. mathematics

Article

Geometry of Tangent Poisson-Lie Groups

Ibrahim Al-Dayel *(, Foued Aloui ! and Sharief Deshmukh 2

check for
updates

Citation: Al-Dayel, I.; Aloui, F.,;
Deshmukh, S. Geometry of Tangent
Poisson-Lie Groups. Mathematics
2023, 11, 240. https://doi.org/
10.3390/math11010240

Academic Editor: Ion Mihai

Received: 6 December 2022
Revised: 25 December 2022
Accepted: 27 December 2022
Published: 3 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University
(IMSIU), P.O. Box 65892, Riyadh 11566, Saudi Arabia

2 Department of Mathematics, King Saud University, Riyadh 11495, Saudi Arabia

Correspondence: jaaldayel@imamu.edu.sa

Abstract: Let G be a Poisson-Lie group equipped with a left invariant contravariant pseudo-Riemannian
metric. There are many ways to lift the Poisson structure on G to the tangent bundle TG of G. In this
paper, we induce a left invariant contravariant pseudo-Riemannian metric on the tangent bundle
TG, and we express in different cases the contravariant Levi-Civita connection and curvature of
TG in terms of the contravariant Levi-Civita connection and the curvature of G. We prove that
the space of differential forms O*(G) on G is a differential graded Poisson algebra if, and only if,
O*(TG) is a differential graded Poisson algebra. Moreover, we show that G is a pseudo-Riemannian
Poisson-Lie group if, and only if, the Sanchez de Alvarez tangent Poisson-Lie group TG is also
a pseudo-Riemannian Poisson-Lie group. Finally, some examples of pseudo-Riemannian tangent
Poisson-Lie groups are given.

Keywords: Poisson geometry; Riemannian geometry; Lie group; Lie algebra

MSC: 37]39; 58B20; 70G65

1. Introduction

The Riemannian geometry of tangent bundles and cotangent bundles of smooth
manifolds is an important area in physics, classical mechanics and geometrical optics. If M
is the configuration space of a mechanical system, then each point of the cotangent bundle
T*M of M determines a state of the system and T* M is called the phase space [1]. Moreover,
Poisson manifolds play a fundamental role in Hamiltonian dynamics, where they serve as
a phase space. For this reason, there is some interest on how structures and, more generally,
properties of M carry down to T*M. Furthermore, if M is equipped with a pseudo-
Riemannian metric compatible with the Poisson structure on M [2,3], it would be interesting
to see if the compatibility remains fulfilled on the tangent bundle TM. First, recall that
the notion of compatibility between a Poisson structure I'l; and a contravariant pseudo-
Riemannian metric (, )}, on a smooth manifold M was first introduced by M.Boucetta in [2].
A triplet (M, I1yy, {,)},) is compatible in the sense of M.Boucetta [2,4] and is a so-called
pseudo-Riemannian Poisson manifold if, for any &, 8,y € Q' (M):

DMIIy(a, B,7) = Iay ()T (B, ) — L (DMB, ) — (B, DMy) =0,

where DM is the contravariant Levi-Civita connection associated with the couple (ITys, {, )3y)-

In [3,5], Hawkins showed that, if a deformation of the graded algebra Q*(M) of
differential forms on a pseudo-Riemannian manifold (M, (,)y;) comes from a spectral
triple describing the pseudo-Riemannian structure, then the Poisson tensor I1;; on M
(which characterizes the deformation) and the pseudo-Riemannian metric (, ) 5s satisfy the
following compatibility conditions:

(H;) The metric contravariant connection DM associated with (ITy, (, ) ) is flat.

(Hy) The metacurvature MM of DM ig zero, i.e., the connection DM is metaflat.
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The metric contravariant connection DM naturally associated with (ITyy, {,)a) is
exactly the Levi-Civita contravariant connection.

A triplet (M, Iy, (, ) m) satisfying conditions H; and H, is said to be compatible in
the sense of Hawkins. A deformation of the differential graded algebra of differential
forms (3* (M) defines a generalized Poisson bracket on this space. Moreover, a generalized
Poisson bracket making ()*(M) a differential graded Poisson algebra exists if, and only if,
(M, I1p, (, ) m) is compatible in the sense of Hawkins [3].

An important class of Poisson manifolds equipped with pseudo-Riemannian metrics is
the family of Poisson-Lie groups equipped with left invariant pseudo-Riemannian metrics.

The notion of the Poisson-Lie group was first introduced by Drinfel’d [6,7] and
Semenov-Tian-Shansky [8]. Semenov, Kosmann-Schwarzbach and Magri [9] used Poisson—
Lie groups to understand the Hamiltonian structure of the group of dressing transforma-
tions of certain integrable systems. These Poisson-Lie groups play the role of symmetry
groups.

In [10], M.Boumaiza and N.Zaalani showed that if (G,I1;) is a Poisson-Lie group,
then the tangent bundle (TG, I1rg) of G, with its tangent Poisson structure Iy defined
in the sense of Sanchez de Alvarez [11], is a Poisson-Lie group. This Poisson-Lie group
(TG, IIg) is called a Sanchez de Alvarez tangent Poisson-Lie group of G [12].

The second author and N. Zaalani [12] have studied the compatibility between the
Sanchez de Alvarez Poisson structure and the natural left invariant Riemannian metric.
The non-compatibility between the Sanchez de Alvarez Poisson structure and the natural
Riemannian metric (except in the trivial case IIg = 0) on TG leads us to define another
metric on the tangent Lie group TG which is compatible with the Sanchez de Alvarez
Poisson structure.

In this paper, we equip G with a Poisson structure and a pseudo-Riemannian metric.
Then, we lift these structures on the tangent bundle TG of G, and we study the Riemannian
geometry of G and its relations with the geometry of TG.

This paper is organized as follows: In Section 2, we recall basic definitions and
facts about contravariant connections, curvatures, metacurvatures, generalized Poisson
brackets and pseudo-Riemannian Poisson-Lie groups. In Section 3, we induce a left
invariant contravariant pseudo-Riemannian metric (, )} on the tangent Poisson-Lie group
(TG,Il1g) and we express in different cases the Levi-Civita connection and curvature of
(TG,II1g, {, )}¢) in terms of the Levi-Civita connection and curvature of (G, IIg, (,)§). In
the case where the tangent bundle TG is equipped with the Sanchez de Alvarez Poisson
structure, we show that the space of differential forms O*(TG) on TG is a differential
graded Poisson algebra if, and only if, O*(G) is a differential graded Poisson algebra.
In Section 4, we show that (G,IIg, (,)§) is a pseudo-Riemannian Poisson-Lie group if,
and only if, the Sanchez de Alvarez tangent Poisson-Lie group (TG, Ilrg, {,)7;) is also a
pseudo-Riemannian Poisson—-Lie group. In Section 5, we give some examples of pseudo-
Riemannian tangent Poisson-Lie groups .

2. Preliminaries
2.1. Contravariant Connections and Curvatures

Contravariant connections on Poisson manifolds were defined by Vaisman [13] and
studied in detail by Fernandes [14]. This notion appears extensively in the context of
noncommutative deformations [3,5].

Let (M, I1);) be a Poisson manifold. We associate the Poisson tensor I, with the
anchor map H?\/I : T*M — TM defined by ﬁ(H?VI(oc)) = ITp(, B) and the Koszul bracket
[, ]m on the space of differential 1-forms Q' (M) given by:

[‘X/ IB]M = ‘anﬁw(‘x)ﬁ - EH&,,(/S)“ - d(HM(“/ ﬁ))
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A contravariant connection on M, with respect to Iy, is an R-bilinear map
DM al(M) x Q'(M) — Q'(M), (a,B) — DY'B,

such that for all f € C®(M),

DB = (DB and DY (fB) = FDYB+1T},(a)(f)B.

The torsion 7M™ and the curvature RM of a contravariant connection DM are formally
identical to the usual ones:

M(a, ) = DMB — Dilu — [w, Bl
M(a, )y = DMDYy — DYDYy — DY 0

These are (2,1) and (3,1)-type tensor fields, respectively. When 7M = 0 (resp., RM = 0),
DM is called torsion-free (resp., flat).

Let (M, I1) be a Poisson manifold. Let {, )y be a covariant Riemannian metric
on M and (, )}, the contravariant Riemannian metric associated with (, ). The metric
contravariant connection associated with (ITyy, (, ) ;) is the unique contravariant connection
DM such that DM is torsion-free and the metric (, )3 is parallel with respect to DM e,

IT, (@) (B,7) 31 = (DYB, 1) as + (B, DY) )

The connection DM is called the Levi-Civita contravariant connection associated with
(ITpm, (, )34) and can be defined by the Koszul formula:

2DYB, ) H%(w)<ﬁ,7>%+ﬂﬁd(ﬁ)<w,v>h L VR

Tl Bl Vi (8 B g + ([ Bl )

We say that DM is locally symmetric if DMRM = 0, i.e., if for any a, 8,7, € Q1(M),
we have:

(D'RM)(B,7)8 = DM( (

R )) ) — RM(DY'B,v)6 — RM(B, v)DMs
_ 5=

4)

2.2. Generalized Poisson Bracket on the Space of Differential forms (Y (M)

Let (M, II);) be a Poisson manifold and DM a torsion-free and flat connection with
respect to ITy. In [3], E.Hawkins showed that such a connection defines an R-bilinear
bracket on the space of differential forms Q* (M), also denoted by {, }u, such that :

1. Thebracket {, } ;1 is antisymmetric, i.e.,
{o,0hm = (=128 4B o, o}y
2. {, } m satisfies the product rule, i.e.,
{o,v Avin = {0, 0}p Av+ (—1)%8D 4By A Lo, 1)
3. The exterior differential d is a derivation with respect to {, }»y, i.e.,
d{o,v}p = {do, v}y + (=1)38) (o, dv}pp;

4. Forany fi, f, € C®°(M) and for any o € Q* (M), the bracket { f1, f2} m coincides with
the initial Poisson bracket on M and

{fl/ U}M = D%U’
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This bracket is given for any a, € Q' (M) by [15]:
{a, B}y = —D'dp — Dy'da + dDy'a + [w,dBly, (5)
where [, ] is the generalized Koszul bracket on Q* (M) satisfying the Leibnuz identity, i.e.,
[0, 0 AV]p = [0, 0] Av 4 (—1)(de8(@) =D deg )y A (g, 1]y (6)

Note that the generalized Koszul bracket for the differential forms is analogous to the
Schouten—Nijenhuis bracket for the multivector fields (for more details, see [16] page 44).

We call this bracket {, } »; a generalized pre-Poisson bracket associated with the con-
travariant connection DM. E.Hawkins showed that there exists a (2,3) tensor MM that is
symmetrical in the contravariant indices and antisymmetrical in the covariant indices such
that the generalized pre-Poisson bracket satisfies the graded Jacobi identity

{o. {v,vimim — {{o, v} vinm — (—1)48D 480 [y (o v}t =0,

if, and only if, MM is identically zero.
MM is called metacurvature of DM and is given by

MM@fy,a,B) = {fi, {a, BImtm — {{fvatm Brm — {{fi, BIm atm- 7)

If MM vanishes identically, the contravariant connection DM is called metaflat and
the bracket {, }, is called the generalized Poisson bracket associated with DM, making
Q* (M) a differential graded Poisson algebra (for more details, see [3]).

2.3. Pseudo-Riemannian Poisson—Lie Group

An important class of Poisson manifolds is the family of Poisson-Lie groups. A Lie
group G is called a Poisson-Lie group if it is also a Poisson manifold such that the product

m:GxG— G:(gh)—gh

is a Poisson map, where G x G is equipped with the product Poisson structure.

Let G be a Poisson Lie group with Lie algebra (g, [, ]) and Il the Poisson tensor on
G. Pulling I back to the identity element e of G by the left translations, we obtain a map
I1L : G — g A g, defined by IT(g) = (Lgfl)*HG(g), where (Lg ). denotes the tangent map
of the left translation Lg of G by ¢. The intrinsic derivative

@::dech:g—w/\g

of HIG at e is a 1-cocycle relative to the adjoint representation of g on g A g. The dual map of
G is a Lie bracket [, ]4+ : g* x g* — g* on g*. It is well-known that (g, g*) is a Lie bialgebra.

Let (G, II) be a Poisson-Lie group with Lie bialgebra (g,g*). Let (, ) g+ be a bilinear,
symmetric and non-degenerate form on g* and let (,)¢ be the contravariant pseudo-
Riemannian givenby (, )& = (Lg)+(, ) g+- We say that (G, Ilg, {,)¢) is a pseudo-Riemannian
Poisson-Lie group if, and only if, the Poisson tensor I'l; and the metric {, ), are compatible
in the sense given by M.Boucetta in [4,17], as follows:

[Adg (Auy +adyy o) 7), Adg(B)lgr + [Adg(w), Adg(Apy +adpy (5 7)lgr =0, (8)

for any ¢ € G and for any «, 8, v € g*, where A is the infinitesimal Levi-Civita connection
associated with ([, ] g+, (,)g*)-

Note that the infinitesimal Levi-Civita connection A is the restriction of the Levi-Civita
contravariant connection D to g* x g* and is given for any a, 8,y € g*, by:

2(AuB, 7)o = (o, Blgr, 7) g + ([, ] g, B) g + ([V, Blg=, &) g~ )
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In [4], M.Boucetta showed that if (G,I1g, (,)§) is a pseudo-Riemannian Poisson-Lie
group, then its dual Lie algebra (g*, [, | ¢+, (, ) g*) equipped with the form (, ) 4+ is a pseudo-
Riemannian Lie algebra, i.e, for any «, 8,y € g*, we have

[AaB, 7]g + (2, AyBlg- = 0. (10)

3. Pseudo-Riemannian Geometry of Tangent Poisson-Lie Group

Let G be a n-dimensional Lie group with multiplicationm : G x G — G : (g, h) — gh
and with Lie algebra (g, [,]g). We denote by Ly : G — G : h — gh, the left translation and
Rg: G — G : h hg, the right translation of G by g.

The tangent map Tm of m,

Tm: TG x TG — TG : (Xg, Yy) = TyLgYy, + TgR;, X, (11)

defines a Lie group structure on TG with identity element (e, 0) and with Lie algebra the
semi-direct product of Lie algebra g x g, with bracket [10,18]:

[, Y), (X, Y )gwg = (X, X 15, [X, Y g + Y, X ]g), (12)

where (X, X'),(Y,Y') € g x g.

Let (G, I1g) be a Poisson-Lie group with Lie bilagebra (g, g*) and let TG be the tangent
bundle of G. According to M.Boumaiza and N.Zaalani [10], the tangent bundle TG of G
with the multiplication (11) and with its tangent Poisson structure I11g, defined in the
sense of Sanchez de Alvarez [11], is a Poisson-Lie group with Lie bialgebra (g x g, g* x g*),
where g* x g* is the semi-direct product Lie algebra with bracket:

[(, B), (&, B)grocge = ([, Blg + [B, 2], [B, Bl (13)

where (a, B), (¢/,B) € g* x g*.

On the other hand, if (G,I1g) is a Poisson-Lie group, there exists a linear Poisson
structure ITg on g, whose value at X € g is given by Iy (X) = d.IT1g(X). The linear Poisson
structure I'l; on g = T,G makes (g, 1) an abelian Poisson-Lie group with Lie bialgebra
(9,9") such that the Lie bracket of g is zero and the Lie bracket of g* is [, ] 4+.

If we identify the tangent bundle TG = G x g with the direct product Poisson-Lie
group of (G,IIg) and (g,T1,); then, (TG = G x g,I1gyy) is a Poisson-Lie group, with
Lie-bialgebra (g x g, g* x g*), where g X g is the direct product Lie algebra with bracket:

[(X,Y), (X, Y)]gxg = ([X, X]g,0), (X, Y), (X',Y) €gxg, (14)
and g* x g* is the direct product Lie algebra with bracket:

[(, B), (&', B)ge g = ([, ', [B, B'lg*), (. B), (o', B') € 8" x g". (15)

Now, we equip G with a left invariant pseudo-Riemannian metric, and we lift this
metric to the tangent bundle TG.

Let 7 : TG — G : (g, X) — g, be the natural projection. The differential mapping
drt(e,0) at the point (e, 0) is given by:

dr(e,0):gxg—g:(XY)— X,

and the vertical subspace V. ) of g x g is given by V(. o) = ker(d7(e,0)) = {0} x g.

It has been shown that the complete and vertical lifts of any left invariant vector fields
of G are left invariant fields on the tangent Lie group TG (see proposition 1.3 page 183
of [19] or theorems 1.2.2 and 1.2.3 of [20]). In fact, if (Xq,...,X,) is a basis for the Lie
algebra g of G, then {X] = (0,Xy),..., X = (0, X;,), X{ = (X1,0),..., X5, = (X;,,0)} isa
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basis for the Lie algebra g x g of TG, where X} = (0, X1) (resp., X{ = (X1, 0)) is the vertical
lift (resp., the complete lift) of the vector field X; on G to TG.

Let (, )¢ be a left invariant pseudo-Riemannian metric on G. Then, we define a left
invariant pseudo-Riemannian metric (, )7 on TG as follows :

(0,),(0,Y)re(e,0) = 0
((X,0),(0,Y)re(e0) = (X,Y)c(e) (16)

where (X,Y),(X,Y) € gxg.
The left invariant contravariant pseudo-Riemannian metric (, )75 on TG associated

with (, )¢ is given for any (x, B), (¢, B') € g* % g* by:

{(@0), (,0))76(e,0) = 0,
<(0¢, 0), (Or ,B,)>3‘~G(€,0) = <“ ﬁ >E(€) (17)
((0,B),(0,8))76(e,0) = (BB)"(e),

where a¥ = («,0) (resp., «¢ = (0, «)) is the vertical lift (resp., the complete lift) of the 1-form
a« on G to TG. (for more details on lift tensor fields, see [19]).

3.1. Pseudo-Riemannian Geometry of Product Poisson Structure on TG

In this subsection, we consider the left invariant contravariant pseudo-Riemannian
metric (,)}; defined as above on the tangent bundle (TG,II;.4) equipped with the
product Poisson structure. Then, we study the geometry of the triplet (TG, I1g g, (, )5c)
and its relations with the geometry of (G,I1g, (,)¢&)-

First of all, we note that if we denote by D¢ the Levi-Civita connection associated with
(I1g, {,)c(e)) and by RS the curvature of D9, then the restriction of D€ to g* x g* coincides
with D9 and the restriction of the curvature RS of D¢ to g* coincides with RY, i.e.,

D7p =Dip, R°(wB)y=R%np)Y,
forany a, B,y € g*.
Proposition 1. Let D¢ and DC*9 be the Levi-Civita contravariant connections associated with

(Ig, (,)g) and (I1gxg, {, )5g), respectively. Then, for any («,B), (&, p'), (a”,B") € g* x g,
we have:

L (DER,0), (@",0))56 =0,

) <D(Ga,xo?(“/’0)’(0’ B ))ig = %(([a,w/]g*,O), 0, 8"
3. (Dol (0,8, (a,0))76 = —3((0,adyp'), (a,0))7c,
4 <D8¢,X0£);( B, (0,B"))ic = —%((adtﬁ/zx,o), (0,8"))1cr
5. (DG @,0), (@",0))ig = ~3{(0.ad, ), (@,0))g,
6. (D 360,006 i = ~4((adie’,0), (08 )i
7 <ng;;(0,[$’>, (a”, 0)>’%c— 240,15, /3]9*)' (a OWG’
8 <DGX9( B (0,8")) 1
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Proof. According to Equations (9), (15) and (17), for example for (5) we obtain:

0,B), (&', 0)]g=x g+, (&, 0))7¢

I+ +

2(DIS, (,0), (2”,0))i¢

O

Lemma 1. Forany (a,B), («',B') € g* x g*, we have :
o,

L D, 0) = §([aa]g,0),

2 D(Cixog( ):%(adﬁéﬁ —ad;,ac adiﬁ/),
3. DG S(,0) = L(ad! g —adja’, —ad!, ),
4. D0, = %(Dcﬁ +Dgb (B, Blg)-

Proof. Using the previous proposition we obtain:

)
(DT80, Wi = (DIRE,0), (05 + (DE,0), 0,6
= 3 (], 0), (0" 56
= (3l aTg,0), (2", p"))5c,
then, Daiﬁ(w/,o) = %([vc, "‘/]g*fo)'
2

(i) (0.8), (@, B = (D0, ﬁ’)r(w’/,0)>’%c+<7>cxg( B, (0,816
= %<(o adp’), (@”,0))56 + — <(ad;,a 0), (0,84
= (3(adip —adya,—adp), (2", ")) e,

then, DC;XO?(O B) = Ladp — ad;/a —ad! ).

In the same way, we can obtain (3) and (4). O

Theorem 1. Let RG and RC*9 be the curvatures of D¢ and D8 respectively. Then for any
(a,B), (&, B"), (&",B") € g* x g*, we have:
1.

RG*9((a,0), (a/,0))(a",0) = %([a, [0, 0" gt g 4 [0, [0, &) g+ g

"

+ 2 ,[a,a’]g*]g*,o).

RE*9((w,0), (a,0))(0, ") = ~ ([a ad))p" —adjya]g — [, adip’ — adlyaly

- ad;adf,ﬁ +ad! ,,a+adf,ad;;/3 —ad’ [ﬁ,,a

«, a}g ,ad}, adt ﬁ —adt,adfxﬁ

ad!, p
- 2adt ﬁ +2adﬁn[

¢ "
—+ Zad[aﬂ/}g*ﬁ )
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3.
1 ! " "
Gxg l " - = t . _ t . B — t .\
RE*9((0, B), («',0)) (", 0) 4(ad[’x oy B adhla o] [,ad", f — ada’]
t t t ! t t t
+ ada, ada,/,B — adad‘i//ﬁa , —ad[a/,a//]g* ,B — ada/ adlxu,B) .
4,

"

RE*9((0, ), («',0))(0, ") = (ad; -y B —adjad!, g’ +ad;3ad;/,oc/ — Dfad’,p
— Doy g [, DgB" +D g Blos —ady (B, B'lg
+ adfﬁ/ﬁ/,]g*(x,—ad; a g d;”a,ﬁ— [/S,ada,ﬁ N

— ad',[B,B ]y )-

REX3((0, B), (0, ) (", 0) = (ad;dt ¥ ad /a//ﬁ—adtﬁadfx,,ﬁ +adgadg,a ~ Dfad',p

G ¢ t
o Dadt//ﬁ'B adt ﬂ—adtﬁa”ﬁ +ad‘5

—+ Dﬁ,ad //’B+Dadt [3'8 —Zadi//[,B,,B}g*

¢ /
+ 2adt ’ lX ’ —adadt’” ,Bl—ad;/ a//ﬁ - [ﬁ, adauﬁ ]g*

/adfxu B— ad;/ adf;vc

[:B':B ]g*
+ ad;d;/,ﬁfad;;lx”‘g + [/3 ; ad;// 5]9* — 2adi,, ['B, ﬁ ]g*) .

"

R3((0,6),0,6))(0,8") = 7 (R%(8,8)’ — DFDG B + DFDGB ~ D5 B
g~ )

t G G

+ ad!

!

— ad(DGﬁ//+DG

—+ ZDﬁu [,B/ ,B }B*’ _ad('DG, ﬁ”+Dg// ﬁ/)ﬁ

+ adipgpr o, + B lole)
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Proof. Using the Equation (1) and the Lemma 1, for example, for (3), we find:

RE(0.0) (W 0)0) = DEDEE W0 - DS 0)
_ Gxg
D[éw)( Olet o («",0) ) ,,
— D(Oﬁﬁ)!l([tx,rx ]g*,O)—D( g)l(adt,,/s—adga ,—ad', B)

_ %(ad[a/ B ad;[a’ W lge, —ad, o, /s)

— }(I'ad!y B~ ada]g:,0)

+ (ad!ad!ip— ad{a s —adyyady B)

= 1 (adfﬂ‘,,[xu]g* B— ad% o, oc”]g* — [, ad;uﬁ - adfgtx”}g*
+ ad;, ad;uﬁ - adid;”ﬁzx/, fadfa,’“u]g* B— adi, ad;uﬁ).

O

If (,)¢ is a bi-invariant pseudo-Riemannian metric on a Poisson-Lie group (G, I1;),
then as a consequence of Formula (9), we have DS 8 = %[oc, Blg and adl, = —ad,, for any
«, B € g*. (For more details in the covariant case, see [21]).

Corollary 1. Ifwelet {,)¢, be a bi-invariant contravariant pseudo-Riemannian metric on a Poisson—
Lie group (G,I1g), then for any («, B), (&', B') € g* x g*, we have :

1. D(ijog(a 0) = (DSa’,0);
2 D(%g(o, B) = (ZDGa DEB);
3. D%Xﬁg(a’,o) (ZDGoc DS B);
4. DES0,p) = (0, D%)

Proof. Since {, >*G is bi-invariant, then using Lemma 1, for example, for (2), we find:
(ad!p — adg/ x, —ad! p)
(—ad,B + adﬁux, ad.B)
alge, 5 [D‘ /5 Jg*)

B,
ZDczx DSB').

DS0,p) =

1
2
1
2
=

(
O]

Corollary 2. Ifwelet (,)¢, be a bi-invariant contravariant pseudo-Riemannian metric on a Poisson—
"

Lie group (G,T1g)., then for any (x, B), («/, B), (", B") € g* x g*, we have:
1. RS%9((a,0),(a’,0))(a",0) = (RS(a,a')a",0);

2.
RO<8((,0), («,0))(0,8") = (2(R(w, ")’ + RO(F,')a) — DG, o
+ Dg;;,,a,oc,RG(a,a/)ﬁu) ﬁ ’
3.
RE*8((0,B), (@',0))(o",0) = (2D§DGa" — DGDER — DS o), DG 1B

4

- D§DGp)
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4 RGXg((OI 'B)/ (0&’,0))(0/,3 ) = (4D‘BG'D,§,,0( — Zpggﬁulx '2Dg§,,t¥,ﬁ - 'DEDS/,B );
5.
RG*8((0,B), (0,8))(,0) = (4RG([%,/3’)0<” +206 o', DEDS B
— DGDGp+2DG, 205 F ~ D516 e)
B

6. RO9((0,6),(0,6))(0,8") = (0.RO(5,E)8").

According to the Theorem 1 if the connection D is flat, then the connection D*9 is
not necessarily flat. So, in this case, we cannot study the generalized Poisson bracket on the
space of differential forms Q*(TG). For this reason, we focus on the Sanchez de Alvarez
Poisson structure on the tangent bundle TG in the following subsection.

3.2. Pseudo-Riemannian Geometry of Sanchez de Alvarez Tangent Poisson—Lie Group

In this subsection, we consider the left invariant contravariant pseudo-Riemannian
metric (, )} on the Sanchez de Alvarez Poisson-Lie group (TG, Ilr¢), and we study the ge-
ometry of the triplet (TG, I, (, )}) and its relations with the geometry of (G,I1g, (,)¢)-

Proposition 2. Let (G,I1g, (,)¢) be a Poisson—Lie group equipped with the left invariant con-
travariant pseudo-Riemannian metric (, )¢ and (TG,IIrg, (,) 1) the Sanchez de Alvarez tangent
Poisson—Lie group of G equipped with the left invariant pseudo-Riemannian metric , )% asso-
ciated with (, ). Let DTC and DC be the Levi-Civita contravariant connections associated with

(Irg, (, )5g) and (g, (, ) &), respectively. Then, for any («, B), (oc,,ﬁ,) € g* x g*, we have:
DG (o', 8) = (DEF + D§a', D).

Proof. According to Equations (9), (13) and (17), we obtain:

" "

2D (@, B), (0" B Nie = ([(aB) (&, B)]gwg (& ))i6
+ (1@, ), (&, B)lge g (&, B)) 76
+ ([, B7), (&, ) geneg, (@ B))7g
= ((l0, By + (8,05 [B, o), (&, B))ic
+ (0" Blge + B alge, B, Blg) (&, B))7e
+ ([a /5]9* +[B = ]g*r/[/3 r/%l]g*//r("‘//s»*TG
= 2((DSB +Dga’, DGR), (", ")) 7c-

O

Lemma 2. Let RTC and RC be the curvatures of DTG and DC, respectively. Then, for any
(a,B), (&, B), (a",B") € g* x g*, we have :

RTC((w, B), (a, B

! " "

D', B") = (RO, 81"+ RE(B,a)p" +RE(B, B )", RE(B,B)B").

Proof. Using the definition of the curvature tensor (1) and Proposition 2, we obtain:
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RTC((a, B), (

! " " " "

BN = Dy D@ B) = D Dl ()
_ TG " "
Pllapr gy F)
= D(Tfﬁ)(DG/B +DﬁG ,DGB")

_ DTG
(«',8")

TG ( // B
0,8 Jge + (B Ige B8 g*)
DGDGﬁ +D§DGB" + D§DG" DGDGﬁ)

(D" +DSa", DFB")

)

( B8 . BB
= (DGDG,B +D§DEp +D/§Dg Dgpg ")
B E (8] ﬁ +D ﬁ +D[l3/5]g [ﬁﬁ']g*ﬁ”)

(@8 +RG(/3 W)+ RE(B, B, RO (B, )" )
O]

Proposition 3. The Levi-Civita contravariant connection DC is locally symmetric if and only if
the connection DTC is locally symmetric.

!/

Proof. Forany (a,B), («,8),(&", "), (&",B") € g* x g* we obtain
H= (D(Tcﬂ)RTG)(( /,,B/), o, BN (", B"). According to Equation (4), Proposition 2
and Lemma 2, we obtain:
H = DIS (RTS((w, ), (o, f')(a", B") - RTaﬂgﬁ’/»m%“»m%ﬂﬁ
RTG((',ﬁ3,<thfU)I%};ﬂw”, 8") — RTS((«,f), DTC, (o, B')) (", B")
= Dy (RO EIE" + ROGE,a")B" + RO, )", RO(B, 7)8")
— RTS((DZF +Dga’, DG, (a",B")) (a", p")
— RT%((a ,H)Jw/ﬁ »(Dcﬁ”+=Dg ! Dcﬁ )
- RO ﬁ)(DGﬁ-+DG”DGﬁ>x’”ﬁ”>

By developing again with Proposition 2 and Lemma 2, we obtain :

" n ! " " n

(DEpRTON B BB = ((DFRO)(E,B)F" +(DFRO) (o, 61
+ (DGRO)(B,a")p"
+ <DGRGxﬁtﬂvd%<D§chﬁtﬁdﬁ”)

If DGRG = 0, then DTCRTC = (0,0). Conversely, if DTCRT¢ = (0,0), then for any

ﬁﬁ /3 ,B € g*, wehave
DERE(B,B")B"

Hence, DC is locally symmetric. [

Lemma 3. Let |, |g and [, |1 be the generalized Koszul brackets on Q*(G) and Q*(TG), respec-
tively. Then, for any (, B), (&, B) € g* x g*, we have:

(@)@, Ve = ((a,df)c + [B,dlc, 8,46 )c)
=l dplc + [B,d)c)? + (8,46 ),

where ([a,dB)G)? (resp., ([B,dB|c)°) is the vertical lift (resp., the complete lift) of the 2-form
[, dB |G (resp., [B,dB'|c) on G to TG.
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Proof. Let (x;) be local coordinates of G in a neighborhood of ¢ and (x;,y;) be the cor-
respondent local coordinates of TG, in a neighborhood of (e,0). Let & = ) a;dx; and
i

ﬁ/ = Z,B/l-dxi be elements of g*. We write («,0) = Y a;dx; and (0, ,Bl) = Zﬁ;dyi. Then,
i i i

using Equations (6) and (13), for example, for [(«,0),d(0, B)]r¢, we have:

[(2,0),d(0,)]rc = ) Y [(«,0),d(0, Bidxi)lrc = ZZ[(DCIO)/ (0,dB; Adx;)|rc
= £ ([(,0), (0,dB;) A (dx;,0) + (d8;,0) A (0,dx) 1)
= z( ,(0,dB)]7c A (dx;,0) + (0,dB) A [(2,0), (dx;,0)]7¢

+ [(,0),(dp; >]Tc A (0,dx;) + (d8,0) A [(,0), (0,dx)] )
L ( ([ dB]lc,0) A (dx;,0) + (dB;,0) A ([a dx], 0))

Z( a,dBilG A dx;,0) + (d‘Bli/\["‘/dxi]G/O))

= ([0, dp; Ndxi]G,0)

([‘X’ dﬁ/}G/ )
([, dp]c)".

Considering all the possible cases

([(0,8),d(0, B)]7c, [(0, B), d(a, 0)]76, [(2,0),d(0, )] 16, [(,0),d(«,0)]7¢),

we obtain the following lemma. [

Proposition 4. Let {, }r¢c and {, } g be the Hawkins generalized pre-Poisson brackets of the Levi-
Civita contravariant connections DTC and DC, respectively. Then, for any (a, ), (a,, ,B,) €
g* x g*, we have :

(@B, @, B)hre = ({eplo+{Ba}e BB)e),
= (aBYc+1{Ba Yo+ ({BB o)

Proof. Note that the Levi-Civita contravariant connections D¢ and D'C naturally extend
to O?(G) and Q?(TG), respectively. Using Equation (5), Proposition 2 and Lemma 3,
we obtain

{@p) @ p)re = —D(Gd,p) = DiF (e, p) +dDEF  (ap)

[(a, B),d(a, B )Ire
—(Dgdp’ + Dgda, DFdp’) — (DSdp + Dg, da, Dg/ dp)

I+

+(@DGp+ dDg,a,dDg,m + (w616 + 16,0 ), 6. 46 )c)
- ( ~ DS’ — Dfdn — DEdp — DGda +dDSB +dDGn
+ [0, dpc + [B,du'lc, ~Dfdp — DGdp +dDG B+ [,dp]c)

({2 8y + {84}, {B. B }o)
({aB'Yc + {B.a'}e)" + ({8, B Yo"

O

Lemma 4. Let M and MTC be the metacurvatures of the Levi-Civita contravariant connections
DS and DTC, respectively. Then, for any (a, B), («',8'), (&, B") € g* x g*, we have:

1. MTG((a,0),(«,0),(a",0)) =0;
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2. M™C((x,0),(«',0),(0,8")) =0;
3. MTC((a,0),(0,),(0,8") = (MC(a, 8,8"),0);
4. MTC((0,B),(0,8),(0,8")) = (0, MC(B,B,B"));
5 MTC((0,B),(0,8), (a",0)) = (ME(B,B,a"),0);
6. MTC((0,B),(a,0),(a",0)) = 0.

Proof. Let (x;) be local coordinates of G in a neighborhood of e and let (x;,y;) be the
correspondent local coordinates of TG in a neighborhood of (¢,0). Let « = ):ac dx; and

g = 2[3 dx; be elements of g*. We write («,0) = sz dx; and (0,8) = Zﬁ dyl Using

Equatlon (7) and Propositions 2 and 4, then—for example for 3)—we obtam

MTE((a,0),(0,8),(0,8"))

Yai({xi0 7, {(0,6), 0.6 ) bre}re

— {{xiom (0,8)}1c, (0,8")}rc

— {xiom (0.8")}1e,(0,8)}r)

= 2ai(DfE 0 048 B"}o) — (P[50 (0.8, (0.6 ) }re
— {DIS ) (0.8"),(0.8)}rq)

= m(( G 4B B Y6, 0) — ({DGB B}, 0)

- ({D%.B'.B}c.0))
- Zwi(({xir{ﬁ/ﬁ bote,0) = ({{xi, B e B}, 0)
1
- ({{x"Y6 BYe0)
= (MC@,p,p),0).
O

Theorem 2. Let (G,I1g,(,);) be a Poisson—Lie group equipped with the left invariant con-
travariant pseudo-Riemannian metric (, )& and (TG, Irg, (, )7g) the Sanchez de Alvarez tangent
Poisson—Lie group of G equipped with the left invariant pseudo-Riemannian metric {, ) associated

with (, ). Then, the space of the differential form OY*(G) is a differential graded Poisson algebra if,
and only if, O*(TG) is a differential graded Poisson algebra.

Proof. According to Lemma 2, if R® = 0, then RT¢ = (0,0). We now assume that
RG = (0,0); then, for any 8,8, 8" € g*, we have
RE(,B )" =0.

Then, D€ is flat if, and only if, DTEC is flat.
Moreover, According to Lemma 4, for any («, B), (¢, ), («", B") € g* x g*, we obtain:

MTS((a, B), (', 8), (&', B)) = (MC(wB,B") + MC(Ba',B")
+ MO, MO B )

So, if M© = 0, then MTC = (0,0). We now assume that MTC = (0,0); then, for any
B,B,B" € g*, wehave

ME(B, BB = 0.

Then, D€ is metaflat if, and only if, DTC is metaflat.
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Hence, we deduce that the connection DC defines a generalized Poisson bracket {, }¢
on O*(G) if, and only if, the connection DTC defines a generalized Poisson bracket {, } ¢
on O*(TG). O

4. Pseudo-Riemannian Sanchez de Alvarez Tangent Poisson-Lie Group

The second author and N.Zaalani [12] showed that the Sanchez de Alvarez tangent
Poisson-Lie group (TG, I1rg) equipped with the natural left invariant Riemannian metric
is a Riemannian Poisson-Lie group if, and only if, (G, I1g) is a trivial Poisson-Lie group. In
this section, we study the compatibility in the sense of M.Boucetta between the Sanchez de
Alvarez Poisson-Lie structure I17¢ and the pseudo-Riemannian metric (, )7 given in (17).

Let (,) ¢+ be a bilinear, symmetric and non-degenerate form on g*. We define a bilin-
ear, symmetric and non-degenerate form (, ) g+« g« on g* x g*, which is analogous to (17),
as follows:

!

((@,0),(«,0))g:xg= = 0
((a, ),(o,ﬁ)>g xgr = (&,
<( ﬁ)r(orﬁ»g*xg* = <IB

where (a, ), (¢, B) € g* x g*.
Let (, )& be the left invariant contravariant pseudo-Riemannian metric associated with
(,)g* and let (, )7 be the metric associated with (, ) g g+-

Remark 1. If (G,T1g, (,)¢) is a pseudo-Riemannian Poisson Lie group, then its dual Lie algebra
(9% [ g%, () g*) equipped with the form (, ) g+ is a pseudo-Riemannian Lie algebra and the abelian
Poisson—Lie group (g,11g, (,)4) equipped with the form (, )y associated with (, )4 is a pseudo-
Riemannian Poisson—Lie group [4].

Theorem 3. Let (G,I1g, (,)&) be a Poisson—Lie group equipped with the left invariant contravari-
ant pseudo-Riemannian metric (,)§ and let (TG,I1rg, (,)}) be the Sanchez de Alvarez tangent
Poisson—Lie group of G equipped with the left invariant pseudo-Riemannian metric (,) 7. Then,
(G, Ig, (,)&) is a pseudo-Riemannian Poisson—Lie group if, and only if, (TG,I1rg, (,)7g) isa
pseudo-Riemannian Poisson—Lie group.

Proof. Note that the linear transformation Ad; : g¢ — g* is a Lie algebra automor-
phism [22].

The infinitesimal Levi-Civita connection B associated with ([, |g«x g, (,) g*x g*) is given
forany (a,a'), (7,7) € ¢* x g* by:

Biou) (17 ) = (Aay + A 1, Ay,
where A is the infinitesimal Levi-Civita connection associated with ([, ]¢+, (,)¢*), respec-

tively.
Forany (X,Y) € gxgand (v7,7) € g* x g*,

adiy v (7, 7)) = (adiy + adiyy , adiy).
Let (x;) be local coordinates of G in a neighborhood of e and let (x;, ;) be the cor-

respondent local coordinates of TG. The Poisson tensors of G and TG are expressed by
[10]:

_ 1]
Mo =) ey "5
ij X; X
and .
9 9 o1l 2 d
[yc = Y 117 + =S A — (18)
”Z}:< Gaxi J h axk ay: ay
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+

m+ + +

+ o+ o+

+ o+ o+

respectively. Then, for any (g, X) € TG and for any (,4') € g* x g*, we have

!

16 (g, X)(a,0) = (I15(g) (@), T15(g) (1) + I1g(X) (),

where I is the linear Poisson structure on g associated with I1.
Then, for any («,2'), (B,8), (7,7) € g ", we obtain:

By (7, )+01de (X)) (7, 1), (B B) g

(o, ) ﬂﬁ)( )+”d L (gX )(5,/5)( )]g*xg* , ,

(A,,/y + A Ay )+ad?nl (¢) (@), ITL (g)(a)Jng(X)(a/))(’Yr'Y ), (ﬁrﬁ/)]g*xg*

(00), (AgY + A 7,47 +‘”’l< L) T ) E+ o) (1 o
W T ATy oY o) T AT

iy o ) B e

[( ) (A/g’)/ —l—Aﬁ'y—l—ad

[
[
[
[
[(A

v+ ad’

L(g)(F) 1L () (B)+ 115 (x) (8 7 A8

fi ) oo

([A” Ay Fady o) I @Y T W) TP e

(A7 Fadyy o7 Blo (A7 adiy oo Bl
(la Ag +adyy o 7o
adiy o) Y o @ Ag Y adyy (g)(ﬁ’)'/)

([Aw' + adl’il,c(g)(“)fy’,ﬁ’]g* + o, Ay + ad?

+[1x,A/3'y'+Aﬁ/fy+ad* v+ adf,

g (9)(B) I (g )(ﬁ)

/

Ve +Agr+adyy o 07 Bl

, , Hg(g)(lf') /
[a, Aﬁ ')/+ad* (g )(ﬁ’)ﬂg* +[A +ad* N Blg* [tx Aﬁ'y —|—adnl( '@ ar
[ods oy Ble + [0 ady g7 e [A ,7 adyy 7Bl
[“/Aﬁ ’Y +”dnz (g )(ﬁ/)'ﬂg*

Then, using Remark 1, if (G,I1g, (,)&) is a pseudo-Riemannian Poisson-Lie group,
then (TG,IIrg,(,)5;) is a pseudo-Riemannian Poisson-Lie group. Conversely, if
(TG,IIrg, (,)7¢) is a pseudo-Riemannian Poisson-Lie group, then for any x € G and

for any rx/, /3,, 'y/ € g*, we have
(A7 +adpy, 7 By [a/,Aﬁ/’y/—i-adl*_[lG
Therefore, (G,I1g, (,)¢) is a pseudo-Riemannian Poisson-Lie group. [
Corollary 3. The semi-direct product Lie algebra (g* » g*, [, 1g*xg*, {, ) g*x g* ) equipped with the
al

form (,)g<x g+ is a pseudo-Riemannian Lie algebra if, and only if, (g%, [, )4+, (, ) g*) is a pseudo-
Riemannian Lie algebra.

Proof. According to Equation (10), for any (a, 8), (a, 8 ), (a", ") € g* x g*, we obtain :

By (&, 8), (& B )] acor + [( B), By gy (o)
= ([Aaﬁ’fﬁ"]g*+[0¢,A,;~/3'}g*+[A/so<,!3}g*+[ﬁA~rX] +[Ap oy
+ (8, Ay e A8 B ) + 1B, ApBlar )

!

Then we obtain the corollary. O
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5. Examples

Let (x;) be local coordinates of G in a neighborhood of e and let (x;,y;) be the cor-
respondent local coordinates of TG. The pseudo-Riemannian metrics on G and TG are
expressed by:

(o =Y. &dx; ® dx;
ij
and y
ag" ij ij
()rc = Zykﬂdxi@)dxj+g/dxi®dyj+g]dyi®dxj, (19)
i,k x
respectively.
1. Let (e1, ez, e3) be an orthonormal basis of R?. The Lie algebra R3 with the bracket

[61, 62]R3 = )\63, [61, €3]R3 = —)L(:‘z, [62, €3]R3 =0, A< 0,

is a Riemannian Lie algebra [4]. The infinitesimal situation can be integrated, and we
obtain that the triplet (R3, TIgs, {, )gs) is a Riemannian Poisson Lie group, where R3 is
equipped with its abelian Lie group structure, (, )ps3 its canonical Euclidian metric and

d d d
Mg = A2 A (22 —y 2y, A <o,
R3 aJ{A(zay yaz), <0
Using Equations (18) and (19), the six-dimensional Sanchez de Alvarez tangent
Poisson-Lie group (TR® = R, Tlgs, {, )76), where R® is equipped with its abelian Lie
group structure with coordinate (x,y,z,u,v, w),

d ] ] 2] d d
and
(,)ps = dxdu + dydv + dzdw + dudx + dvdy + dwdz,

is a pseudo-Riemannian Poisson-Lie group.
2. The Poisson-Lie group (R*, g4, (, )gs), where

d d d
Mps = — A (22 —t=), {)ps = dx* +dy* +dz* + dt?,
ax at az
is compatible in the sense of Hawkins and is also a Riemannian Poisson-Lie group [22].
Then, the eight-dimensional tangent Poisson-Lie group (TR* = R8, Tlgs, {, )gs), with
coordinates (x,y,z,t,u,v,w,s),

and
(, )gs = dxdu + dydv + dzdw + dtds + dudx + dvdy + dwdz + dsdt

is also compatible in the sense of Hawkins and a pseudo-Riemannian Poisson—Lie
group.

3. By[22], the four-dimensional torus (T* = R*/Z%, 4, (, ) ), is a Riemannian Poisson—
Lie group (resp., compatible in the sense of Hawkins), where

T4 = {(ei", ey et eit) / xyztel02n )

0

Mg = A (ep —t2) and g =de+dy +d + P’
Oxr O 0z
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Then, the eight-dimensional tangent Poisson-Lie group (TT* Iy, (,)1c), with
coordinates (x,y,z,t,u,v,w,s),

d d 9 d d d
M = 5~
and

(, )ppa = dxdu + dydv + dzdw + dtds + dudx + dvdy + dwdz + dsdt

is also a pseudo-Riemannian Poisson-Lie group (resp., compatible in the sense of
Hawkins).
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