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Abstract: An automatic temporal video segmentation framework is introduced in this article. The
proposed cut detection technique performs a high-level feature extraction on the video frames, by
applying a multi-scale image analysis approach combining nonlinear partial differential equations
(PDE) to convolutional neural networks (CNN). A nonlinear second-order hyperbolic PDE model is
proposed and its well-posedness is then investigated rigorously here. Its weak and unique solution
is determined numerically applying a finite difference method-based numerical approximation
algorithm that quickly converges to it. A scale-space representation is then created using that iterative
discretization scheme. A CNN-based feature extraction is performed at each scale and the feature
vectors obtained at multiple scales are concatenated into a final frame descriptor. The feature vector
distance values between any two successive frames are then determined and the video transitions
are identified next, by applying an automatic clustering scheme on these values. The proposed
PDE model, its mathematical investigation and discretization, and the multi-scale analysis based
on it represent the major contributions of this work. Some temporal segmentation experiments and
method comparisons that illustrate the effectiveness of the proposed framework are finally described
in this research paper.

Keywords: temporal video segmentation; cut detection; multi-scale analysis; nonlinear hyperbolic
PDE model; finite difference method; numerical approximation algorithm; mathematical treatment;
deep learning; convolutional neural networks; frame clustering
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1. Introduction

The temporal video segmentation field represents an important computer vision sub-
domain [1]. It has been applied in a large variety of video analysis fields, such as the
video compression, the video sequence indexing and retrieval, or the object detection
and tracking.

This type of video segmentation consists of dividing the movie sequence into a num-
ber of temporal segments, such as shots and scenes. While the video shot represents a
continuous sequence of frames that are shot uninterruptedly by a single camera, the scene
of a video is a succession of semantically correlated shots [2].

The video transitions, which represent the mechanism used to change from one shot
to the next one in a video sequence, could be grouped into three classes: hard cuts, soft
cuts and digital effects [1–3]. Hard cuts, which are called simply cuts, represent the most
common transitions and constitute sudden transitions between consecutive shots. The
soft cuts are gradual transitions between successive shots, meaning a sequence of frames
belonging to both of them, and may represent fades or dissolves. Digital effects that are
used for shot transitions include animated effects, wipes, color replacement, lighting effects,
pixelization, focus drops and others.
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We consider only the hard cut detection task in this research paper. Many cut detection
approaches have been developed in the last 30 years and are grouped into several main
categories. The pixel difference-based techniques measure the discontinuity of the visual
content comparing the corresponding pixel intensities between two successive frames. Sum
of absolute differences (SAD) [1–3] or pair-wise pixel comparisons [4] are examples of
these methods. The histogram comparison-based video cut detection approaches measure
the similarity of the grayscale/color histograms that correspond to adjacent video frames
using metrics such as histogram difference, histogram quadratic distance and histogram
intersection [2,3]. Edge-based shot detection methods include approaches based on edge
change ratio (ECR), edge tracking and edge histograms [1–3,5]. The video motion-based
shot detection techniques apply the motion estimation to determine the motion breaks, that
may indicate the presence of abrupt video transitions [5–7]. The cut detection algorithms
using statistical features break the video frames into regions and compare the statistical
measures (such as those based on mean or the standard deviation) of the pixels in those
zones [1–4,7]. A recently developed fast statistical measure-based shot detection technique
is based on separable moments and SVM classifiers [8].

Other temporal segmentation algorithms use the concept of visual rhythm, which
represents a simplification of the video sequence into a static image [9]. Fuzzy logic-based
video approaches that could detect properly both the abrupt and the gradual cuts were
also introduced [10]. Shot boundary detection solutions based on Principal Component
Analysis (PCA) and deep learning were also developed [11,12]. Some effective detection
methods combine multiple invariant features, such as edge change ratio, color descriptors
and SIFT features [13].

We have also developed some video shot segmentation approaches. The most impor-
tant of them performs a 2D Gabor filtering-based frame feature extraction [14]. Now, we
propose a new video cut detection technique that overcomes some disadvantages of the
existing shot detection methods. Some of them, such as those based on pixel differences,
pair-wise pixel comparisons or edges, are quite sensitive to object and camera motion and
produce a lot of false hits. Other methods, such as those using histograms, may generate
many missed hits, since they disregard the spatial distribution. The detection models based
on video motion and statistical features are characterized by a high computational cost and
running time. Additionally, many methods are not automatic or rely on error-producing
thresholds. The proposed CNN-based framework performs a high-level feature extraction
that generates powerful frame descriptors ensuring a successful shot-transition detection.
It is fully automatic, does not use threshold values and has a motion-insensitive character.

The main contribution of this research work is the novel nonlinear hyperbolic second-
order PDE-based model that is proposed, mathematically treated and solved numerically
in Section 2. This work aims to illustrate how such a well-posed PDE model can be used
in combination to deep learning models to perform an effective multi-scale analysis of
a movie sequence, which leads to a successful temporal segmentation. Its mathematical
validity (well-posedness) is rigorously investigated and demonstrated here. Thus, this
PDE admits a weak and unique solution under some certain conditions, which is then
computed numerically applying a finite difference method-based approximation algorithm.
The proposed iterative fast-converging numerical approximation scheme is stable and
consistent to the PDE model it solves and it is used successfully to create a scale–space
representation. The multi-scale analysis of the video frames, which uses this scale space, is
described in Section 3. It extracts the high-level content features at each scale by applying
a combination of two pre-trained convolutional neural networks. Next, the CNN-based
feature vectors obtained at multiple scales are concatenated into the final frame descriptor.
The values of the feature vector distances between adjacent frames are determined, then
grouped automatically using a hierarchical clustering approach, in the cut detection process
presented in Section 4. The video segmentation experiments and method comparisons
described in Section 5 illustrate the effectiveness of the proposed technique. The conclusions
of this research are drawn in Section 6.
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2. Nonlinear PDE-Based Filtering Model for Scale-Space Representation

We have performed a large quantity of research in the PDE-based image process-
ing and analysis domain, and developed many PDE and variational models for image
denoising [15,16], inpainting [17], compression [18], edge detection [19] and segmenta-
tion [20], in the last 15 years. Since the partial differential equations provide more effective
scale spaces than the well-known 2D Gaussian filter [21], we consider here a novel hy-
perbolic PDE model for multi-scale image analysis. The proposed model is described
in Section 2.1 and a mathematical treatment of its well-posedness is performed in the
Section 2.2. Then, a numerical approximation algorithm that solves it is provided in
Section 2.3.

2.1. A Nonlinear Second-Order Hyperbolic PDE Model

Here, we introduce a nonlinear second-order PDE-based filtering model that is com-
posed of the following hyperbolic partial differential equation and its boundary conditions:

α ∂2u
∂t2 + β ∂u

∂t − η∇ · (ψ(‖∇uσ‖)∇u) + λ(u− u0) = 0
u(x, y, 0) = u0(x, y), ∀(x, y) ∈ Ω ⊆ R2

ut(x, y, 0) = u1(x, y), ∀(x, y) ∈ Ω
u(x, y, t) = 0, ∀ (x, y) ∈ ∂Ω
∂u
∂
→
n
(x, y, t) = 0, ∀(x, y) ∈ ∂Ω

(1)

where the parameters α, β, η, λ ∈ (0, 1]; ∂Ω is the frontier of the image domain Ω ⊆ R2;
the observed image u0 ∈ L2(Ω), u = u(x, y, t) represents the evolving image function,

uσ = u ∗ Gσ, where the 2D Gaussian filter kernel Gσ(x, y) = 1
2πσ2 e−

x2+y2

2σ2 .
The following diffusivity function of the model has been properly selected for an

effective filtering process, since it is positive, monotonically decreasing and converges to
zero [15,22]:

ψ : [0, ∞)→ [0, ∞), ψ(s) =

(
ξ∣∣δsk + γ

∣∣
) 1

k−1

, (2)

where δ ∈ (0, 1], ξ ≥ 4, γ ≥ 5 and k ∈ {2, 3, 4, 5}.
This PDE-based filtering model provides an effective detail-preserving restoration of

any image corrupted by the additive white Gaussian noise (AWGN) and overcomes the
unintended side effects, such as blurring and staircasing. Its second-time derivative, ∂2u

∂t2 ,
that provides the hyperbolic character of this nonlinear PDE, sharpens the image’s edges,
thus enhancing its essential details.

The second-order nonlinear PDE model provided by (1) is non-variational, since it
cannot be derived from the minimization of any energy cost functional. Additionally,
we demonstrate that the proposed mathematical model is well-posed, which means it
exists as a unique and weak (variational) solution, for it, under certain conditions. This
mathematical validity (well-posedness) of the hyperbolic PDE-based model will be covered
in Section 2.2.

Then, its solution will be determined numerically by applying a numerical approx-
imation scheme for (1), which is created by using the finite difference method [23]. This
stable and fast-converging iterative discretization algorithm that is consistent and solves
numerically the proposed hyperbolic differential model will be described in Section 2.3.

2.2. Mathematical Treatment of PDE Model’s Validity

A mathematical investigation is performed on the nonlinear second-order hyperbolic
PDE model given by (1)–(3), in order to demonstrate its well-posedness, or mathematical
validity. So, a PDE model is well-posed if it admits a unique weak, or variational, solution,
that is also unique.
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One performs an integration operation on the equation in (1) and obtains the next
integral model:

∂u
∂t (x, y, t)− 1

α

t∫
0

e
β2
α (t−s)(ηdiv(ψ(‖∇uσ(x, y, s)‖)∇u(x, y, s)) + λ(u(x, y, s)− u0(x, y)))ds = u1(x, y)

u(0, x, y) = u0(x, y)
u(x, y, t) = 0, on ∂Ω× (0, T)

(3)

A modified version of this integral model could be well-posed under some certain
conditions [24]. Therefore, we may replace (3) by the next model:

∂u
∂t − ϕ∆u−

t∫
0
(ηdiv(ψ(‖∇uσ‖)∇u) + λ(u− u0))ds = 0

u(x, y, 0) = u0(x, y)
u(x, y, t) = 0 on ∂Ω× (0, T)

. (4)

The integral Equation (4) admits a solution for ϕ > 0 if the next conditions hold [9,18]:
(ψ(‖v‖)v− ψ(w)w)(v− w) ≥ 0, ∀v, w ∈ R2

∃a, b : a ≥ ψ(s) ≥ b > 0, ∀r ≥ 0
ψ− continuous

(5)

Since ψ′(s) ≥ 0, we have:

∂(ψ(s)s)
∂s

= ψ′(s)s + ψ(s) ≥ 0, ∀s ∈ R+, (6)

which means the function s→ ψ(s)s is monotone in R2, so the first condition in (5) holds.
The second condition of (5) also holds, because the function ψ is bounded. Since it is

also continuous on the interval [0, ∞), the third condition in (5) also holds.
Under these conditions the integral problem (4) admits a unique and weak solution

u∗ : Ω× (0, T)→ R in sense of distributions [24], where parameter T > 0. That means:

u∗ ∈ L∞
(

0, T; H1
0(Ω)

)
,

∂u∗

∂t
∈ L2

(
0, T; L2(Ω)

)
, (7)

∇ · (ψ(‖∇u∗σ‖)∇u∗) ∈ L∞
(

0, T; L2(Ω)
)

(8)

and∫
Ω

∂
∂t u∗(x, y, t)χ(x, y)dxdy + ϕ

∫
Ω
∇u∗(x, y, t) · ∇χ(x, y)dxdy+∫ t

0 ds
∫
Ω

ηψ(‖∇u∗σ(x, y, t)‖)∇u∗(x, y, t) · ∇χ(x, y) + λ(u∗(x, y, s)− u0(x, y))χ(x, y)dxdy = 0,

u∗(x, y, 0) = u0(x, y), ∀x, y ∈ Ω, ∀χ ∈ H1
0(Ω)

(9)

where the Sobolev space H1
0(Ω)=

{
u ∈ L2(Ω);∇u ∈

(
L2(Ω)

)2, u = 0 on ∂Ω
}

.
The integral model (4) represents a very good approximation of the model (3). Addi-

tionally, for ϕ→ 0 , the solution of (4) converges in a certain weak sense to a solution of the
model (3).

2.3. Numerical Approximation Algorithm

The well-posed nonlinear second-order hyperbolic model is solved numerically by
creating a finite difference method-based numerical approximation scheme that converges
to its weak solution [23]. Thus, a grid of space size h and the time step ∆t is used for this
discretization task.
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So, the space and time coordinates are quantized, for the [Ih× Jh] support image, as:
x = ih, y = jh, i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and t = n∆t, n ∈ {0, . . . , N}. The Equation in
(1) could be written as:

α
∂2u
∂t2 + β

∂u
∂t

+ λ(u− u0) = ηdiv(ψ(‖∇uσ‖)∇u). (10)

The left term of the above equation is then discretized, applying central
differences [15,23], as:

α
un+∆t

i,j + un−∆t
i,j − 2un

i,j

∆t2 + β
un+∆t

i,j − un−∆t
i,j

2∆t
+ λ

(
un

i,j − u0
i,j

)
= un+∆t

i,j

(
α

∆t2 +
β

2∆t

)
+ un−∆t

i,j

(
α

∆t2 −
β

2∆t

)
+ un

i,j

(
λ− 2α

∆t2

)
− u0

i,jλ, (11)

which leads to un+1
i,j

(
2α+β

2

)
+ un−1

i,j

(
2α−β

2

)
+ un

i,j(α− 2λ)− u0
i,jλ for ∆t = 1.

Next, the right component of (10) is approximated. The term div(ψ(‖∇uσ‖)∇u) could
be approximated as ς ∑

q∈Np

ψ
(∣∣∣∇un

p,q

∣∣∣)∇un
p,q, where ς ∈ (0, 1), the set of pixels Np represents

the 4-neighborhood of the pixel p, given as a pair of coordinates (i, j), and the gradient
magnitude in a particular direction at iteration n is:

∇un
p,q = u(q, n)− u(p, n) (12)

One may consider h = 1 and the next explicit numerical approximation algorithm
is obtained:

un+1
i,j = un

i,j

(
4λ− 2α

β + 2α

)
+ un−1

i,j

(
β− 2α

β + 2α

)
+ u0

i,j
2λ

β + 2α
+ ης ∑

q∈Np

ψ
(∣∣∣∇(u ∗ Gσ)

n
p,q

∣∣∣)∇un
p,q. (13)

The explicit iterative finite difference-based numerical approximation scheme in (13) is
stable and consistent to the hyperbolic PDE model (1) and converges fast to its variational
solution representing the filtered image uN+1. This numerical solving algorithm is next used
successfully to create an effective scale–space representation for the multi-scale analysis.

3. Multi-Scale Deep Learning-Based High-Level Frame Feature Extraction

A multi-scale analysis for high-level video frame feature extraction is performed in
this section. The creation of a scale space using the numerical approximation scheme of the
PDE model introduced in Section 2 is described in Section 3.1. Then, the proposed deep
learning-based video feature extraction is presented in Section 3.2.

3.1. PDE-Based Scale Space

One represents the RGB color video sequence as V = [F1, . . . , FM], where Fi repre-
sent its frames, i ∈ {1, . . . , M} and M is large enough. An effective high-level feature
extraction is performed on all the frames of this movie, as a first step of the temporal
video-segmentation procedure.

The PDE-based scale–space used by this feature extraction is created by applying the
numerical approximation scheme (10) on the current frame and considering the images
obtained at various iteration moments.

Since our discretization algorithm works for gray-level images only, we consider a
solution that works for the RGB frames. So, one may apply (10) on each of the three color
channels of a frame, but this approach may not work properly, since the R, G and B channels
could have high levels of correlation. Therefore, a much better solution is to convert the
RGB frame Fi to the de-correlated color space CIE L*a*b*, then to filter its luminance channel
L(Fi) by applying (13). The filtered L*a*b image

[
(L(Fi))

n, a(Fi), b(Fi)
]
, where (L(Fi))

n is
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the luminance channel-filtering result after n iterations, is then converted back to the RGB
form. So, one achieves the next multi-scale representation of K scales for that frame:

S(i) =
{

Fi, RGB
([
(L(Fi))

r, a(Fi), b(Fi)
])

, . . . , RGB
([

(L(Fi))
r(K−1), a(Fi), b(Fi)

])}
, (14)

where r ∈ [3, 10] represents the iteration step, K ≥ 3 and RGB ( ) converts the argument
image to the RGB form. The obtained scale space S is next used by the high-level image
feature extraction described in Section 3.2.

3.2. Deep Learning-Based Feature Extraction

The high-level characteristics of the video frames are extracted by applying a deep
learning-based technique. Thus, a multi-scale content feature extraction using the scale-
space representation S given by (14) is performed for all the frames of V. A deep learning-
based feature extraction is applied on the current frame Fi at each scale k ∈ {0, . . . , K− 1},
where its image has the form S(i){k} = RGB

([
(L(Fi))

rk, a(Fi), b(Fi)
])

.
The Convolutional Neural Networks (CNNs or ConvNets) represent deep neural

networks which are able to learn high-level feature representations for various types of
images when trained on voluminous databases storing a large variety of digital images [25].
These deep learning models generate powerful content characteristics which outperform
the image features produced by the classic descriptors.

Here, we create a combination of two convolutional neural networks to determine the
high-level content features of each video frame. The two pre-trained CNNs considered
by us are Inception-ResNet-V2 and DenseNet-201. These ConvNets outperform other
pre-trained CNN models, such as GoogleNet, VGGNet-16, VGGNet-19 or AlexNet, which
have fewer convolutional layers [26].

The first one, Inception-ResNet-V2, represents a deep convolutional neural architecture
which builds on the Inception family while incorporating residual connections [27]. It is
164 layers deep and it has been trained on more than a million images of the voluminous
ImageNet database containing 1000 object categories [28]. This deep network constitutes
an effective image classification tool. Its architecture is described in Figure 1 [27].

The second model, DenseNet-201, is a DenseNet convolutional neural network whose
architecture has 201 layers [29]. A DenseNet represents a ConvNet characterized by dense
connections between layers, through Dense Blocks, where one connects all layers directly
with each other, in a feed-forward fashion. So, each layer achieves feature maps as inputs
from all preceding layers and passes on its own feature maps as inputs to all subsequent
layers, in order to preserve the feed-forward character.

It has been trained on 1.2 million training images from the ImageNet collection [26,28].
Since DenseNet-201 has learned rich feature representations for a large variety of images, it
is successfully used to recognize new digital images and image objects [29]. The design of
its architecture is displayed in Figure 2 [29].

Thus, network activations are computed by forward propagating the input image
through each CNN up to the specified layer. While the layers of these pre-trained deep
neural networks generate activations on the input images, not all of them have the same
capacity of feature extraction. The first convolutional layers of these CNNs can compute
only low-level image characteristics that are next processed by the deeper layers which mix
them in order to achieve higher level image-feature representations.

So, the proposed method extracts the required content characteristics from the deep
layers of Inception-ResNet-V2 and DenseNet-201 and then combines those features. It
uses for this process the fully connected layers of the two networks, more precisely the
predictions layer of Inception-ResNet-v2, which is located before the final classification layer,
and FC 1000 which is the fully connected layer with 1000 neurons of DenseNet-201.
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First, each S(i){k} image of the Fi frame is pre-processed according to the specifications
of the input layer of the Inception-ResNet-V2 model. Thus, it is resized at the [299× 299× 3]
format required by the network and the next 0-center normalization is also performed on it:

S(i){k} :=
S(i){k} − µ(S(i){k})

σ(S(i){k}) , ∀k ∈ {0, . . . , K− 1}. (15)

The processed S(i){k} is then fed into the Inception-ResNet-V2 model. The predictions
layer of the network generates an activation on S(i){k} that determines its high-level
characteristics in the form of the feature vector VIRN(S(i){k}) with 1000 coefficients.



Mathematics 2023, 11, 245 8 of 12

DenseNet-201 is next applied on the initial version of S(i){k}. It is resized at
[224× 224× 3], which is the input image-size format of this CNN, and the 0-center normal-
ization given by (15) is then applied. Next, the pre-processed image is fed into DenseNet-
201 whose FC 1000 layer produces an activation generating the high-level feature vector
VDN(S(i){k}), having also 1000 coefficients. A 2D feature vector is achieved at this scale
by combining these two vectors through the following concatenation:

Vi(k) := [VIRN(S(i){k}); VDN(S(i){k})]. (16)

All these deep learning-based 2D feature vectors computed at multiple scales are then
combined into a final two-dimension descriptor of the analyzed video frame, as follows:

Fv(i) := [Vi(0) . . . Vi(K− 1)], ∀i ∈ {1, . . . , M}. (17)

The final [2× 1000K] high-level feature vectors Fv(i) represent some powerful content
descriptor of the frames Fi. These optimal high-level frame characterizations provided by
these 2D feature vectors lead to successful discriminations between the video frames of V.
This means that similar frames correspond to very close feature vectors, while dissimilar
frames have very different feature vectors. Therefore, the proposed multi-scale CNN-based
feature extraction leads to the optimal frame grouping process presented in the next section.

4. Automatic Video Frame Clustering Technique

The video frames of V, which are characterized by the high-level CNN-based content
descriptors described in the previous section, must now be grouped in shots, by using these
feature vectors. Other segmentation approaches perform the cut detection process using
thresholding operations. They detect the shot breaks as the locations where the inter-frame
difference metric exceeds a certain threshold value. However, they generate many detection
errors, since an optimal threshold selection still constitutes a difficult task [7].

In order to solve this drawback, we consider here a temporal segmentation solution
that does not rely on any threshold for transition detection, using an automatic video frame
clustering scheme instead of thresholding. In addition, unlike other segmentation methods
that use an a priori known number of shots, our cut detection technique uses no knowledge
about it, being completely automatic.

The inter-frame difference metric used by the proposed technique represent the dis-
tances between the 2D feature vectors corresponding to adjacent frames. So, one determines
the frame feature vector distance value set {d1, . . . , dM−1} corresponding to V, where:

di = d(Fv(i), Fv(i + 1)), i ∈ {1, . . . , M− 1}, (18)

and d computes a properly selected distance working for these vectors, for example, the 2D
Euclidean metric.

Obviously, any inter-shot distance value has to be much higher than any intra-shot
distance value. The metric values computed by (18) satisfy this shot segmentation con-
dition, since the deep network-based feature vectors provide strong high-level frame
characterizations. Therefore, we have:

min
i∈C

di � max
j∈{1,...,M−1} \ C

dj, (19)

where the set C ⊆ {1, . . . , M− 1} containing the indices of the video cuts must be determined.
Since the number of optimal temporal segments is unknown, one applies an inter-

frame distance clustering technique to identify the break point indices in C. So, one must
group the values of {d1, . . . , dM−1} into high distances and low distances, due to the property
(19). The high (inter-shot) feature vector distance values indicate the abrupt transitions of
the video sequence.
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So, an automatic unsupervised classification (clustering) operation is applied on the
distance set {di}i∈{1,...,M−1}. An agglomerative hierarchical clustering algorithm is used
for this purpose [30,31]. Since that set has to be partitioned into two categories of distance
values, the number of clusters used by this hierarchical clustering scheme is c = 2. The
metric considered for this hierarchical clustering process is the average-linkage clustering.
Our clustering approach labels each distance value with either 1, for low, or 2, for high.
Since we have

label(di) = 2⇔ i ∈ C , ∀i ∈ {1, . . . , M− 1}, (20)

the locations of the video cuts in V are thus detected. Obviously, the obtained set of
cut locations, C, determines all the movie frame clusters representing temporal video
segments (shots).

An example of temporal video segmentation that is based on the presented detection
technique is described in Figure 3. Thus, the 10 shot transitions of a video sequence
composed of 658 frames of size [720× 1280× 3] have been identified at the locations of
the eight high (inter-frame) feature vector distance values displayed in (i). These detected
movie cuts are represented as pairs of frames in (a) to (h).
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5. Discussion

The described CNN-based multi-scale video segmentation framework has been tested
successfully on numerous movie sequences. The testing video dataset consisted of 14 Mp4
RGB clips containing over 30,000 frames of [720× 1280× 3] and [360× 640× 3] dimen-
sions. The temporal segmentation experiments have been performed on an Intel (R) Core
(TM) i7-6700HQ CPU 2.60 GHz processor on 64 bits, operating Windows 10, by using
MATLAB software.

The video shot detection technique introduced here has achieved a high detection rate,
based on the performed simulations. The proposed method generates only few missed hits
(undetected cuts) and false hits (falsely detected cuts), thus producing very high scores
for all the performance measures used to assess the detection and recognition quality:
Precision, Recall and F1 [32,33].

Video segmentation-method comparisons have also been performed. Due to its deep
learning-based high-level feature extraction component, our cut detection approach out-
performs the temporal segmentation schemes based on pixel differences, color/grayscale
or edge histograms, and various statistical image features, which produce more detection
errors (missed or false hits), and even the segmentation methods using SIFT, LBP, SURF
and 2D Gabor filter-based descriptors [14].

The performance metrics’ average scores obtained by our cut detection method and
other techniques are described in Table 1. One can see that the proposed DL-based solu-
tion achieves higher Precision, Recall and F1 values than the other movie segmentation
approaches [32,33].

Table 1. Video segmentation method comparison results.

Technique Precision Recall F1

The proposed technique 0.984 0.991 0.987

Color histograms 0.745 0.724 0.734

Edge histograms 0.815 0.752 0.782

Pixel differences (SAD) 0.775 0.763 0.769

Gabor 2D filter-based model 0.941 0.840 0.887

Statistical features with LHR 0.645 0.618 0.631

Pairwise pixel comparisons 0.741 0.723 0.731

The proposed framework has a high computational complexity in any event, given
the number of procedures executed by its multi-scale deep neural network-based feature
extraction that generates big-sized frame feature vectors which raise the cost of the inter-
frame distance clustering. That means it does not run fast, its execution time being also
influenced by the video’s dimensions. This may represent a disadvantage compared to
other segmentation models, such as those using the sum of absolute differences or various
histograms, which may operate faster than the described approach, although being less
performant in terms of the quality metrics [33].

The technique proposed here also works properly in both clean and noisy image
conditions, because of its nonlinear PDE-based filtering process. However, as another
drawback, while this shot detection method provides a very effective hard-cut identification,
it achieves weaker segmentation results for other types of shot transition types, such as the
gradual transitions or the digital effects.

6. Conclusions

A novel temporal movie-sequence segmentation technique has been described in this
research work. The effectiveness of the proposed automatic video-shot detection framework
is provided mainly by its high-level frame feature extraction component that is based on
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a multi-scale analysis combining successfully the deep learning- and partial differential
equation-based models.

The nonlinear second-order hyperbolic PDE model introduced here, the mathematical
investigation of its validity, its stable and consistent numerical approximation and the effec-
tive scale-space representation created by using its iterative numerical solving algorithm
represent the main contributions of our research. The powerful frame content descriptors
computed by applying a combination of the activations of two convolutional neural net-
works at the multiple scales of the obtained PDE-based scale space have determined a
successful frame discrimination leading to an effective cut-detection result.

Unlike many other video segmentation approaches, the proposed shot identification
technique is fully automatic. More precisely, it is not based on either a priori knowledge
of the number of movie shots or inter-frame distance thresholds, using an automatic
inter-frame feature vector distance-clustering algorithm instead.

The obtained temporal segmentation results prove that the deep neural networks can
be applied more successfully in this computer vision field, when integrated into nonlinear
PDE-based multi-scale frame analysis. The scale space created by applying the proposed
hyperbolic PDE model provides a more effective multi-scale image analysis than the scale–
space representations generated by the 2D Gaussian kernels. However, the performance of
the obtained PDE-based scale–space representation has still not been compared to that of
the scale spaces produced by the wavelet transformations [34].

Besides the mentioned benefits, the proposed framework has also some limitations.
As already mentioned, it clearly outperforms the cut-detection schemes using lower level
image features, in terms of quality metric scores, but may execute slower than some of them,
because of the higher computational cost of its high-level multi-scale feature extraction
component. So, improving the running time of this video segmentation framework will
represent the focus of our future research. In addition, since our shot detection method does
not work efficiently for the video transitions other than the abrupt ones, improving it in the
direction of the detection of gradual transitions [35], such as those based on soft cuts or dig-
ital effects, will also represent a future research focus in this area. We also intend to develop
some effective computer vision applications, which perform video indexing and retrieval
and video object detection and tracking tasks, by using this segmentation framework.
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