” were calculated by a real simulator of cart-pole balancing.

Figure 8. Calculation times of the baseline DDQN and the proposed SGAs for cart-pole balancing
optimization.

4.3. Results for the Lunar Lander Problem
Like the environment of the cart-pole balancing, our SGAs in the Lunar lander also

reduced computing time compared to the baseline. The baseline is the initial discovery
time of the achievement of a problem via DDQN for collecting experimental points. The
average computing time of 30 runs of our SGA was approximately 18 min and the calcu-
lation time of the baseline was 363 min, which was improved approximately 95% over the
baseline. Among the 30 runs, 24 exceeded the problem-solving threshold, and the best-
performing SGAs explored agent DNNs, which were approximately 4% better than the
best solution of the training data of the surrogate (Table 6). Figure 9 shows the best indi-
vidual average for each generation of the 30 runs.

Table 6. Simulation performance of the baseline and the proposed SGAs for the lunar lander prob-
lem (from 30 runs).

 Best Reward Mean Reward
Baseline 303.452 216.66 ± 5.056

Proposed
SGAs

Best
Mean

308.930 224.665 ± 5.657
290.352 155.297 ± 8.047

0 5 10 15 20 25 30

Baseline

step 1 DNN

step 1 SVR

step 2 SVR

step 3 SVR

Time (m)

(2, 5, 5) (2, 3, 3) (1, 5) (1, 3)

Figure 8. Calculation times of the baseline DDQN and the proposed SGAs for cart-pole balancing optimization.

4.3. Results for the Lunar Lander Problem

Like the environment of the cart-pole balancing, our SGAs in the Lunar lander also
reduced computing time compared to the baseline. The baseline is the initial discovery time
of the achievement of a problem via DDQN for collecting experimental points. The average
computing time of 30 runs of our SGA was approximately 18 min and the calculation time
of the baseline was 363 min, which was improved approximately 95% over the baseline.

Mathematics 2023, 11, 230 13 of 16

Among the 30 runs, 24 exceeded the problem-solving threshold, and the best-performing
SGAs explored agent DNNs, which were approximately 4% better than the best solution of
the training data of the surrogate (Table 6). Figure 9 shows the best individual average for
each generation of the 30 runs.

Table 6. Simulation performance of the baseline and the proposed SGAs for the lunar lander problem
(from 30 runs).

Best Reward Mean Reward

Baseline 303.452 216.66 ± 5.056

Proposed SGAs Best
Mean

308.930 224.665 ± 5.657
290.352 155.297 ± 8.047

Mathematics 2023, 11, 230 14 of 17

Figure 9. Fitness of the proposed SGAs for the lunar lander problem according to generation.

5. Conclusions
In this study, we proposed novel SGAs for agent’s DNN parameter optimization and

conducted experiments to determine an optimal agent. The goal was to reduce computing
time over simulation-based methods and to identify an optimal agent DNN. We designed
a surrogate model to predict cumulative rewards for agent’s DNN parameters, wherein
we proposed three stepwise improvements to prevent convergence misleading, which are
disadvantages of existing surrogate-assisted methods. The first step involved using mul-
tiple surrogates to prevent the convergence of the approximate performance and false op-
timum. In the second step, data standardization was applied to prevent performance deg-
radation owing to outliers in the experimental points. Finally, random sampling with PCA
was applied to prevent performance degradation owing to the high-dimensional nature
and limited number of experimental points. The improvement in performance owing to
these stepwise improvements was confirmed through experiments in a cart-pole balanc-
ing environment. We identified agents that achieved the maximum reward in all SGAs
except for the surrogate model that did not have good-quality experimental points, and
reduced the computing time by 38% compared to the DDQN. We also proposed using
SGAs in complex problem environments, such as the lunar lander. We proposed a strat-
egy to measure the importance of each parameter when the number of agent’s DNN pa-
rameters is high and to design a surrogate model with only some parameters. Conse-
quently, we designed a surrogate model with only 100 parameters selected by Gini im-
portance among the existing 1476, and our SGAs’ performances were better than that of
the baseline. The computing time was reduced by approximately 95%, and the quality
was even improved by approximately 4%. Through the above experiments, we confirmed
that our SGAs can be applied to any discrete and deterministic environment of the action
space such as mountain car or Atari video games. However, since our SGAs are offline meth-
ods in which high-quality experimental points must be preceded, their performance may
be poor if the efficiency of collecting experimental points is low.

In future research, three types of expansion are possible: more complex problems,
online learning, and genetic process control. In this study, the action space employed was
discrete and deterministic. However, in future studies, it could be applied to a continuous
or stochastic action space for experimentation. Additionally, we will investigate whether
or not it is applicable to partially observed environments. In this study, the offline method
was adopted to collect experimental points; however, this method was inefficient when
the quality of the experimental points was poor or the collection cost was high. Therefore,
in future experiments, the online learning method of updating the surrogate-assisted for
optimization during genetic process will be applied. Finally, the performance improve-
ment will be confirmed through intelligent evolution control, which evaluate specific
chromosomes with a real fitness function in the population.

Figure 9. Fitness of the proposed SGAs for the lunar lander problem according to generation.

5. Conclusions

In this study, we proposed novel SGAs for agent’s DNN parameter optimization and
conducted experiments to determine an optimal agent. The goal was to reduce computing
time over simulation-based methods and to identify an optimal agent DNN. We designed
a surrogate model to predict cumulative rewards for agent’s DNN parameters, wherein
we proposed three stepwise improvements to prevent convergence misleading, which
are disadvantages of existing surrogate-assisted methods. The first step involved using
multiple surrogates to prevent the convergence of the approximate performance and false
optimum. In the second step, data standardization was applied to prevent performance
degradation owing to outliers in the experimental points. Finally, random sampling with
PCA was applied to prevent performance degradation owing to the high-dimensional
nature and limited number of experimental points. The improvement in performance
owing to these stepwise improvements was confirmed through experiments in a cart-pole
balancing environment. We identified agents that achieved the maximum reward in all
SGAs except for the surrogate model that did not have good-quality experimental points,
and reduced the computing time by 38% compared to the DDQN. We also proposed using
SGAs in complex problem environments, such as the lunar lander. We proposed a strategy
to measure the importance of each parameter when the number of agent’s DNN parameters
is high and to design a surrogate model with only some parameters. Consequently, we
designed a surrogate model with only 100 parameters selected by Gini importance among
the existing 1476, and our SGAs’ performances were better than that of the baseline. The
computing time was reduced by approximately 95%, and the quality was even improved
by approximately 4%. Through the above experiments, we confirmed that our SGAs can be
applied to any discrete and deterministic environment of the action space such as mountain
car or Atari video games. However, since our SGAs are offline methods in which high-quality
experimental points must be preceded, their performance may be poor if the efficiency of
collecting experimental points is low.

Mathematics 2023, 11, 230 14 of 16

In future research, three types of expansion are possible: more complex problems,
online learning, and genetic process control. In this study, the action space employed was
discrete and deterministic. However, in future studies, it could be applied to a continuous
or stochastic action space for experimentation. Additionally, we will investigate whether or
not it is applicable to partially observed environments. In this study, the offline method
was adopted to collect experimental points; however, this method was inefficient when the
quality of the experimental points was poor or the collection cost was high. Therefore, in
future experiments, the online learning method of updating the surrogate-assisted for opti-
mization during genetic process will be applied. Finally, the performance improvement will
be confirmed through intelligent evolution control, which evaluate specific chromosomes
with a real fitness function in the population.

Author Contributions: Conceptualization, Y.-H.K.; methodology, Y.-H.K.; software, S.-S.S.; valida-
tion, S.-S.S.; formal analysis, Y.-H.K.; investigation, S.-S.S.; resources, Y.-H.K.; data curation, Y.-H.K.;
Writing—Original draft preparation, S.-S.S.; Writing—Review and editing, Y.-H.K.; visualization,
S.-S.S.; supervision, Y.-H.K.; project administration, Y.-H.K.; funding acquisition, Y.-H.K. All authors
have read and agreed to the published version of the manuscript.

Funding: The present research has been conducted by the Research Grant of Kwangwoon University
in 2022. This work was also supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1F1A1048466).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Experiments for Surrogate-Assisted Genetic Algorithms According to the
Number of Surrogates Samples in the Cart-Pole Balancing

In this appendix, experiments were conducted to examine the appropriate number of
samples for the surrogates’ design in cart-pole balancing environment. When each surrogate
is applied to a GA, the performance is compared. Surrogates in these experiments were
designed with Step 3 SVR in Section 3.1.4. The SGAs for this pilot test used the operators
and parameters in Section 3 and performed 30 independent runs. The performances of
SGAs according to the number of samples are shown in Table A1. In all the cases, the
optimal solution with real fitness 500 was found. In addition, it is shown that the average
values among 30 runs of SGA increased as increasing of the sample’s number. Therefore,
we set the number of samples in our SGAs to 10,000.

Table A1. Performance of SGAs based on the number of samples in the cart-pole balancing.

The Number of
Samples

Fitness Simulation

Best Average STD. Best Average STD.

1000 554.068 551.114 2.077 500.000 437.360 138.333
3000 611.015 605.590 3.745 500.000 467.872 95.159
6000 548.681 543.419 2.957 500.000 469.741 82.721

10,000 578.489 574.012 2.166 500.000 500.000 0.000

Appendix B. Results of the Proposed Surrogates on Each Network Architecture with
Stepwise Improvement in the Cart-Pole Balancing

In this appendix, we provide performances of our surrogates on each network archi-
tecture with stepwise improvement in the cart-pole balancing. Table A2 shows root mean
square error (RMSE), mean percentage error (MPE), mean absolute percentage error (MAPE),
and Pearson coefficient (Coef.) values according to surrogate and network architecture.

Mathematics 2023, 11, 230 15 of 16

Table A2. Results of surrogate models in the cart-pole balancing.

Step 1-DNN

Network (1, 3)/23 (1, 5)/37 (2, 3, 3)/35 (2, 5, 5,)/67

Measurement RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef.

Test 93.17 −101.45 120.85 0.75 93.52 −52.90 70.39 0.71 82.89 −41.53 60.48 0.85 90.79 −29.88 46.44 0.82
Train 90.02 −86.51 106.05 0.77 82.83 −45.58 61.20 0.78 76.57 −39.54 56.16 0.87 71.74 −22.42 35.92 0.90

Step 1-SVR

Network (1, 3)/23 (1, 5)/37 (2, 3, 3)/35 (2, 5, 5,)/67

Measurement RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef.

Test 105.99 −95.89 120.37 0.67 104.70 −42.78 64.27 0.63 98.72 −51.71 69.44 0.79 99.72 −41.02 54.95 0.79
Train 105.29 −80.65 106.10 0.68 100.95 −37.04 57.84 0.66 98.09 −49.99 67.32 0.80 92.54 −38.60 51.81 0.82

Step 2-SVR

Network (1, 3)/23 (1, 5)/37 (2, 3, 3)/35 (2, 5, 5,)/67

Measurement RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef.

Test 88.92 −72.31 95.11 0.78 103.02 −52.18 80.33 0.72 103.00 −34.63 59.08 0.77 78.88 −46.47 66.19 0.91
Train 83.70 −65.83 89.29 0.79 102.12 −48.24 77.56 0.75 102.55 −34.22 57.86 0.78 77.48 −45.11 64.04 0.92

Step 3-SVR

Network (1, 3)/23 (1, 5)/37 (2, 3, 3)/35 (2, 5, 5,)/67

Measurement RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef. RMSE MPE MAPE Coef.

Test 85.31 −65.79 87.02 0.79 84.04 −53.74 80.78 0.82 92.84 −27.47 47.75 0.82 75.16 −42.36 60.92 0.92
Train 80.73 −59.10 81.09 0.79 82.43 −50.60 78.17 0.81 92.40 −27.49 46.78 0.82 72.26 −41.16 58.71 0.92

References
1. Stuart, J.R.; Peter, N. Artificial Intelligence: A Modern Approach, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2020.
2. Otterlo, M.V.; Wiering, M. Reinforcement learning and Markov decision processes. In Reinforcement Learning; Wiering, M., van

Otterlo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 12, pp. 3–42. [CrossRef]
3. Such, F.P.; Madhavan, V.; Conti, E.; Lehman, J.; Stanley, K.O.; Clune, J. Deep neuroevolution: Genetic algorithms are a competitive

alternative for training deep neural networks for reinforcement learning. arXiv 2017, arXiv:1712.06567.
4. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021,

80, 8091–9126. [CrossRef] [PubMed]
5. Mirjalili, S. Genetic Algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Cham, Germany, 2019; pp. 43–55.

[CrossRef]
6. Jin, Y. Surrogate-assisted evolutionary computation: Recent advanced and future challenges. Swarm Evol. Comput. 2011, 1, 61–70.

[CrossRef]
7. Pei, Y.; Gao, H.; Han, X. A Surrogate Model Based Genetic Algorithm for Complex Problem Solving. In Proceedings of the 6th

Annual International Conference on Network and Information Systems for Computers (ICNISC2020), Guiyang, China, 14–15
August 2020.

8. Cho, D.H.; Moon, S.H.; Kim, Y.H. Genetic feature selection applied to KOSPI and cryptocurrency price prediction. Mathematics
2021, 9, 2574. [CrossRef]

9. Kim, Y.H.; Yoon, Y.; Kim, Y.H. Towards a better basis search through a surrogate model-based epistasis minimization for
pseudo-Boolean optimization. Mathematics 2020, 8, 1287. [CrossRef]

10. Cho, H.Y.; Kim, Y.H. A Genetic Algorithm to Optimize SMOTE and GAN Ratios in Class Imbalanced Datasets. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, Cancun, Mexico, 8–12 July 2020; pp. 33–34. [CrossRef]

11. Cai, X.; Gao, L.; Li, X. Efficient generalized surrogate-assisted evolutionary algorithm for high-dimensional expensive problems.
IEEE Trans. Evol. Comput. 2020, 24, 365–379. [CrossRef]

12. Francon, O.; Gonzalez, S.; Hodjat, B.; Meyerson, E.; Miikkulainen, R.; Qiu, X.; Shahrzad, H. Effective Reinforcement Learning
through Evolutionary Surrogate-Assisted Prescription. In Proceedings of the Genetic and Evolutionary Computation Conference,
Cancun, Mexico, 8–12 July 2020; pp. 814–822. [CrossRef]

13. Yu, D.P.; Kim, Y.-H. Predictability on Performance of Surrogate-Assisted Evolutionary Algorithm According to Problem Dimen-
sion. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July
2019; pp. 91–92. [CrossRef]

14. Jin, Y. A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 2005, 9, 3–12. [CrossRef]
15. Calisto, M.B.; Lai-Yuen, S.K. EMONAS-Net: Efficient multiobjective neural architecture search using surrogate-assisted evolution-

ary algorithm for 3D medical image segmentation. Artif. Intell. Med. 2019, 119, 102154. [CrossRef] [PubMed]
16. Sun, Y.; Wang, H.; Xue, B.; Jin, Y.; Ten, G.G.; Zhang, M. Surrogate-assisted evolutionary deep learning using an end-to-end

random forest-based performance predictor. IEEE Tran. Evol. Comput. 2019, 24, 350–364. [CrossRef]
17. Pholdee, N.; Baek, H.M.; Bureerat, S.; Im, Y.T. Process optimization of a non-circular drawing sequence based on multi-surrogate

assisted meta-heuristic algorithms. J. Mech. Sci. Technol. 2015, 29, 3427–3436. [CrossRef]

http://doi.org/10.1007/978-3-642-27645-3_1
http://doi.org/10.1007/s11042-020-10139-6
http://www.ncbi.nlm.nih.gov/pubmed/33162782
http://doi.org/10.1007/978-3-319-93025-1_4
http://doi.org/10.1016/j.swevo.2011.05.001
http://doi.org/10.3390/math9202574
http://doi.org/10.3390/math8081287
http://doi.org/10.1145/3377929.3398153
http://doi.org/10.1109/TEVC.2019.2919762
http://doi.org/10.1145/3377930.3389842
http://doi.org/10.1145/3319619.3326775
http://doi.org/10.1007/s00500-003-0328-5
http://doi.org/10.1016/j.artmed.2021.102154
http://www.ncbi.nlm.nih.gov/pubmed/34531013
http://doi.org/10.1109/TEVC.2019.2924461
http://doi.org/10.1007/s12206-015-0741-6

Mathematics 2023, 11, 230 16 of 16

18. Vincenzi, L.; Gambarelli, P. A proper infill sampling strategy for improving the speed performance of a surrogate-assisted
evolutionary algorithm. Comput. Struct. 2017, 178, 58–70. [CrossRef]

19. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998. [CrossRef]
20. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforce-

ment learning. arXiv 2013, arXiv:1312.5602.
21. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with

A Stochastic Actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

22. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

23. Hausknecht, M.; Lehman, J.; Miikkulainen, R.; Stone, P. A neuroevolution approach to general Atari game playing. IEEE Tran.
Comput. Intell. AI 2014, 6, 355–366. [CrossRef]

24. Stanley, K.O.; Clune, J.; Lehman, H.; Miikkulainen, R. Designing neural networks through neuroevoultion. Nat. Mach. Intell. 2019,
1, 24–35. [CrossRef]

25. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Phoenix, AZ, USA, 14–17 February 2016; pp. 2094–2100. [CrossRef]

26. Clune, J.; Stanley, K.O.; Pennock, R.T.; Ofria, C. On the performance of indirect encoding across the continuum of regularity. IEEE
Trans. Evol. Comput. 2011, 15, 346–367. [CrossRef]

27. Yoon, Y.; Kim, Y.H.; Moraglio, A.; Moon, B.R. A theoretical and empirical study on unbiased boundary-extended crossover for
real-valued representation. Inf. Sci. 2012, 183, 48–65. [CrossRef]

28. Shin, S.S.; Kim, Y.H. A surrogate model-based genetic algorithm for the optimal policy in cart-pole balancing environments. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July 2022; pp. 503–505.
[CrossRef]

29. Zheng, N.; Wang, H.; Yuan, B. An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive
multi-objective optimization. Complex Intell. Syst. 2022, 8, 4339–4356. [CrossRef]

30. Shaukat, S.S.; Rao, T.A.; Khan, M.A. Impact of sample size on principal component analysis ordination of an environmental data
set: Effects on eigenstructure. Ekológia 2016, 35, 173. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.compstruc.2016.10.004
http://doi.org/10.1109/TNN.1998.712192
http://doi.org/10.1109/TCIAIG.2013.2294713
http://doi.org/10.1038/s42256-018-0006-z
http://doi.org/10.1609/aaai.v30i1.10295
http://doi.org/10.1109/TEVC.2010.2104157
http://doi.org/10.1016/j.ins.2011.07.013
http://doi.org/10.1145/3520304.3528788
http://doi.org/10.1007/s40747-022-00717-6
http://doi.org/10.1515/eko-2016-0014

	Introduction
	Motivation
	Contribution
	Organization

	Related Work
	Surrogate-Assisted Genetic Algorithm
	Neural Network Optimization of Agents

	Materials and Methods
	SGA
	Encoding and Fitness
	Selection and Crossover
	Mutation and Replacement
	Surrogate Model with Stepwise Improvement

	Experiments
	Objective for Optimal Agent Search
	Cart-Pole Balancing Problem
	Lunar Lander

	Results and Discussion
	Surrogate Modeling Data
	Surrogate-Assisted GA for the Cart-Pole Balancing Problem
	Results for the Lunar Lander Problem

	Conclusions
	Appendix A
	Appendix B
	References

