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Abstract: Attackers are increasingly targeting Internet of Things (IoT) networks, which connect
industrial devices to the Internet. To construct network intrusion detection systems (NIDSs), which
can secure Agriculture 4.0 networks, powerful deep learning (DL) models have recently been de-
ployed. An effective and adaptable intrusion detection system may be implemented by using the
architectures of long short-term memory (LSTM) and convolutional neural network combined with
long short-term memory (CNN–LSTM) for detecting DDoS attacks. The CIC-DDoS2019 dataset was
used to design a proposal for detecting different types of DDoS attacks. The dataset was developed
using the CICFlowMeter-V3 network. The standard network traffic dataset, including NetBIOS,
Portmap, Syn, UDPLag, UDP, and normal benign packets, was used to test the development of
deep learning approaches. Precision, recall, F1-score, and accuracy were among the measures used
to assess the model’s performance. The suggested technology was able to reach a high degree of
precision (100%). The CNN–LSTM has a score of 100% with respect to all the evaluation metrics. We
used a deep learning method to build our model and compare it to existing systems to determine
how well it performs. In addition, we believe that this proposed model has highest possible levels of
protection against any cyber threat to Agriculture 4.0.
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1. Introduction

Industry 4.0 technology has made it possible to create a setting in which all components
are continually and easily connected with one another. All of the devices and functions, such
as cyber–physical systems (CPS), are referred to as services. These services are in continuous
communication with one another, which allows for a high degree of coordination [1–4]. In
this sense, the capability to coordinate activities is essential for improving supply chain
management. This is because optimization typically requires the consideration of a large
number of factors that are in constant competition with each other [5]; this is where the
ability to coordinate activities becomes essential. Figure 1 shows the Industry 4.0 technology
for developing agriculture.

According to the findings of the most recent study conducted by the Food and Agri-
culture Organization of the United Nations [6], in order to sustainably sate Earth’s ever-
increasing human population, which is projected to approach 9 billion by the year 2050 [7],
global food production will need to increase by a factor of 70 percent between now and
2050. As a result of the predicted rise in the number of Internet of Things (IoT) devices used
in agriculture, the size of the market for smart agriculture is also likely to expand greatly
in the coming years in order to meet these demands [8]. The next technological advance
for the agricultural industry that will help ensure the continued production of food in a
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sustainable manner is digital agriculture [9]. Desertification is a problem that is now being
addressed by a number of nations through initiatives such as the Saudi Green Initiative,
which is an expansion of the Saudi Vision 2030. As part of this program, hundreds of
millions of plants, including four million lemon trees that are dependent on recycled water
for irrigation, are being planted in an effort to alter the climate and make agriculture more
manageable. Figure 2 illustrates several applications of artificial intelligence that are based
on the Internet of Things (IoT) and are intended to improve the agricultural industry.
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Advances in information and communication technology (ICT) have supported digital-
ization, which is a global trend that has transformed various markets and continues to bring
up new opportunities across a wide range of industries in economies and communities [10].
This trend is underpinned by advancements in ICT. In recent years, the agricultural indus-
try has engaged a wide array of new information and communication technology (ICT)
solutions, which have contributed to the sector’s rapid technical expansion. Although
Agriculture 4.0 is anticipated to become the industry standard, the presence of physical
dangers and hazards in this specific field is a significant aspect that poses a potential barrier
to the widespread acceptance and implementation of these innovations. Some of these
dangers, such as climate conditions, tend to stay the same over the course of many years,
while others are related to the rapid advancement of technological solutions. A number of
technologies in digital agriculture, from a vertical farm’s heating and ventilation systems to
a drone spraying crops, are vulnerable to cyberattacks. The water system in Florida [11], a
dairy and beverage company in Australia [12,13], and the world’s largest meatpacker, wool
Net software, have all recently been the targets of cyberattacks that have made headlines
throughout the world. This has brought to light the weaknesses that are present in digital
agriculture, as well as the potentially catastrophic repercussions that these vulnerabilities
might have on the general population in terms of supply, labor, and cost.

In Agriculture 4.0, however, there are numerous new cybersecurity vulnerabilities
since thousands of devices based on IoT are currently being installed in open fields. An
adversary seeking to break into the Agriculture 4.0 network will utilize a variety of tech-
niques, including distributed denial-of-service (DDoS) attacks, scanning attacks, and fake
data injection attacks, in order to interfere with the normal operation of IoT-based equip-
ment. For instance, if soil pH increases excessively, this suggests that farmers will raise the
amount of ammonium added to the soil. If the pH falls, this indicates that the farmer will
lower the amount of ammonium added to the soil. With this knowledge, an attacking party
may conduct distributed denial-of-service assaults to wreak havoc on the pH parameters.
Therefore, it is imperative that sensitive data, such as pH values, be shielded from any
potential cyberattacks [14]. In addition to authentication, access control, and integrity
procedures, researchers in the field of information security recommend employing an
intrusion detection system (IDS) [15,16]. This would protect Agriculture 4.0 from being
damaged, altered, tampered with, or accessed by unauthorized parties.

The fourth industrial revolution has made extensive use of these developing technolo-
gies, and it should not be difficult to replicate their use in agricultural settings. In this
way, the adoption of new developing technologies is not the most significant hurdle to
Agriculture 4.0′s development but rather the primary guarantee of security and privacy,
given that thousands of IoT devices will be implemented in an open field. Each layer of
the IoT’s architecture has its own set of privacy and security problems [17], and they are
interconnected. Cyberattacks such as distributed denial-of-service (DDoS) attacks might
be used by an adversary, for example, to disrupt a service and then insert fraudulent
data, which could harm food safety, the efficiency of agri-food supply chain activities, and
agricultural production. To ensure the safety of computer networks, intrusion detection
systems (IDS) use a method of monitoring system activity in real time and comparing
it to historical data to determine if an incursion has occurred. It is recommended that
these systems be used by the cybersecurity research community, which uses technology to
secure networks. IDS implementation in conjunction with other security measures, such
as encryption, authentication, authorization, and blockchain technology, may help protect
Agriculture 4.0 against cyberattacks [18–20].

At this time, artificial intelligence (AI) algorithms have been employed to identify
attacks on IoT devices with higher levels of assurance. Artificial intelligence technology
even has the capacity to recognize variations in the channels and tactics used by attackers.
One of the issues that security solutions had to confront when dealing with attacks on
the Internet of Things was that hackers would make minute adjustments to their prior
attacks, which the security solutions were unable to spot. AI technologies are being
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used by researchers and developers to analyze network traffic in order to protect the IoT
environment from any potential dangers [21,22]. Deep learning and machine learning are
two types of learning that have been integrated into security systems to identify these kinds
of threats more effectively. Deep learning is one of the advancements in artificial intelligence
that may be seen in many real-life applications for dealing with complicated nonlinear data.
This kind of learning is used to manage the data [23–25]. An implementation of a deep
recurrent neural network, also known as a DRNN, has been developed to recognize botnet
attacks affecting IoT devices.

The main contributions of the development of a system for protecting Agriculture 4.0
based on the deep learning model are as follows:

• We used deep learning models, namely long short-term memory and a convolutional
neural network combined with long short-term memory (CNN–LSTM), for detecting
various types of attacks that threaten Agriculture 4.0;

• The security system based on Agriculture 4.0 was developed by using a real network
traffic dataset: CIC-DDoS2019;

• The developed Agriculture 4.0 system was compared to different security systems;
• We used the Pearson correlation method for selecting important features that can help

develop security systems.

This paper’s sections are structured as follows: introduction of the research article
is presented in Section 1. In Section 2 the background of study is provided. In Section 3,
we describe the procedures for collecting data, and methods and experimental design are
discussed in Section 4. Section 5 provides a discussion of the results. The last section of the
article summarizes the main points.

2. Background of Study

Network security solutions are rare, and artificial intelligence plays a major part in the
domain of cybersecurity and Agriculture 4.0 for the creation of an intelligent IoT security
system. Researchers have wanted to create a smart model that can help protect smart
Agriculture 4.0 infrastructure from outside attacks. IoT-enabled gadgets have transformed
the majority of businesses and organizations in recent years.

There are new threats and concerns in terms of IT security in the worldwide market as
smart communication technologies rapidly evolve and increase in adoption [26] following
IoT integration and the digitalization of businesses. In a dynamic and dispersed cyber-
physical environment, a wide range of smart agricultural technologies might be vulnerable
to assaults [27]. These kinds of threats and assaults may have a devastating effect on linked
firms. Precision agriculture (PA) and smart farming involve cutting-edge technology and
remote administration that are unfamiliar to the agriculture industry’s stakeholders, and
many of the new concerns that have emerged are closely linked to those that are present in
other sectors [28], with cybersecurity, data integrity, and data loss being the most common
dangers [29]. Because heavy equipment in the PA industry is often linked to the Internet,
various new vulnerabilities have opened up that may have potentially fatal results [30,31].

Smart technologies such as the IoT may be used in agriculture to help prevent cyber-
security assaults and threats. Demestichas et al. [32] outlined several strategies for this
prevention. An experiment was carried out by Sontowski et al. [33] on a smart farm in
which a Raspberry Pi was made to disconnect from the network and stop it from rejoining
as part of a denial-of-service (DoS) assault known as a WiFi deauthentication attack.

Using fog nodes, Ng and Selvakumar [34] created a vector convolutional deep learn-
ing system for anomaly detection. According to the UNSW’s Bot-IoT dataset, the method
achieved an accuracy of 99.991% for detecting DDoS attacks, and an accuracy of 99% for de-
tecting DoS attacks. The deep belief network approach was used by Manimurugan et al. [35]
to identify cyber threats on the Internet of Medical Things (IMoT). For PortScan attacks
and infiltration assaults, the suggested technique has an accuracy of 97.71 percent and
96.37 percent, respectively, according to the CICIDS 2017 dataset. To identify botnets in
IoT networks, Popoola et al. [36] developed the LAE–BLSTM hybrid intrusion detection
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technique. The LSTM autoencoder and bidirectional long short-term memory (BLSTM) are
both used in the LAE–BLSTM mechanism (LAE). It is used for dimensionality reduction,
whereas BLSTM is utilized to distinguish botnet assaults from normal network data in IoT
networks. The Bot-IoT dataset shows that the LAE–BLSTM mechanism achieved a data
reduction ratio of 91.89%.

As our world becomes more connected to the Internet, cybersecurity continues to be
an ever-evolving field. Every method of detection is only as powerful as its weakest link,
which makes it incredibly difficult to control risks in the supply chains and networks of
individual firms [37]. In addition, a third-party application with one or more potential flaws
may put the entire adopted system in danger. Companies of all sizes may face recruitment
challenges while trying to build an effective intrusion detection system against cyberattacks
and threats [38]. Weaknesses in the supply chain are likelier to be discovered as a company
grows in size. By exploiting these vulnerabilities, hackers might conduct unlawful attacks
on vital infrastructure, including water and electricity systems [39–41].

Security will continue to evolve as our world becomes increasingly linked to the
Internet. The supply chain and networks of individual companies are very difficult to
regulate in terms of risk. Third-party applications may also pose a risk to the adopted
system. Regardless of the size of a company, it may be difficult to hire the right people to
guard against cyberattacks and threats. As a firm expands in size, supply chain weaknesses
are likelier to be detected. Weaknesses in critical infrastructure, such as water and energy
systems, might be exploited by hackers to carry out illegal attacks [42].

Artificial intelligence plays a primary role in building an intelligent system for security
in an IoT-based environment. The researchers sought to create a smart model that might
help protect IoT devices and infrastructure from outside attacks. IoT has enabled digital
changes in the vast majority of businesses and organizations. As a result, fraudsters have
discovered new complications and weaknesses that they may easily attack. Some classifi-
cation methods were developed by Jokar and Leung [43] to identify irregular electricity
use, network traffic monitoring in advanced metering infrastructure was performed using
clustering technology developed by Alseiari and Aung [44] to identify the IDS, and a sup-
port vector machine (SVM) based on a multiclass was used by Vijayanand et al. [45], who
found that decision tree techniques were more powerful than the SVM presented by Jindal
et al. [46]. IDS detection was evaluated by Boumkheld et al. [47] using a standard machine
learning method on top of a naïve Bayesian network. Jokar and Leung [43] developed
ZigBee-based Q-learning to guard networks against intrusion and found it to be the most
effective technique for monitoring system threats. Finally, the use of a hierarchy to pick
relevant features from intrusion detection networks was hypothesized [48–51].

3. Materials and Methods
3.1. Framework of the Proposed System

To identify cyberattacks in Agriculture 4.0, we present deep learning-based IDS models,
including one that uses recurrent neural networks, one that uses convolutional neural
networks, and LSTM models. The framework of the developing security systems for
protecting Agriculture 4.0 is presented in Figure 3.
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CIC-DDoS2019 Dataset

Attacks such as DDoS are a threat to network security, since they are aimed at flooding
target networks with malicious traffic, thus rendering them unusable. The construction of
a real-time DDoS attack detector with little processing overhead remains a major challenge,
despite the development of several statistical methodologies to combat the same.

The CIC-DDoS2019 comprises the most recent and popular DDoS attacks, which are
based on real-world information. Data from CICFlowMeter-V3 network traffic analysis,
including flow labels based on timestamps and the source and destination IP addresses
and ports, protocols, and attack types are also included.

Reflective DDoS attacks such as Portmap, NetBIOS, LDAP, MSSQL, UDP, UDPLag,
SYN, NTP DNS, and SNMP are included in this dataset. During this time, a number of
attacks occurred. For example, Table 1 shows the DDoS attacks that occurred on the training
day, which included NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, and UDPLag.
To evaluate the proposed model, no WebDDoS traffic or PortScan results are used because
of their low traffic volume and overall lack of PortScan results [52]. The CIC-DDoS2019
dataset has been divided into two portions: 70% training process and 30% testing process,
as shown in Table 2.

Table 1. Attacks on CICDDoS2019.

Volume Attacks CICDDoS2019 #No

7118 Normal 1
7491 NetBIOS 2
7015 Portmap 3
8513 Syn 4
6051 UDPlag 5
1873 UD 6

Table 2. Dataset after dividing into training and testing.

Testing Training Attacks

1449 5669 Normal
1518 5973 NetBIOS
1393 5622 Portmap
1688 6825 Syn
1180 4871 UDPlag
385 1488 UD

3.2. Preprocessing

The dataset had a total of 38,061 rows and nine features. Originally, the dataset
consisted of 82 features. The preprocessing method is a very important stage for the devel-
opment of such a system because the network traffic has a very complex format; therefore,
we used preprocessing to enhance the deep learning approach to achieve high performance.

3.2.1. One-Hot Encoding Method

By transforming categorical information and label class to numerical values, the one-
hot encoding strategy was utilized to enhance the classification process for identifying
assaults. This was accomplished through the usage of the one-hot encoding approach.

3.2.2. The Minimum/Maximum Approach

One of the most used methods for normalizing data is called the minimum/maximum
approach. The value that is least significant is translated to the number 0; the most
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significant value is assigned to the number 1. The following equation is used in the
application of the min/max normalization method:

zn =
x− xmin
xmax−xmin

(1)

where xmin is the minimum of the data and xmax is the maximum of the data.

3.2.3. Feature Selection

In order to select significant features, Pearson’s correlation coefficient method was
applied to find the features that have a strange relationship with class labels. The nine
features that had the highest correlation were selected. The findings of using Pearson’s
correlation coefficient to determine which characteristics are most relevant are presented in
Figure 4.
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3.3. Deep Learning Approach

One of the advantages of convolutional neural networks is the ability to recognize,
categorize, and analyze certain properties of neural networks. When an input is provided
and weights and biases can be learned about it, the method employs a feedforward network
to assign priority to its characteristics [53]. There is a convolution layer that results from
many kernels or weight matrices coupled to each other in the neighborhood. As it exam-
ines an input, the convolution layer performs convolution operations. A feature map or
activation map is the name given to the final product. This is followed by a downsampling
technique known as pool, which takes the average and maximum values of a certain area
and conducts spatial invariance.

In the FC layer, all inputs are coupled to all neurons, and the network reaches its final
state. Users then utilize an image vector with contained characteristics to feed the CNN,
which then uses this probabilistic approximation to identify the intended target picture at
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the end of all of these layers. This approach has a major advantage over other classification
algorithms in that it requires less preprocessing on a standard CNN. IDSs often employ a
CNN because of the necessity of high accuracy in a given pattern categorization. Using
CNN, it is simpler to recognize attacks that follow a given pattern [54–57].

The LSTM network, also known as the long short-term memory network, is a recurrent
neural network (RNN) that is often used for the purpose of learning issues involving
sequential data prediction. The LSTM neural network, like any other neural network,
contains various layers that help it learn and detect patterns for improved performance. It
is possible that the fundamental function of LSTM is to save necessary information and to
get rid of information that is not necessary or helpful for making more predictions.

The suggested model has an initial LSTM layer as its first hidden component. In the
case of the combined DDoS dataset, the input to the first hidden layer is written as (9, 1).
The combined DDoS dataset has an output shape of (26642, 9) as training, (7613, 9) as
testing, and (7613, 9) as validation. Both shapes are the input for the subsequent layer.
LSTM is equipped with several gates that allow for control of the flow of information. For
instance, these gates determine how data enters the system, how it is stored, and how it
exits the system. In addition, there are two more states, which are referred to as the cell
state and the hidden state. A typical LSTM has five activation functions, as well as two
ReLU functions, three sigmoid functions (one in each gate), and one ReLU function in each
gate. In addition, the LSTM has two ReLU functions in each gate (one in the input gate and
the second in the output gate).

As can be seen in Figure 5, the LSTM consists of three gates in its most basic form: the
forget, input, and output gates. Equations (2)–(6) provide a mathematical description of
the forget, input, and output gates, respectively.

Forget gate : ft = σ
(

W f · Xt + W f · ht−1 + b f

)
(2)
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A forget gate has a weight W f of that ranges from (0, 1), which is the current layer’s
input at time t. ht−1 is the previous layer’s output at time t. The output from the previous
run is combined with the input from the current run and fed into the input gate, resulting
in the following formulae for the output and the candidate cell output:

Input gate : it = σ(Wc· Xt + Wi · ht−1 + bi) (3)

Cell gate : Ct = (it ∗ St + ft ∗ St−1) (4)

Wi represents the weight of the input gate, bi is the bias of the input gate, Wc is the
weight of the candidate gate, and bc is the bias of the candidate gate. These values range
from 0 to 1. The following code is used to make a change to the current cell:

Output gate : ot = σ(Wo + Xt + Wo · ht−1 + Vo·Ct + bo) (5)

Cell gate : ht = ot + tan h(Ct) (6)

The LSTM cell output is determined by computing the output gate ot and cell state as
per Formula (11), and ht represents the hidden layer.

Hidden layer : ht = ot + tan h(Ct) (7)

The LSTM cell output is determined by computing the output gate ot and cell state as
per Formula (11), and ht represents the hidden layer.

To identify intrusions in an IoT network dataset, we suggested a combination of
two powerful deep learning algorithms. Figure 6 depicts the suggested structure of a
hybrid model that was developed to automatically identify threats. Two deep learning
models, CNN and LSTM, were combined to create an architecture that employed the input
data on size 9 × 38,061 to extract additional complex features from the important features
extracted using the CNN algorithm. To extract these complex features, a convolutional layer
with three kernels was utilized, and tanh activation was suggested as a data transmission
method. For dimension reduction, we employed a two-kernel maxpool to map features to
an LSTM model and to extract additional information about time. To utilize in classification,
the fusion features were completely linked after extracting the LSTM time that data attacks
on the IoT network might be detected using the softmax algorithm [58,59]. Table 3 presents
the CNN–LSTM model’s parameter values for your perusal.
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Table 3. Using parameters of CNN–LSTM algorithm for detecting attacks.

#Parameters Indicators #Values

Convolution layer 512
The size of max pooling 5

Drop out 0.50
The size of the FC layer 64

Activation function ReLU
Optimizer RMSprop

Epochs 20
Batch size 150

4. Experiment

All tests were run on the Windows 10 operating system using the open-source software
libraries Keras, TensorFlow, and the Python 3 libraries Numpy, Scikits-Learn, and Panda.
All models were trained using 8 GB of local GPU memory. We also used Keras to create a
variety of CNN models for comparison purposes.

The correlation between characteristics in the dataset and their class labels was deter-
mined using Pearson’s correlation coefficient. Using a deep learning technique to obtain
high performance for detection of attacks on farm systems based on Agriculture 4.0, we
selected nine characteristics for further processing. We then used our data to train deep
learning models capable of recognizing and learning the right characteristics of the data.
Each layer of the network had its own set of criteria, such as input, hidden layer, and output.
Our optimal convolution settings were 512 filters, a kernel size of 5, and a batch size of 150,
all with the “ReLU” activation. We used a max-pooling strategy with a pooling size of 5 and
a stride size of 1 in the pooling layer. The batch size was 150, the activation function was
“ReLU,” and the dropout was 0.5. For CNN trials, we employed the RMSprop optimizer
and a learning rate of 0.001 based on the model’s performance at different learning rates,
including 0.001, rho = 0.9. On the other hand, recurring models such as LSTM are very
much alike. Sequence computation with multiple recurrent blocks and extensive training
time consumption caused the models to operate at a learning rate of 0.001. We raised the
number of recurrent blocks from 10 to 100 in order to find the ideal performance, but the
results were not significantly different. On the other hand, training time consumption rose.
As with the single model, the CNN parameters for the combination model were identical
to those of the single CNN model, which has 512 filters and a filter size of 5. LSTM models
with 32 recurrent blocks were the only ones used, since other recurrent models performed
poorly. The LSTM and CNN–LSTM models used RMSprop optimizers with learning rates
of 0.001 and 0.001. Additionally, 64 filters with a filter size of 5 were used for convolutional
operations. CIC-DDoS2019 was used to assess the system models that have been submitted.
For each attack, the system was classed as multiclass, which indicates the system’s nth
performance. Therefore, we have achieved the following objectives:

1. Finding the significant features that can help to achieve high-performance detection;
2. Using the deep learning approach for detection of attacks to protect agriculture-

based IoT;
3. Achieving the highest performance when compared to existing systems.

4.1. Performance Measurements

There are a number of measures that may be used to assess the effectiveness of deep
learning. The sensitivity, specificity, precision, recall, F-score metrics, and ROC Curve are
the performance indicators we concentrated on in our research.

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (8)

Sensitivity =
TP

TP + FN
× 100% (9)
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Precision =
TP

TP + FP
× 100% (10)

Fscore =
2× precision× Sensitivity

precision + Sensitivity
× 100% (11)

False positives and negatives are denoted by the letters FP and FN, respectively. A false
positive (FP) or a true negative (TN) was noted for any data that were wrongly identified as
an attack. Data that are accurately categorized as an attack are referred to as true positives
(TP). Attack data that have been labeled as benign are indicated as false negatives (FN).

4.2. Results

The results of the LSTM model for detecting attacks are summarized in Table 4. It was
found that LSTM worked well when we analyzed all datasets with accuracy ratings of 58%
to 66%. In Agriculture 4.0, it was discovered that the results obtained from using the LSTM
model for cybersecurity intrusion detection were not very satisfactory. The LSTM model
successfully attained a detection success rate of one hundred percent for UDP attacks.

Table 4. Results of LSTM for detecting multi-classes.

DDoS Attacks Precision % Recall % F1-Score %

Normal 99 43 60
NetBIOS 55 64 59
Portmap 54 86 67

Syn 76 81 78
UDPLag 50 49 50

UDP 0.00 0.00 0.00

Accuracy% 62

Weighted average 64 62 60
Time 23.05 s

To improve upon the detection of attacks on Agriculture 4.0 by using the LSTM model,
Figure 7 shows the accuracy performance and loss of the LSTM technique. In the testing
phase with 20 epochs, the LSTM utilized two processes: training and testing. The training
process started from 53.50% and reached 64%, whereas the validation process was passed
on a straight line from 52% and reached 60%. The accuracy loss dropped from 1.125 to 0.970
during training, and volitional accuracy rose from 1.100% to 0.950%. Finally, we found that
the accuracy of the LSTM model is high; additionally, we found that the model accuracy
was at a very low 62%.

True negative and false positive rates, the valid positive rate, and the false negative
rate constitute the indicators of confusion shown in Figure 8. Using the LSTM model, the
adjusted normal percentage was found to be 7.83%, but the NetBIOS model scored only
13.16%. The Portmap had a false positive rate of 12.31%, while the Syn attack had a false
positive rate of 17.02%. The false positive of the UDPLag attack was 8.00%, and the false
positive rate of the UDP attack was 0.00. Overall, we observed that the UDP attack achieved
a very low detection rate.
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The CNN–LSTM deep learning techniques approach was successful against a variety of
types of attacks for securing Agriculture 4.0, according to Table 5. The CNN–LSTM method
had the greatest performance (100%) against all types of attacks. Several experiments on
binary classification and multiclass classification using deep learning algorithms are shown
in Figure 8. Cybersecurity intrusion detection for Agriculture 4.0 may be improved through
deep learning.



Mathematics 2023, 11, 233 13 of 19

Table 5. Results of CNN–LSTM for detecting multi-classes.

DDoS Attacks Precision % Recall % F1-Score %

Normal 100 100 100
NetBIOS 100 100 100
Portmap 100 100 100

Syn 100 100 100
UDPLag 100 100 100

UDP 100 100 100
Accuracy% 100 100 100

Weighted average 100 100 100
Time 25.62 s

For the detection of DDoS attacks on agriculture-based IoT, Figure 9 illustrates the
CNN–LSTM technique for predicting multi-attacks, which is a prediction-based deep
learning approach. The CNN–LSTM model had an accuracy prediction rate of 100% during
training and 100% during testing, where the accuracy performance of the model started
from 98.25% and reached 100% at training and validation started from 99.50% and reached
100% at the validation phase. The integrating model is appropriate for detecting attacks on
Agriculture 4.0.
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The confusion matrix for the CNN–LSTM model can be found in Figure 10. The
matrix, which displays the results of using this procedure, contains all of the possible
outcomes, including true positives, false negatives, and true negatives. The CNN–LSTM
model attained a superior detection rate with all NetBIOS, Portmap, Syn, UDPLag, UDP,
and normal. The FP rate is 100% for all classes; therefore, CNN’s integration with the
LSTM model is an optimal deep learning approach for protecting Agriculture 4.0 from
any cyberattacks.
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5. Discussion

The fourth industrial revolution in agriculture is characterized by the integration
of cutting-edge information and communication technology with conventional farming
operations. Security experts have become interested in a wide range of cyber dangers
associated with this integration. Agriculture 4.0 represents a new age of agriculture that has
rapidly emerged as a result of tremendous advancements in agricultural technology. As a
consequence of climate change, sicknesses, excessive use of chemicals and resources, and
so on, Agriculture 4.0 strives to apply new technology and practices in order to alleviate
present problems, limit risks, and lead to more efficient and safer production. This is the
goal of Agriculture 4.0. This objective is accomplished through the application of a vast
assortment of information and communication technologies (ICTs) that are at the leading
edge of their fields. Given that millions of IoT-based devices will be deployed in open
fields, the most challenging aspect of building Agriculture 4.0 will not be the deployment of
new technology; rather, it will be the assurance of security and privacy. As a consequence
of this, each layer of the architecture of the Internet of Things has its own set of problems
regarding privacy and safety [6]. Distributed denial-of-service (DDoS) assaults are among
the most prevalent types of cyberattacks, and they have the potential to compromise food
safety, the effectiveness of agri-food supply chains, and the output of farmers.

We constructed a system that was based on the deep learning model LSTM, and
CNN–LSTM models were applied to the system in order to detect any assaults that were
made against Agriculture 4.0. For the purpose of evaluating the proposed system, the CIC-
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DDoS2019 dataset was utilized. In terms of accuracy, the CNN–LSTM model was the most
effective when it came to the categorization of many classes. The outstanding performance
of the CNN–LSTM model, taken as a whole, achieved a perfect score of 100 percent when
testing against all different kinds of assaults. The receiver operating characteristic curves
(ROC) of the deep learning LSTM and CNN–LSTM algorithms are depicted in Figure 11.
In Agriculture 4.0, it was found that the CNN–LSTM model performed better than other
methods in terms of the recall metric of multiclass classification for the purpose of detecting
intrusion. The ROC metric was used to validate the results of the LSTM and CNN–LSTM
approaches, where the y-axis represents the recall for classifying the five attacks and the
x-axis represents specificity metrics. It was discovered that the CNN–LSTM model was
successful in achieving a rating of one hundred percent for identifying five types of attack
in addition to normal.
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The empirical findings of the suggested deep learning CNN–LSTM algorithm pitted
against preexisting security systems that were developed by the system using the dataset
are shown in Table 6. A graphical representation of the comparison between the results
achieved by our system and those acquired by other existing approaches in terms of
accuracy metrics can be seen in Figure 12. In general, the strategy that we suggest provides
the highest degree of accuracy among currently accessible strategies.

Table 6. Comparison results between CNN–LSTM model against existing security systems for
detecting attacks on Agriculture 4.0.

Ref. Model Dataset Types Years Accuracy %

Ref. [60] LSTM CIC-DDoS2019 Multi-class 2020 98.9

Ref. [61] CNN CIC-DDoS2019 Multi-class 2020 95.4

Ref. [62] Boosting algorithm CIC-DDoS2019 Multi-class 2020 91.26

Proposed system CNN–LSTM CIC-DDoS2019 Multi-class 2022 100
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Figure 12. Comparative performance between the CNN–LSTM model and existing approaches to the
detection of Agriculture 4.0 attacks.

6. Conclusions

In order to boost both the quality and quantity of agricultural products, it is necessary
to implement recently developed technologies into existing farming practices. Internet
of Things (IoT), 5G communications, drones, fog/edge computing, cloud computing,
artificial intelligence (AI), and software-defined networking are some of the cutting-edge
technologies that are presently being investigated.

In this paper, suggestions for intrusion detection models for Agriculture 4.0 that are
based on deep learning are offered. These models consist of a convolutional neural network
and a long short-term memory, in addition to a recurrent neural network long short-term
memory (RNNLSTM) and a combined convolutional neural network and long short-term
memory (CNN–LSTM). The current system was designed and built with the help of the real
network CIC-DDoS2019 dataset, and approaches based on Pearson’s correlation coefficient
were applied in order to determine which properties are important. Nine features were
chosen because they have a strong association with the classes. This was decided in order
to obtain the maximum possible accuracy. The detection rate, the false alarm rate, the
precision, the recall rate, the true negative rate, the false accept rate, the ROC, and accuracy
are all important metrics to consider when evaluating this system’s performance.

Additionally, the LSTM–CNN-based IDS model outperformed the most recent deep
learning IDS algorithms. The CIC-DDoS2019 dataset was used to test these approaches.
According to the findings, the CNN–LSTM mode achieved a perfect score of 100% when
testing its ability to identify attacks. In addition, the IDS model that is based on CNN–LSTM
performed significantly better than other deep learning IDS approaches that are considered
state of the art. Both percentages reflect an improvement when compared to the most
recent deep learning IDS approaches that are available. The limitations of this research
are the used standard dataset; researchers can use their own standard data from a real
agricultural environment.
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