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Abstract: A three-arm non-inferiority trial including a placebo is usually utilized to assess the non-
inferiority of an experimental treatment to a reference treatment. Existing methods for assessing
non-inferiority mainly focus on the fully observed endpoints. However, in some clinical trials, treat-
ment endpoints may be subject to missingness for various reasons, such as the refusal of subjects or
their migration. To address this issue, this paper aims to develop a non-parametric approach to assess
the non-inferiority of an experimental treatment to a reference treatment in a three-arm trial with
non-ignorable missing endpoints. A logistic regression is adopted to specify a non-ignorable missing-
ness data mechanism. A semi-parametric imputation method is proposed to estimate parameters
in the considered logistic regression. Inverse probability weighting, augmented inverse probability
weighting and non-parametric methods are developed to estimate treatment efficacy for known and
unknown parameters in the considered logistic regression. Under some regularity conditions, we
show asymptotic normality of the constructed estimators for treatment efficacy. A bootstrap resam-
pling method is presented to estimate asymptotic variances of the estimated treatment efficacy. Three
Wald-type statistics are constructed to test the non-inferiority based on the asymptotic properties of
the estimated treatment efficacy. Empirical studies show that the proposed Wald-type test procedure
is robust to the misspecified missingness data mechanism, and behaves better than the complete-case
method in the sense that the type I error rates for the former are closer to the pre-given significance
level than those for the latter.

Keywords: bootstrap resampling; imputation; non-inferiority assessment; non-ignorable missing
data; three-arm trial
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1. Introduction

Non-inferiority (NI) trials are often performed to verify that the efficacy of an experi-
mental treatment with low toxicity or small side-effects is non-inferior to that of a reference
treatment by more than a pre-given small margin [1,2]. Many methods have been presented
to assess the NI of an experimental treatment to a reference treatment via the efficacy in
a two-arm NI trial. For example, see Tang et al. [3] for a score test via relative risk in a
matched-pair NI trial; Tang et al. [4] for exact and approximate unconditional confidence
intervals for rate difference based on a score test statistic in a small-sample paired NI
trial; Wellek [5] for frequentist and Bayesian approaches to testing NI in a matched-pair
design with binary endpoints; Freitag et al. [6] for a non-parametric approach to testing
NI with censored data; Arboretti et al. [7] and Pesarin et al. [8] for a permutation test in
a non-inferiority trial, and Gamalo et al. [9] for a Bayesian method for testing NI with
normally distributed endpoints. However, it is widely recognized that there are two key
problems for two-arm NI trials [10]. The first issue is the selection of the NI margin (i.e.,
the clinically acceptable amount or a combination of statistical reasoning and clinical judge-
ment), and the second is the evaluation of assay sensitivity (i.e., the ability of a trial to
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distinguish an effective treatment from a less effective or ineffective treatment). To solve
the aforementioned problems, if ethically acceptable and practically feasible, a three-arm
trial including a placebo, which is called a three-arm NI trial, is usually conducted to assess
the NI of an experimental treatment to the active reference treatment [11].

Many methods have been developed to draw statistical inferences based on a three-arm
NI trial over the past years. For example, Pigeot et al. [12] studied an NI assessment problem
via mean difference in a three-arm trial with normally distributed endpoints; Tang and
Tang [10] proposed two asymptotic approaches to testing NI via a rate difference for binary
outcomes; Mielke and Munk [13] considered the NI testing problem for Poisson-distributed
endpoints; Lui and Chang [14] discussed the NI testing problem via a generalized odds
ratio for ordinal data; Brannath et al. [15] considered an NI adaptive testing and sample
size determination problem in a three-arm trial with normally distributed endpoints;
Tang et al. [16] developed exact and approximate unconditional, and bootstrap-resampling-
based approaches to testing NI for binary outcomes; Tang and Yu [17] presented a hybrid
approach to constructing simultaneous confidence intervals for simultaneously assessing
NI and assay sensitivity for binary endpoints; Tang and Yu [18] utilized two Bayesian
approaches (i.e., posterior variance and Bayes factor approaches) to determine the sample
size required in a three-arm NI trial with binary endpoints; Paul et al. [19] presented both
frequentist and Bayesian procedures for testing NI via the risk difference in a three-arm
trial with binary endpoints; Homma and Diamon [20] investigated the assay sensitivity
hypothesis and the sample size calculation problem for gold-standard NI trials with two
fixed margins and negative binomial endpoints; Ghosh et al. [21] presented a new method
to test NI for Poisson-distributed endpoints; Ghosh et al. [22] considered a hierarchical
testing procedure with two stages in three-arm NI trials; Scharpenberg and Brannath [23]
discussed simultaneous confidence intervals of risk differences in three-arm non-inferiority
trials; and Tang and Liang [24] constructed two simultaneous confidence intervals for
assessing NI and assay sensitivity in a three-arm trial. However, when misspecifying the
distributions of treatment endpoints, statistical inference obtained with the aforementioned
methods may be misleading or unreasonable. To this end, a number of non-parametric
methods were proposed to make statistical inference on three-arm NI trials under an
unknown distribution assumption of endpoints. For example, see Munzel [25] for a
rank-based NI test and Tseng and Hsu [26] for binomially distributed outcomes. The
aforementioned methods were developed for the fully observed endpoints in a three-
arm trial.

However, in some clinical trials, treatment endpoints may be subject to missingness
occurring for various reasons, such as unwillingness of some respondents to answer
sensitivity questions, loss of information caused by uncontrollable factors, or drop-out
from the study in clinical trials [27]. For example, for a clinical trial associated with HIV
patients in the AIDS Clinical Trial Group (ACTG) Study 193A, the primary endpoint was the
CD4 cell count, which was scheduled to be observed at baseline and eight-week intervals
during the follow-up period, potentially subject to missingness due to skipped visits and
dropouts. In this study, 1309 patients were randomly assigned to one of the following
four daily regimens: zidovudine alternating monthly with 400 mg didanosine (regarded
as “Treatment 1”), zidovudine plus 2.25 mg of zalcitabine (regarded as “Treatment 2”),
zidovudine plus 400 mg of didanosine (regarded as “Treatment 3”), zidovudine plus 400 mg
of didanosine plus 400 mg of nevirapine (regarded as “Treatment 4”). As an illustration,
we here take “Treatment 1”, “Treatment 2” and “Treatment 4” as the placebo, reference
and experiment, respectively, let the log-transformed CD4 cell counts (i.e., log(1 + CD4
cell counts at time interval (4,12])) be the treatment endpoints, and regard log(baseline
measurement + 1) as an instrument variable for skipped visits or dropouts. Because
the baseline measurements were considered before the treatments were assigned, it was
reasonable to assume that the dropouts were missing not at random (MNAR) or due to
non-ignorable missing. The average missing proportions of endpoints for the placebo,
reference and experiment treatments were 29.74%, 30.99% and 28.65%, respectively. Our
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main purpose is to test the NI of treatment 4 to treatment 2 in terms of the assay sensitivity
and the internal validity of treatment 4 in a three-arm trial with unknown distributed
endpoints in the presence of non-ignorable missing endpoints.

For the above described example, the simplest and most intuitive method for handling
missing data is the well-known complete-case (‘CC’) method, i.e., deleting subjects with
missing data. But the CC method may lead to a biased estimator of treatment efficacy
when the missingness data mechanism does not involve missing completely at random. To
this end, several alternative methods have been proposed to make statistical inferences in
two-arm trials with missing endpoints. For example, Choi and Stablein [28] considered the
problem of testing the equality of two treatments in a paired two-arm trial with missing
at random (MAR) endpoints based on large sample theory, while Tang and Tang [29]
developed unconditional exact procedures for testing the equality of two treatments in
a paired two-arm trial with MAR endpoints. In addition, some permutation tests were
proposed for endpoints with missing data in two-arm trials, for example, see Maritz [30],
Yu et al. [31], Pesarin [32], and Pesarin et al. [33]. However, the aforementioned studies
mainly focused on equivalence assessment in two-arm trials with a MAR assumption based
on two independent binomial distributions for endpoints with non-ignorable missing and
a multinomial distribution for the fully observed endpoints. Moreover, to our knowledge,
there has been little work undertaken on NI assessment in three-arm trials with unknown
distributed endpoints and non-ignorable missing data. Hence, this paper aims to develop
a non-parametric approach to testing NI in a three-arm trial with a mixed unknown
distribution of endpoints and an MNAR assumption of missing endpoints.

There are many approaches to handling non-ignorable missing data. For example, see
Robins et al. [34] for an inverse probability weighting (IPW) method, Lee and Tang [35] and
Wang and Tang [36] for Bayesian approaches combining the Gibbs sampler and Metropolis–
Hastings algorithm, Kim and Yu [37] for a semi-parametric approach to estimating mean
functions in the presence of non-ignorable missing responses, and Tang et al. [38] for
an empirical likelihood method for generalized estimating equations with non-ignorable
missing data due to certain merits of empirical likelihood, such as feasibly incorporating
auxiliary information to improve the efficiency of parameter estimation [39]. Choi and
Stablein [40] and Li et al. [41] investigated the equivalence test problem in a paired two-arm
trial with non-ignorable missing endpoints under some known distribution assumptions
for treatment endpoints. However, the aforementioned approaches cannot be directly
used to test NI in a three-arm trial with non-ignorable missing endpoints due to the
complexity of the considered test problem, including the imputation of missing endpoints,
the estimation problem of treatment efficacy under unknown distribution assumptions of
treatment endpoints, and the critical value determination of test statistics at some pre-given
significance level.

The main contributions of this paper include: (i) presentation of a logistic regression
to specify the propensity score function associated with respondent endpoints; (ii) proposal
of IPW, augmented IPW (AIPW) and non-parametric imputation methods to estimate
treatment efficacy in the presence of non-ignorable missing endpoints; (iii) development of
a semi-parametric imputation method to estimate unknown parameters in the considered
logistic regression by imputing mean score functions rather than missing endpoints using a
kernel non-parametric regression method; (iv) establishment of some asymptotic properties
of the estimated treatment efficacy; (v) refinement of a bootstrap-resampling method
to consistently estimate asymptotic variances of the estimated treatment efficacy; (vi)
construction of three Wald-type statistics to test the NI of an experimental treatment to
a reference treatment in a three-arm trial with unknown distributed and non-ignorable
missing endpoints.

The rest of this paper is organized as follows: Section 2 describes a three-arm NI trial
with MNAR endpoints. Section 3 discusses the estimation problem of treatment efficacy and
propensity score function. The asymptotic properties of the estimated treatment efficacy
and the resultant Wald-type statistics for testing NI are given in Section 4. The simulation
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studies investigating the finite sample performance of the proposed test statistics are
described in Section 5. A real example taken from the ACTG study is illustrated using the
proposed method in Section 6. Some concluding remarks are given in Section 7. Technical
details are presented in Appendix A.

2. A Three-Arm NI Trail with MNAR Endpoints
2.1. A Three-Arm NI Trial

For a three-arm randomized clinical trial with experimental (E), reference (R) and
placebo (P) treatments, we assume that their corresponding clinical endpoints YE, YR
and YP independently follow unknown distributions fE(yE|µE), fR(yR|µR) and fP(yP|µP),
respectively, where µE, µR and µP are their corresponding treatment efficacies, respec-
tively. Generally, we assume that a larger value of treatment efficacy indicates a more
favorable treatment.

Following Hida and Tango [42], to test the NI of the experimental treatment to the
reference treatment in terms of assay sensitivity in a three-arm trial, we need to simulta-
neously demonstrate (i) the superiority of the experimental treatment to placebo, (ii) the
NI of the experimental treatment to the reference treatment for a pre-specified maximal
clinically irrelevant or NI margin δ > 0, and (iii) the superiority of the reference treatment
to placebo by more than δ. That is, µE, µR and µP must satisfy the following inequali-
ties: µP < µR − δ < µE, which leads to consideration of the following hypothesis-testing
problem:

H0 : µE ≤ µR − δ versus H1 : µE > µR − δ,
K0 : µR ≤ µP + δ versus K1 : µR > µP + δ.

(1)

Clearly, simultaneously rejecting H0 and K0 at some pre-given significance level yields
the above desirable inequalities: µP < µR − δ < µE indicating the NI of the experimental
treatment to the reference treatment and assay sensitivity. Generally, the selection of the NI
margin δ should combine statistical reasoning and clinical judgement [17]. In a similar way
to many three-arm trial studies, the fraction margin approach can be used to specify δ.

Following Kieser and Friede [43], δ can be mathematically expressed as a positive frac-
tion f of the unknown efficacy difference between the reference treatment and placebo, i.e.,
δ = g(µR − µP), where g lies in the interval [0, 1]. The NI margin δ defined above indicates
that the condition of assay sensitivity holds, i.e., µR − µP > 0. Following the argument of
Ghosh et al. [44], one can take g = 1/2 or 1/3. To explain the hypotheses considered above,
we set a = 1− g ∈ (0, 1), whose different values have different statistical meanings [12].
Under the above assumption, we only need to test H0 rather than hypothesis (1). That is,
for the NI margin δ defined above, we only need to test the following hypothesis:

H0 : µE − aµR − (1− a)µP ≤ 0 versus H1 : µE − aµR − (1− a)µP > 0. (2)

Rejecting H0 at some pre-given significance level indicates the NI of the experimental
treatment to the reference treatment under the condition of assay sensitivity. For simplic-
ity, we denote ψ(µ) = µE − aµR − (1− a)µP, where µ = {µE, µR, µP}. In this case, the
hypothesis (2) can re-expressed as

H̃0 : ψ(µ) ≤ 0 versus H̃1 : ψ(µ) > 0. (3)

2.2. Missingness Data Mechanism

Let {Y`i : i = 1, . . . , n`} be the clinical observations of Y` for n` subjects randomly
assigned to treatment ` for ` = E, R, P. Here, we assume that Y`i’s may be subject to
missingness, let D`i be the indicator of non-missing observation Y`i, i.e., D`i = 1 if Y`i
is observed, and D`i = 0 if Y`i is missing, and define X`i as a vector of covariates for
` = E, R, P and i = 1, . . . , n`. It is also assumed that X`i’s are fully observed, D`i1 is
independent of D`i2 for i1 6= i2 ∈ {1, . . . , n`}, and D`i depends on the observed covariates
X`i and missing observation Y`i, which indicates that the considered non-missingness data
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mechanism is non-ignorable. Under the above assumption, we consider the following
non-missingness data mechanism model:

π`i(η`; X`i, Y`i) = Pr(D`i = 1|X`i, Y`i; η`), ` = E, R, P, i = 1, . . . , n`,

where η` is a vector of unknown parameters to be estimated, and π`i(η`; X`i, Y`i) is usually
called the propensity score function in the missing data literature.

Many methods can be employed to specify the propensity score function π`i(η`; X`i, Y`i).
For example, see Lee and Tang [35] for a logistic regression, Kim and Yu [37] and Tang et al. [38]
for an exponential tilting model, and Wang and Tang [36] for a probit regression model.
Here, similarly to Lee and Tang [35], we consider the following logistic regression model for
π`i(η`; X`i, Y`i):

logit{π`i(η`; X`i, Y`i)} = α`0 + α>`1X`i + γ`Y`i, ` = E, R, P, i = 1, . . . , n`,

where logit(c) = log{c/(1− c)}, and η` = (α`0, α>`1, γ`)
>. It is well-known that, when γ`

is unknown, the above specified logistic regression model is unidentifiable. To address
this issue, we decompose X`i as X`i = (Z>`i, U>`i)

>, where Z`i may be associated with the
propensity score function, and U`i is a vector of instrumental variables that is not directly
associated with the propensity score function but related to observations Y`i. In this case,
we can consider the following propensity score function

logit{π`i(η`; Z`i, Y`i)} = α`0 + α>`1Z`i + γ`Y`i, ` = E, R, P, i = 1, . . . , n`. (4)

Clearly, when γ` = 0, the above defined missingness data mechanism reduces to MAR.

3. Estimation of Treatment Efficacy
3.1. Estimating Treatment Efficacy

When the endpoints are completely observed, treatment efficacy µ` can be consistently
estimated by its corresponding sample mean, i.e., µ̂` = n−1

` ∑n`
i=1 Y`i for ` = E, R, P.

When Y`i’s are subject to missingness and the true propensity score function π`i(η`; Z`i,
Y`i) is known, the IPW method can be employed to estimate µ` for ` = E, R, P. That is, µ`

can be estimated by

µ̂HT
` =

1
n`

n`

∑
i=1

D`i
π`i(η`; Z`i, Y`i)

Y`i, ` = E, R, P. (5)

Note that the above defined estimator µ̂HT
` may be sensitive to the misspecification of

the propensity score function. To address this issue, an imputation technique is adopted to
construct a consistent estimator of µ` in the presence of MNAR. That is, let m0

`i(γ`; Z`i) =
E(Y`i|Z`i, D`i = 0), an imputation-based estimator of µ` has the form

µ̂RI
` =

1
n`

n`

∑
i=1

{
D`iY`i + (1− D`i)m0

`i(γ`; Z`i)
}

, ` = E, R, P. (6)

The AIPW approach can also be utilized to estimate µ` in the presence of MNAR. That is,
an AIPW-based estimator of µ` can be expressed as

µ̂AI
` =

1
n`

n`

∑
i=1

{
D`i

π`i(η`; Z`i, Y`i)
Y`i +

(
1− D`i

π`i(η`; Z`i, Y`i)

)
m0

`i(γ`; Z`i)

}
, ` = E, R, P. (7)

In many clinical trials, the cumulative distribution functions of Y`i’s are usually un-
known; thus, m0

`i(γ`; Z`i)’s are also unknown. On the other hand, π`i(η`; Z`i, Y`i) is also
unknown in the presence of MNAR. Hence, it is impossible to directly evaluate µ̂HT

` , µ̂RI
`
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and µ̂AI
` using the above defined forms. In what follows, we consider the estimation

problem of m0
`i(γ`; Z`i) and π`i(η`; Z`i, Y`i).

3.2. Estimation of Conditional Mean m0
`i(γ`; Z`i)

Here a non-parametric method given in Tang et al. [38] is adopted to estimate
m0

`i(γ`; Z`i) in the presence of MNAR.
Let f0`(y`i) and f1`(y`i) be the conditional probability densities of Y`i given D`i = 0

and D`i = 1, respectively. Following the argument of Tang et al. [38], we have

f0`(y`i) = f1`(y`i)×
O(η`; Z`i, Y`i)

E{O(η`; Z`i, y`i)|Z`i, D`i = 1} , ` = E, R, P, (8)

where O(η`; Z`i, y`i) = {1− π`i(η`; Z`i, Y`i)}/π`i(η`; Z`i, Y`i). Substituting π`i(η`; Z`i, Y`i)
defined in Equation (4) into (8) leads to

f0`(y`i) = f1`(y`i)×
exp(−γ`Y`i)

E{exp(−γ`Y`i)|Z`i, D`i = 1} , ` = E, R, P, (9)

which shows that we can utilize the conditional distribution f1`(y`i) of the observed
endpoints rather than that of missing endpoints (i.e., f0`(y`i)) to make statistical inferences,
where E(·) represents the expectation taken with respect to f1`(y`i). Clearly, when γ` = 0,
we obtain f0`(y`i) = f1`(y`i).

Following the argument of Tang et al. [38], it follows from Equation (9) that

m0
`i(γ`; Z`i) =

E{D`iY`i exp(−γ`Y`i)|Z`i}
E{D`i exp(−γ`Y`i)|Z`i}

,

which implies that a non-parametric regression estimator of m0
`i(γ`; Z`i) can be

expressed as

m̂0
`i(γ`; Z`i) =

n`

∑
k=1

ωi
`k0(γ`; Z`i)Y`k, (10)

where ωi
`k0(γ`; Z`i)’s are the weights assigned to Y`k, and have the form

ωi
`k0(γ`; Z`i) =

D`kexp(−γ`Y`k)Kh`(Z`i − Z`k)

∑n`
j=1 D`jexp(−γ`Y`j)Kh`(Z`i − Z`j)

in which Kh`(v) = h−1
` K(v/h`), K(·) is the multi-dimensional kernel function, and h` = hn`

is the bandwidth.

3.3. Estimation of Propensity Score Function

Note that the above considered propensity score function has a parametric form
indexed by the parameter vector η`, which indicates that, if we can obtain the estimation of
η` (denoted as η̂`), the estimation of the propensity score function is easily evaluated by
π̂`i(η̂`; Z`i, Y`i). In the following, we discuss the estimation problem of η`.

The mean score approach of Morikawa et al. [45] is employed here to estimate η` based
on the observed dataD` = {(X`i, Y`i, D`i) : i = 1, . . . , n`} for ` = E, R, P. For simplicity, we
denote D`

obs = {X`, Y`
obs, D`}, where X` = {X`i : i = 1, . . . , n`}, D` = {D`i : i = 1, . . . , n`}

and Y`
obs is the observed dataset of Y`i’s.

When the density function f`(Y`i|µ`; X`i) of Y`i is known, the maximum likelihood
estimator (MLE) of η` can be obtained by maximizing the following likelihood of the
observed data D`

obs:
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Lobs(η`|D`
obs) =

n`

∏
i=1

[
π`i(η`; Z`i, Y`i) f`(Y`i|µ`; X`i)

]D`i

×
[ ∫
{1− π`i(η`; Z`i, Y`i)} f`(Y`i|µ`; X`i)dY`i

]1−D`i
.

It follows from Morikawa et al. [45] and the mean score theorem that the MLE of η`
can be obtained by solving the following “mean score equation”:

1
n

n`

∑
i=1

[D`is(η`; D`i, Z`i, y`i) + (1− D`i)E{s(η`; D`i, Z`i, Y`i)|Z`i, D`i = 0}] = 0,

where s(η`; D`i, Z`i, Y`i) has the form

s(η`; D`i, Z`i, Y`i) =
∂

∂η
log
[
π`i(η`; Z`i, Y`i)

D`i{1− π`i(η`; Z`i, Y`i)}1−D`i
]

=
D`i − π`i(η`; Z`i, Y`i)

π`i(η`; Z`i, Y`i){1− π`i(η`; Z`i, Y`i)}
π̇`i(η`; Z`i, Y`i),

and π̇`i(η`; Z`i, Y`i) = ∂π`i(η`; Z`i, Y`i)/∂η`.
Denote s`0(η`) = E{s(η`; D`i, Z`i, Y`i)|Z`i, D`i = 0}. Again, it follows from

Tang et al. [38] and Equation (9) that a non-parametric estimator of s`0(η`) is given as

ŝ`0(η`; D`i, Z`i, Y`i) =
n`

∑
k=1

ωi
`k0(γ`; Z`i)s(η`; D`k, Z`k, Y`k),

where ωi
`k0(γ`; Z`i) is defined in Equation (10). Thus, the estimated “mean score equation"

can be written as

1
n

n`

∑
i=1
{D`is(η`; D`i, Z`i, y`i) + (1− D`i)ŝ`0(η`; D`i, Z`i, Y`i)} = 0, (11)

which shows that the MLE η̂` of η` can be obtained by solving the non-linear equation (11)
with respect to η.

Once we obtain MLE η̂` of η`, substituting η̂` into Equations (4) and (10) leads to
the estimated propensity score function π̂`i(η̂`; Z`i, Y`i) and the estimated mean functions
m̂0

`i(γ̂`, Z`i). Thus, substituting π̂`i(η̂`; Z`i, Y`i) and m̂0
`i(γ̂, Z`i) into Equations (5)–(7) yields

non-parametric estimators of treatment efficacy µ` for ` = E, R, P.

3.4. Dimension Reduction

In some clinical trials, the number of covariates Z` ∈ Rd` may be large. In this case,
the kernel-based estimators of s(η`; D`i, Z`i, Y`i) and m0

`i(γ`, Z`i) may suffer from the well-
known curse of dimensionality. The dimension reduction technique of Tang et al. [38] is
used to solve this problem.

Let G` : Rd` → R be a mapping function such that G`i = G`(Z`i) is univariate. In
particular, we assume that E{s(η`; D`i, Z`i, Y`i)|G`i, D`i = 0} and E(Y`i|G`i, D`i = 0) have
the same structures as s`0(η`) = E{s(η`; D`i, Z`i, Y`i)|Z`i, D`i = 0} and m0

`i(γ`; Z`i) =
E(Y`i|Z`i, D`i = 0), except that Z`i is replaced by G`i. Given the MLE η̂` of η` obtained
with the above introduced approach, we can obtain non-parametric dimension reduction
estimators of treatment efficacy µ` for ` = E, R, P.

4. Asymptotic Properties and Test Statistics
4.1. Asymptotic Properties

In the following, we investigate the consistency and asymptotic normality of the
proposed estimators µ̂HT

` , µ̂RI
` , µ̂AI

` with the known and estimated values of parameters η`.
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The notation L−→ represents convergence in distribution and N (·, ·) denotes the normal
distribution.

From Morikawa et al. [45], we obtain the following proposition.

Proposition 1. Suppose that Assumptions A1–A3 given in the Appendix A hold. The MLE η̂` of
η` satisfies

√
n`

(
η̂` − η0

`

) L−→ N (0, Ση`) as n` → ∞,

where η0
` is the true value of η`, Ση` = I−1

22`E{exp(−γ0
`Y`i)s`0(η

0
`)s`0(η

0
`)
>}I−>22`, s`0(η

0
`) rep-

resents s`0(η`) evaluated at η` = η0
` , I22` = −E

{
s`0(η

0
`)π̇
>
`i(η

0
`)/π`i(η

0
`)
}

, and π̇`i(η`) =
π̇`i(η`; Z`i, Y`i) and π`i(η

0
`) = π`i(η

0
` ; Z`i, Y`i)) for ` = E, R, P.

Proof of Proposition 1 can be found in Morikawa et al. [45]. To save space, we omit it.
Proposition 1 shows that the MLE η̂` of η` is consistent and asymptotically distributed as
the multivariate normal distribution.

Theorem 1. Suppose that Assumptions A1–A3 given in the Appendix A hold. For a known value
η0
` of η`, given the true value µ0

` of µ`, the proposed estimators µ̂HT
` , µ̂RI

` and µ̂AI
` satisfy

√
n`(µ̂

h
` − µ0

`)
L−→ N (0, σ2

` ) as n` → ∞

for h = HT, RI, AI and ` = E, R, P, where σ2
` = var(τ`i) with τ̀ i = m0

ì(γ`; Z ì)+D ìπ
−1
ì (η

0
`){Ỳ i−

m0
ì(γ`; Z ì)}. In addition, σ2

` can be rewritten as σ2
` = var(Ỳ i)+E{[π−1

ì (η
0
`)−1][Ỳ i−m0

ì(γ`; Z ì)]
2}.

Theorem 1 shows that the proposed estimators of µ` are consistent and asymptotically
distributed as the normal distribution with zero mean and the same variance.

Following the argument of Kim and Yu [37], σ2
` can be consistently estimated by

σ̂2
` =

1
n`

n`

∑
i=1

τ̂2
`i −

(
1
n`

n`

∑
i=1

τ̂`i

)2

,

where τ̂`i = m̂0
`i(γ

0
` ; Z`i) + D`iπ̂

−1
`i (η0

`){Y`i − m̂0
`i(γ

0
` ; Z`i)}.

When η` is unknown, we replace η` or γ` in Equations (5)–(7) by their corresponding
consistent estimators η̂` or γ̂`, respectively. Thus, we can obtain their corresponding plug-in
estimators (denoted as µ̂SHT

` , µ̂SRI
` and µ̂SAI

` , respectively) of µ`.

Theorem 2. Suppose that Assumptions A1–A3 given in the Appendix A hold, the propensity score
function (4) is correctly specified, and Proposition 1 holds. The plug-in estimators µ̂SHT

` , µ̂SRI
` and

µ̂SAI
` of µ` satisfy

√
n`

(
µ̂h
` − µ0

`

) L−→ N (0, σ2
`,h) as n` → ∞ , h = SHT, SRI, SAI, ` = E, R, P,

where σ2
`,h = var(e`,hi) with e`,hi = {D`iπ

−1
`i (η`){Y`i − m0

`i(γ`; Z`i)} + m0
`i(γ`; Z`i) − µ0

` +

I−1
22`s`i(η`)H`,h}, s`i(η`) is the ith term in Equation (11), H`,SHT = E{(π`i(η`)− 1)Y`i(1, Z>`i,

Y`)
>}, H`,SRI = E{(1− D`i)(0, 0>p`−1, (Y`i − m0

`i(γ`; Z`i))
2)>}, H`,SAI = H`,SHT + M`,SAI ,

M`,SAI = E{(1− π`i(η`))m
0
`i(γ`; Z`i)(1, Z>`i, Y`i)

>}, 0p`−1 is a (p` − 1)× 1 zero vector and p`
is the number of covariate vector Z`i.

Note that the asymptotic variance σ2
`,h has a complicated form; thus, it is rather

difficult to compute the estimate of σ2
`,h. To overcome this difficulty, we utilize a bootstrap-

resampling method or empirical jack-knife method to evaluate the estimated asymp-
totic variances.
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4.2. Wald-Type Statistics for Testing H̃0

In what follows, we construct three Wald-type statistics for testing hypothesis H0 :
ψ(µ) ≤ 0 based on the asymptotic properties of three different estimators given in Theorem 2.

Based on the properties of estimator µ̂h = (µ̂h
E, µ̂h

R, µ̂h
P)
> for µ = (µE, µR, µP)

>, we
obtain that (i) ψ̂(µ̂h) = µ̂h

E − aµ̂h
R − (1− a)µ̂h

P is a consistent estimator of ψ(µ), (ii) variance
of ψ̂(µ̂h) is var{ψ̂(µ̂h)} = var(µ̂h

E) + a2var(µ̂h
R) + (1− a)2var(µ̂h

P), which can consistently
be estimated by v̂ar{ψ̂(µ̂h)} = σ̃2

E,h/nE + a2σ̃2
R,h/nR +(1− a)2σ̃2

P,h/nP, where σ̃2
E,h, σ̃2

R,h and
σ̃2

P,h defined in Theorem 2 are the consistent estimators of σ2
E,h, σ2

R,h and σ2
P,h, respectively, for

h = SHT, SRI, SAI; (iii) (ψ̂(µ̂h)− ψ(µ))/
√

v̂ar{ψ̂(µ̂h)} L−→ N (0, 1) as min{nE, nR, nP} →
∞. Thus, the Wald-type statistic for testing H̃0 : ψ(µ) ≤ 0 can be expressed as

Th
W =

ψ̂(µ̂h)√
v̂ar{ψ̂(µ̂h)}

=
µ̂h

E − aµ̂h
R − (1− a)µ̂h

P√
σ̃2

E,h/nE + a2σ̃2
R,h/nR + (1− a)2σ̃2

P,h/nP

for h = SHT, SRI, SAI, which are asymptotically distributed as the standard normal
distribution under H̃0 as min{nE, nR, nP} → ∞.

Note that the asymptotic properties of the parameter estimators and test statistics
presented above only hold as n` → ∞ (` = E, R, P). However, for the finite samples,
before using asymptotic normality of the estimators µ̂h

` (` = E, R, P) and test statistics Th
W

(h = SHT, SRI, SAI), one should utilize the concept of goodness-of-fit tests [46,47] to check
the plausibility of their normality assumption.

5. Simulation Study

In this section, simulation studies were conducted to assess the finite sample perfor-
mance of the proposed test procedures in terms of empirical type I error rates and empirical
powers under four missingness data mechanisms.

For ` = E, R, P, the data {X`i : i = 1, · · · , n`} were independently generated from

the multivariate normal distribution, i.e., X`i = (Z`i, U`i)
i.i.d∼ N (ξ, Σ), and the data

{Y`i : i = 1, · · · , n`} were independently generated by Y`i = X>`iβ` + ε`i, where ε`i’s
were independently sampled from the following normal distributions (denoted as ‘sce-
nario (A)’): εEi ∼ N (aµR + (1 − a)µP, 0.34), εRi ∼ N (µR, 0.37) and εPi ∼ N (µP, 0.2)
with a = 0.8, which was the three-arm “gold threshold" recommended in the considered
literature [18]. The true values of ξ, Σ, βE, βR, βP, µR and µP were taken as ξ = (0.0, 0.0)>,
Σ = diag(0.25, 0.25), βE = (1.0, 1.0)>, βR = (1.0, 1.1)>, βP = (0.5, 0.5)>, µR = 1.1 and
µP = 0.6, respectively, which were only chosen as an illustration of the proposed method-
ologies. For comparison with the cases used widely or always justified, we considered the
following two scenarios: (B) εEi ∼ N (aµR + (1− a)µP, 0.8), εRi ∼ N (µR, 0.8) and εPi ∼
N (µP, 0.5); (C) εEi ∼ N (aµR + (1− a)µP, 1.0), εRi ∼ N (µR, 1.0) and εPi ∼ N (µP, 0.5).
Under the above specified setting, we have ψ(µ) = 0, where µ = {µE, µR, µP}. That is,
the data {(X`i, Y`i) : ` = E, R, P, i = 1, · · · , n`} were independently generated from the
null hypothesis H̃0, and were used to compute empirical type I error rates. To compute
empirical powers, the data {(X`i, Y`i) : ` = E, R, P, i = 1, · · · , n`} were independently
generated with the above presented settings, except for a = (µE − µP)/(µR − µP) > 0.8,
which implied that the data {(X`i, Y`i) : ` = E, R, P, i = 1, · · · , n`} were sampled from the
alternative hypothesis H̃1 : ψ(µ) > 0.

To create missing data for Y`i, we assumed that the missing indicators D`i’s were
independently generated from the Bernoulli distribution with the respondent probability
π`i for ` = E, R, P. Here, we considered the following respondent probabilities for the
reference treatment and placebo:

logit(πRi) = 1.6 + 0.2ZRi − 0.15YRi, logit(πPi) = 1.5 + 0.15ZPi − 0.18YPi,
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which indicated that missingness data mechanisms were non-ignorable, and the following
four respondent probabilities for experimental treatment:

Case E1: logit(πEi) = αE0 + αE1ZEi, which led to a MAR missingness data mechanism,
where the true values of αE0 and αE1 were taken to be 1.3 and 0.1, respectively.

Case E2: logit(πEi) = αE0 + αE1ZEi + γEYEi, which resulted in a non-ignorable miss-
ingness data mechanism, where the true values of αE0, αE1 and γE were taken as 1.3, 0.1
and −0.1, respectively.

Case E3: logit(πEi) = αE0 + αE1sin(ZEi) + γEYEi, which yielded a non-linear non-
ignorable missingness data mechanism with respect to ZEi, where the true values of αE0,
αE1 and γE were set to be 1.3, 0.1 and 0.12, respectively.

Case E4: logit(πEi) = αE0 + αE1ZEi + γEZEiYEi, which implied a non-linear non-
ignorable missingness data mechanism with an interaction of ZEi and YEi, where the true
values of αE0, αE1 and γE were set as 1.3, 0.1 and −0.1, respectively.

The titling parameters γ` corresponding to Y`i (` = E, R, P) were set to be roughly
−0.2 for showing a moderately negative effect on the probability of the data observed,
and α`0 and α`1 were chosen so that the average missing rates were roughly 25%. Case
E1 was MAR, which was a special case of the considered missingness data mechanism
model (4) with γE = 0 and was used to show that the proposed method can still capture
missingness data characteristics even if the true missingness data mechanism was MAR;
the other three missingness data mechanisms were non-ignorable and Case E2 satisfied
the assumption of model (4), but Cases E3 and E4, which did not satisfy the assumed non-
ignorable missingness data mechanism model (4), were used to show that the proposed
test procedure was not sensitive to the assumed missingness data mechanism model (4).
Here, we consider three balanced designs, i.e., nE = nR = nP = n with n = 50, 100, 150 for
three scenarios, and the following unbalanced designs with the allocation ratios taken as
2:2:1, 3:3:1, 4:4:1, 2:1:1, 3:2:1, 4:3:1, 4:2:1, 3:1:1, 4:1:1 for Scenario (A) and 2:1:1, 2:2:1, 3:2:1
for Scenarios (B) and (C). The total sample sizes N = nE + nR + nP were set as 200 and 500
for Scenario (A) and 200, 300 and 400 for Scenarios (B) and (C), with a significance level
α = 5% for the three scenarios.

The average missing rates for the experimental, reference and placebo treatments
among the 1000 replications were roughly 23.15%, 19.23% and 21.08%, respectively.

For each of the settings described above, we generated 1000 Monte Carlo samples.
To evaluate the accuracy of the mean function estimates m̂0

`i(γ`; z`i) and the propensity
score function estimates π̂`(η`; z`i, y`i), we took the Gaussian kernel function with K(Z`) =

(2π)−1/2exp(−Z2
`/2) and set the bandwidths h` as σ̂Z`

n−1/3
` , where σ̂Z`

was the standard
deviation of observations {Z`i : i = 1, . . . , n`} for ` = E, R, P. To compute the estimated
asymptotic variances of µ̂k

`, we conducted 100 bootstrap replications.
Empirical type I error rates for 1000 replications in Scenario (A) are given in Table 1

for balanced designs with the above considered four missingness data mechanisms and
Table 2 for unbalanced designs with only the missingness data mechanism E2. To save
space, we moved the corresponding results in Scenarios (B) and (C) to Tables A1 and A2
in the Appendix A. Examination of Tables 1, 2, A1 and A2 showed that (i) the proposed
three statistics for testing H̃0 have similar performance because their type I error rates
are quite close to the pre-given significance level for all the considered cases, which is
consistent with the theoretical properties presented in Theorems 1 and 2; (ii) the proposed
three statistics for testing H̃0 performed better than the CC method regardless of the sample
sizes, missingness data mechanisms, balanced and unbalanced designs, and the variances
of the treatment effects in that the type I error rates of the former were closer to the pre-
given significance level than those for the latter; (iii) the type I error rate increased as the
sample size increased for the CC method, which was consistent with the observations of
Cook and Zea [48]; (iv) empirical type I error rates were not sensitive to the balanced or
unbalanced designs.
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Table 1. Empirical type I error rates for balanced designs in the first simulation study.

n = 50 n = 100 n = 150

Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

E1 0.048 0.051 0.053 0.057 0.048 0.050 0.052 0.074 0.050 0.051 0.050 0.083
E2 0.053 0.055 0.055 0.052 0.048 0.049 0.050 0.055 0.054 0.055 0.055 0.092
E3 0.049 0.055 0.054 0.070 0.053 0.053 0.058 0.095 0.052 0.054 0.054 0.117
E4 0.051 0.053 0.052 0.061 0.048 0.050 0.053 0.086 0.047 0.051 0.049 0.088

Note: SHT, SRI, SAI and CC denote Wald-type test approaches based on IPW, regression imputation, AIPW and
CC, respectively.

Table 2. Empirical type I error rates for unbalanced designs in the first simulation study.

N = 200 N = 500

nE:nR:nP SHT SRI SAI SHT SRI SAI

2:2:1 0.046 0.048 0.048 0.049 0.050 0.051
3:3:1 0.053 0.053 0.051 0.045 0.046 0.046
4:4:1 0.053 0.054 0.058 0.045 0.047 0.050
2:1:1 0.048 0.051 0.050 0.045 0.044 0.045
3:2:1 0.055 0.059 0.060 0.047 0.049 0.046
4:3:1 0.038 0.044 0.047 0.054 0.055 0.055
4:2:1 0.048 0.051 0.053 0.063 0.064 0.059
3:1:1 0.055 0.056 0.057 0.052 0.055 0.056
4:1:1 0.050 0.057 0.058 0.051 0.052 0.054

We computed empirical powers against a = (µE − µP)/(µR − µP), the sample sizes,
the treatment effects, and the alpha and gamma parameters for missingness data mecha-
nism models E1–E4 when the null hypothesis was not true. To save space, we only present
empirical powers against the sample size in Figure 1 for balanced design and Figure 2 for
unbalanced design (i.e., nE:nR:nP = 2:1:1) under the considered four missingness data mech-
anism models. Other results are given in Figures A1–A8 in the Appendix A. Inspection of
these figures showed that (i) empirical power increases as a or the sample size n increases,
regardless of the missingness data mechanisms and balanced/unbalanced designs and the
considered four tests; (ii) empirical power slightly increased as αE1 increased regardless of
the missingness data mechanisms and balanced/unbalanced designs and the considered
SHT, SRI and SAI tests, while the empirical power for the CC method showed an increasing
tendency as αE1 increased for missingness data mechanisms E3 and E4, which might be
explained by non-linear non-ignorable missing data; (iii) the empirical powers with the
proposed three test statistics were larger than those with the CC method for non-ignorable
missing data (i.e., E2–E4), regardless of the sample sizes, a, treatment effects, αE1 and γ; (iv)
the observation that the CC method had a slightly larger empirical power than the three
tests considered might be explained by its inflated type I error.
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Figure 1. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression impu-
tation, AIPW and CC methods against the sample size n under balanced design with missingness
data mechanism models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4
(right panel) for a = 0.2.
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Figure 2. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regres-
sion imputation, AIPW and CC methods against the sample size n under unbalanced design
(i.e., nE:nR:nP = 2:1:1), with missingness data mechanism models E1 (left panel), E2 (left second
panel), E3 (right second panel) and E4 (right panel) for a = 0.2.

To investigate the effect of the amount of departure from the MAR mechanism (i.e.,
the change in γE) on type I error rates under the missingness data mechanism model E2,
with the same values of αE0 and αE1 (i.e., αE0 = 1.3 and αE1 = 0.1) as those given in the
first simulation study, we conducted a second simulation study. In this simulation study,
1000 Monte Carlo datasets {(X`i, Y`i, D`i) : i = 1, · · · , n`} were independently generated,
as in the first simulation study, with γE = −0.2,−0.1,−0.05, 0, 0.05, 0.1. Empirical type
I error rates for the balanced design with the sample sizes n = 50 and 150 are given in
Table 3. Inspection of Table 3 yielded that (i) statistics with the IPW, regression imputation
and AIPW methods behaved better than those with the CC method because the type I
error rates for the former were closer to the pre-given significance level than those for the
latter, regardless of the values of γE and the sample sizes; and (ii) statistics with the IPW,
regression imputation and AIPW methods were not sensitive to γE.
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Table 3. Sensitivity analysis of the proposed test statistics in the second simulation study.

n = 50 n = 150

γE SHT SRI SAI CC SHT SRI SAI CC

−0.2 0.038 0.046 0.044 0.033 0.051 0.050 0.051 0.033
−0.1 0.053 0.055 0.055 0.052 0.054 0.055 0.055 0.092
−0.05 0.041 0.045 0.046 0.066 0.045 0.048 0.047 0.061

0.0 0.048 0.051 0.053 0.057 0.050 0.051 0.050 0.083
0.05 0.050 0.051 0.052 0.065 0.054 0.055 0.055 0.092
0.1 0.047 0.051 0.056 0.087 0.053 0.056 0.055 0.111

6. An Example

In this section, a real example described in the Introduction is used to illustrate
the proposed methodologies. In this dataset, we regarded zidovudine plus 400 mg of
didanosine plus 400 mg of nevirapine as the experimental treatment with 330 patients,
zidovudine plus 2.25 mg of zalcitabine as the reference treatment with 324 patients, and
zidovudine alternating monthly with 400 mg didanosine as the placebo with 325 patients,
respectively. CD4 counts were scheduled to be collected at baseline and eight-week intervals
during the follow-up. Due to mistimed measurements, CD4 count data were subject to
missingness, which led to unbalanced designs. There were 94 patient dropouts at the
interval (4,12] among the 330 patients, 97 patient dropouts at the interval (4,12] and two
patient dropouts at baseline among the 324 patients, and 95 patient dropouts at the interval
(4,12] and five patient dropouts at baseline among the 325 patients. As an illustration,
we took log(CD4 count at baseline + 1) as the dropout instrument variable Z, and only
considered the data at the interval (4,12], i.e., treatment endpoints were CD4 counts at the
interval (4,12], which led to nE = 328, nR = 313 and nP = 316, whose average missing
rates were 29.74%, 30.99%, and 28.65%, respectively. The dataset was obtained from the
R package “ALA”. Our main purpose was to test the NI of the experimental treatment
to the reference treatment in the considered three-arm design. To this end, we took the
fraction margin as δ = g(µR − µP) with g = 0.2, which led to a = 0.8, i.e., the experimental
treatment achieved more than 80 percent of the reference treatment compared with the
placebo to be claimed as NI.

To compute m̂0
`i(γ̂`; Z`i) and π̂`(η̂`; Z`i, Y`i), we took the Gaussian kernel function as

K(x`) = (2π)−1/2exp(−x2
`/2) and set the bandwidth h` to be σ̂X`

n−1/3
` , where σ̂X`

was
the standard deviation of X`i’s. The p-values for testing H̃0 were 0.0037, 0.0035, 0.0033
and 0.0136 for the Wald-type statistics with the IPW, regression imputation, AIPW and
CC methods, respectively, which indicated the NI of the experimental treatment to the
reference treatment was at the 5% significance level.

7. Conclusions

This paper considers the non-inferiority assessment problem of an experimental treat-
ment to a reference treatment in a three-arm trial with non-ignorable missing data. A
logistic regression was employed to specify the non-ignorable missing endpoint mecha-
nism. Three methods, including the IPW, imputation regression and AIPW methods, were
proposed to estimate the treatment efficacy for the known and unknown propensity score
functions. The asymptotic properties of estimators for treatment efficacy were established
under some regularity conditions. Based on these asymptotic properties, three Wald-type
statistics for testing the NI of the experimental treatment to the reference treatment were
constructed. Simulation studies indicated that the proposed test procedures behaved better
than those with complete-case data in terms of type I error rates and powers, i.e., the type I
error rates for the former were closer to the pre-given significance level than those for the
latter and the powers for the former were larger than those for the latter; the proposed test
procedures were not sensitive to misspecified missingness data mechanisms.
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Appendix A

Appendix A.1. Regularity Conditions

To obtain asymptotic properties of µ̂` for ` = E, R, P, we need the following regularity
conditions.

Assumption A1. The true respondent model given in Equation (4) satisfies (i) that there ex-
ists a true value η0

` of η` such that E{s(η0
` ; Z`, Y`)} = 0; (ii) for η`, in a neighborhood of η0

` ,
E{||s(η0

` ; Z`, Y`)||2} < ∞ and E{∂s(η0
` ; Z`, Y`)/∂ηT

` } exists and is nonsingular.

Assumption A2. (i) The marginal probability density function f (z) of the random variable z is
bounded away from ∞ in the support of z, and the second derivative of f (z) in z is continuous and
bounded; (ii) The respondent probabilities π`i(η`; Z`i, Y`i) satisfy min1≤i≤n`

π`i(η`; Z`i, Y`i) ≥ c0
a.s. for some positive constant c0.

Assumption A3. The kernel function K`(·) satisfies (i) it is bounded and has compact support;
(ii) it is symmetric with

∫
ω2K`(ω)dω < ∞; (iii) K`(·) ≥ D` for D` > 0 in some closed interval

centered at zero; (iv) n`h` → ∞ and n`h4
` → 0 as n` → ∞.

Remark A1. Assumption A1 is used to establish asymptotic normality of η̂`. Assumption A2 is
commonly adopted in the missing data literature. Assumption A3 is a standard assumption for the
kernel regression method.

Proof of Theorem 1. By the definition of µ̂HT
` , we have the following decomposition

√
n`(µ̂

HT
` − µ0

`) =n−1/2
`

n`

∑
i=1

{
D`iY`i

π`i(η`; Z`i, Y`i)
− µ0

`

}
=n−1/2

`

n`

∑
i=1

D`i
{

Y`i −m0
`i(γ`; Z`i)

}
π`i(η`; Z`i, Y`i)

+ n−1/2
`

n`

∑
i=1

{
m0

`i(γ`; Z`i)− µ0
`

}
+ n−1/2

`

n`

∑
i=1

{
D`i

π`i(η`; Z`i, Y`i)
− 1
}

m0
`i(γ`; Z`i)

4
= H1n`

+ H2n`
+ H3n`

.

By the law of large numbers, it is easily shown that H3n`
= op(1). Thus, combining

the above results leads to

√
n`(µ̂

HT
` − µ0

`) = n−1/2
`

n`

∑
i=1

D`i
{

Y`i −m0
`i(γ`; Z`i)

}
π`i(η`; Z`i, Y`i)

+ n−1/2
`

n`

∑
i=1

{
m0

`i(γ`; Z`i)− µ0
`

}
+ op(1).
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Let τ`i = m0
`i(γ`; Z`i) + D`iπ

−1
`i (η0

`){y`i −m0
`i(γ`; Z`i)}. Then, we have

√
n`

(
µ̂HT
` − µ0

`

) L−→ N
(

0, σ2
`

)
as n` → ∞ , for ` = E, R, P,

where σ2
` = var(τ`i). It is easily shown that E

{
D`iπ`i(η`; Z`i, Y`i)

−1{Y`i −m0
`i(γ`; Z`i)

}}
=

0, and E
{

m0
`i(γ`; Z`i)− µ0

`

}
= 0. Since m0

`i(γ`; Z`i) is independent of Y`i −m0
`i(γ`; Z`i), we

have σ2
` = E{π`i(Z`i, Y`i; η0

`)
−1

[Y`i −m0
`i(γ`; Z`i]

2}+ E
[
m0

`i(γ`; Z`i)
]2.

Next, we show the asymptotic property of µ̂RI
` . By the definition of µ̂RI

` , we obtain

√
n`(µ̂

RI
` − µ0

`) = n−1/2
`

n`

∑
i=1

{
D`iY`i + (1− D`i)m̂0

`i(γ`; Z`i)− µ0
`

}

= n−1/2
`

n`

∑
i=1

D`i

{
Y`i −m0

`i(γ`; Z`i)
}
+ n−1/2

`

n`

∑
i=1

(1− D`i)
{

m̂0
`i(γ`; Z`i)−m0

`i(γ`; Z`i)
}

+ n−1/2
`

n`

∑
i=1

{
m0

`i(γ`; Z`i)− µ0
`

} 4
= R1n`

+ R2n`
+ H2n`

.

Using the similar arguments as given in Tang et al. [38], it is easily shown that

R2n`
= n−1/2

`

n`

∑
i=1

D`i[1− π`i(η
0
` ; Z`i, Y`i)]{Y`i −m0

`i(γ`; Z`i)}/π`i(η
0
` ; Z`i, Y`i) + op(1).

Thus, we have

√
n`(µ̂

RI
` − µ0

`) = H1n`
+ H2n`

+ op(1) =
√

n`(µ̂
HT
` − µ0

`) + op(1).

By the Slutsky Theorem and the asymptotic property of µ̂HT
` , we obtain

√
n`

(
µ̂RI
` − µ0

`

) L−→ N
(

0, σ2
`

)
as n` → ∞ , for ` = E, R, P,

where σ2
` is defined in the proof of the asymptotic properties of µ̂HT

` .
Now, we prove the asymptotic properties of the estimator µ̂AI

` . By the definition of the
µ̂AI
` , we obtain

√
n`(µ̂

AI
` −µ0

`) = n−1/2
`

n`

∑
i=1

{
D`iY`i

π`i(η`; Z`i, Y`i)
+

(
1− D`i

π`i(η`; Z`i, Y`i)

)
m̂0

`i(γ`; Z`i)− µ0
`

}

= n−1/2
`

n`

∑
i=1

D`i
π`i(η`; Z`i, Y`i)

{
Y`i −m0

`i(γ`; Z`i)
}
+n−1/2

`

n`

∑
i=1

{
m0

`i(γ`; Z`i)− µ0
`

}

+ n−1/2
`

n`

∑
i=1

(
1− D`i

π`i(η`; Z`i, Y`i)

){
m̂0

`i(γ`; Z`i)−m0
`i(γ`; Z`i)

} 4
= H1n`

+ H2n`
+ An`

.

Following a similar argument as given in the proof of Theorem 4 in Zhao et al. [49],
we have An`

= op(1). Combining the above results yields

√
n`(µ̂

AI
` − µ0

`) = H1n`
+ H2n`

+ op(1) =
√

n`(µ̂
HT
` − µ0

`) + op(1).

Using the same arguments as given in the proof of the asymptotic properties for µ̂RI
` ,

we obtain √
n`

(
µ̂AI
` − µ0

`

) L−→ N
(

0, σ2
`

)
as n` → ∞ , for ` = E, R, P,

where σ2
` is defined in the proof of the asymptotic properties of µ̂HT

` .
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Proof of Theorem 2. We first consider the asymptotic properties of µ̂SHT
` based on the

following form:

√
n`(µ̂

SHT
` − µ0

`) = n−1/2
`

n`

∑
i=1

{ D`iY`i
π`i(η̂`; Z`i, Y`i)

− µ0
`

}
.

Taking the Taylor expansion of π`i(η̂`; Z`i, Y`i) at η` yields

n−1/2
`

n`

∑
i=1

D`iY`i
π`i(η̂`; Z`i, Y`i)

= n−1/2
`

n`

∑
i=1

D`iY`i
π`i(η`; Z`i, Y`i)

+ n1/2
` (η̂` − η`)

> 1
n`

n`

∑
i=1

D`iY`i
∂

∂η`
π−1
`i (η`; Z`i, Y`i)

∣∣
η`=η̃`

+ op(1)

where η̃` lies in the line segment between η̂` and η`, ∂π−1
`i (η`; Z`i, Y`i)/∂η`

∣∣
η`=η̃`

= {1−
π−1
`i (η`; Z`i, Y`i)}(1, Z>`i, Y`i)

>. Following the arguments of the proof of Theorem 1, we get

n−1/2
`

n`

∑
i=1

{ D`iY`i
π`i(η`; Z`i, Y`i)

− µ0
`

}
= n−1/2

`

n`

∑
i=1

D`i{Y`i −m0
`i(γ`; Z`i)}

π`i(η`; Z`i, Y`i)

+n−1/2
`

n`

∑
i=1

{
m0

`i(γ`; Z`i)− µ0
`

}
+ op(1).

Combining the above results yields

√
n`(µ̂

SHT
` − µ0

`) =n−1/2
`

n`

∑
i=1

D`i{Y`i −m0
`i(γ`; Z`i)}

π`i(η`; Z`i, Y`i)
+ n−1/2

`

n`

∑
i=1

{
m0

`i(γ`; Z`i)− µ0
`

}
+ n1/2

` (η̂` − η`)
> 1

n`

n`

∑
i=1

D`iY`i(1−
1

π`i(η̃`; Z`i, Y`i)
)(1, Z>`i, Y`i)

>+ op(1)

=n−1/2
`

n`

∑
i=1

{
D`i
{

Y`i −m0
`i(γ`; Z`i)

}
π`i(η`; Z`i, Y`i)

+
{

m0
`i(γ`; Z`i)− µ0

`

}}
+ n1/2

` (η̂` − η`)
>H`,SHT + op(1)

=n−1/2
`

n`

∑
i=1

e`,SHTi + op(1),

where

e`,SHTi = {D`iπ
−1
`i (η`; Z`i, Y`i){Y`i−m0

`i(γ`; Z`i)}+m0
`i(γ`; Z`i)−µ0

` +I
−1
22`s`i(η`)H`,SHT},

s`i(η`) is the ith term in Equation (11), H`,SHT = E[{π`(η`; Z`, Y`)− 1}Y`(1, Z>` , Y`)
>]. By

the Slutsky Theorem and the asymptotic property of µ̂HT
` , it is easily shown that

√
n`

(
µ̂SHT
` − µ0

`

) L−→ N
(

0, σ2
`,SHT

)
as n` → ∞, for ` = E, R, P,

where σ2
`,SHT = Var(e`,SHTi).

Now, we show the asymptotic property of µ̂SRI
` for unknown η`. By the definition of

µ̂SRI
` , we have the following form:

√
n`(µ̂

SRI
` − µ0

`) = n−1/2
`

n`

∑
i=1

{
D`iY`i + (1− D`i)m̂0

`i(γ̂`; Z`i)− µ0
`

}
.

Taking the Taylor expansion of m̂0
`i(γ̂`; Z`i) at η` yields
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n`

∑
i=1

(1− D`i)m̂0
`i(γ̂`; Z`i) =

n`

∑
i=1

(1− D`i)m̂0
`i(γ`; Z`i)

+ n1/2
` (η̂` − η`)

> 1
n`

n`

∑
i=1

(1− D`i)
∂

∂η`
m0

`i(γ`; Z`i)
∣∣∣η`=η̃`

+ op(1).

Using the conclusion given in the proof of Theorem 1, we can easily get
√

n`(µ̂
RI
` −

µ0
`) =

√
n`(µ̂

HT
` − µ0

`) + op(1). Combining the above results yields

√
n`(µ̂

SRI
` − µ0

`) =n−1/2
`

n`

∑
i=1

{
D`iY`i + (1− D`i)m̂0

`i(γ`; Z`i)− µ0
`

}
+ n1/2

` (η̂` − η`)
> 1

n`

n`

∑
i=1

(1− D`i)Y`i
∂

∂η`
m̂0

`i(γ`; Z`i)
∣∣∣η`=η̃`

=n−1/2
`

n`

∑
i=1

D`i
{

Y`i −m0
`i(γ`; Z`i)

}
π`i(η`; Z`i, Y`i)

+ n−1/2
`

n`

∑
i=1

{
m0

`i(γ`; Z`i)− µ0
`

}
+ n1/2

` (η̂` − η`)
>I−1

22`s`i(η`)H`,SRI + op(1)

=n−1/2
`

n`

∑
i=1

e`,SRIi + op(1),

where η̃` lies in the line segment between η̂` and η`, e`,SRIi = D`iπ
−1
`i (η`; Z`i, Y`i){Y`i −

m0
`i(γ`; Z`i)}+ m0

`i(γ`; Z`i)− µ0
` + I

−1
22`s`i(η`)H`,SRI , H`,SRI = E{(1− D`i)(0, 0>p`−1, (Y`i −

m0
`i(γ`; Z`i))

2)>} and 0p`−1 is a (p`− 1)× 1 zero vector and p` is the dimension of covariate
Z`i. By the Slutsky Theorem and the asymptotic property of µ̂SHT

` , it is easily shown that

√
n`

(
µ̂SRI
` − µ0

`

) L−→ N
(

0, σ2
`,SRI

)
as n` → ∞, for ` = E, R, P,

where σ2
`,SRI = Var(e`,SRIi).

Now, we prove the asymptotic properties of µ̂SAI
` for unknown η`. Combining the

above results and taking the Taylor expansion of µ̂SAI
` at η`, we obtain

√
n`(µ̂

SAI
` − µ0

`) =n−1/2
`

n`

∑
i=1

{
D`iY`i

π`i(η`; Z`i, Y`i)
+

(
1− D`i

π`i(η`; Z`i, Y`i)

)
m̂0

`i(γ`; Z`i)− µ0
`

}
+ n1/2

` (η̂` − η`)
> 1

n`

n`

∑
i=1

D`iY`i
∂

∂η`
π−1
`i (η`; Z`i, Y`i)

∣∣
η`=η̃`

+ n1/2
` (η̂` − η`)

> 1
n`

n`

∑
i=1

m̂0
`i(γ`; Z`i)

∂

∂η`

(
1− D`i

π`i(η`; Z`i, Y`i)

)∣∣∣η`=η̃`

+ n1/2
` (η̂` − η`)

> 1
n`

n`

∑
i=1

(
1− D`i

π`i(η`; Z`i, Y`i)

)
∂

∂η`
m̂0

`i(γ`; Z`i)
∣∣∣η`=η̃`

where η̃` lies in the line segment between η̂` and η`. Using the conclusion given in the
proof of Theorem 1, we have

√
n`(µ̂

AI
` − µ0

`) =
√

n`(µ̂
HT
` − µ0

`) + op(1),

1
n`

n`

∑
i=1

(
1− D`i

π`i(η`; Z`i, Y`i)

)
∂

∂η`
m̂0

`i(γ`; Z`i)|η`=η̃`
= op(1),

1
n`

n`

∑
i=1

m̂0
`i(γ`; Z`i)

∂

∂η`

(
1− D`i

π`i(η`; Z`i, Y`i)

)
|η`=η̃`

= M`SAI + op(1),
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where M`,SAI = E{(1− π`i(η`; Z`i, Y`i))m0
`i(γ`; Z`i)(1, Z>`i, Y`i)

>}. Combining the above
results leads to

√
n`(µ̂

SAI
` − µ0

`) =n−1/2
`

n`

∑
i=1

[
D`i
{

Y`i −m0
`i(γ`; Z`i)

}
π`i(η`; Z`i, Y`i)

+
{

m0
`i(γ`; Z`i)− µ0

`

}]
+ n1/2

` (η̂` − η`)
>I−1

22`s`i(η`)(H`,SHT + M`,SAI) + op(1)

=n−1/2
`

n`

∑
i=1

e`,SAIi + op(1),

where e`,SAIi = D`iπ
−1
`i (η`; Z`i, Y`i){Y`i − m0

`i(γ`; Z`i)} + m0
`i(γ`; Z`i) − µ0

` + I
−1
22`s`i(η`)

H`,SRI , H`,SAI = H`,SHT + M`,SAI . By the Slutsky Theorem and the asymptotic property of
µ̂SHT
` , it is easily shown that

√
n`

(
µ̂SRI
` − µ0

`

) L−→ N
(

0, σ2
`,SAI

)
as n` → ∞, for ` = E, R, P,

where σ2
`,SRI = Var(e`,SAIi).

Appendix A.2. Tables: Empirical Type I Error Rates for Scenarios (B) and (C) with Balanced and
Unbalanced Designs

Table A1. Empirical Type I error rates for Scenarios (B) and (C) with balanced designs.

n = 50 n = 100 n = 150

Scenario Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

(B) E1 0.041 0.055 0.055 0.068 0.042 0.053 0.059 0.082 0.048 0.058 0.062 0.090
E2 0.046 0.049 0.050 0.052 0.045 0.051 0.052 0.060 0.042 0.054 0.054 0.066
E3 0.045 0.045 0.044 0.051 0.037 0.053 0.054 0.060 0.046 0.056 0.058 0.060
E4 0.050 0.048 0.047 0.052 0.032 0.055 0.058 0.060 0.046 0.052 0.054 0.056

(C) E1 0.040 0.065 0.064 0.081 0.031 0.052 0.056 0.082 0.046 0.062 0.064 0.082
E2 0.030 0.052 0.043 0.057 0.046 0.053 0.052 0.063 0.044 0.050 0.056 0.068
E3 0.034 0.058 0.055 0.060 0.034 0.050 0.053 0.060 0.036 0.048 0.054 0.060
E4 0.031 0.044 0.043 0.042 0.041 0.052 0.056 0.082 0.048 0.054 0.054 0.075

Note: SHT, SRI, SAI and CC denote Wald-type test approaches based on IPW, regression imputation, AIPW and
CC, respectively.

Table A2. Empirical Type I error rates for Scenarios (B) and (C) with unbalanced designs.

N = 200 N = 300 N = 400

Scen. nE :nR :nP Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

(B) 2:1:1 E1 0.035 0.058 0.058 0.068 0.034 0.053 0.059 0.082 0.036 0.062 0.060 0.078
E2 0.042 0.052 0.046 0.062 0.042 0.053 0.050 0.064 0.046 0.052 0.050 0.070
E3 0.041 0.066 0.061 0.056 0.038 0.062 0.058 0.042 0.034 0.051 0.049 0.048
E4 0.033 0.054 0.051 0.050 0.037 0.056 0.051 0.049 0.046 0.052 0.051 0.068

2:2:1 E1 0.026 0.052 0.050 0.079 0.049 0.068 0.066 0.083 0.030 0.040 0.042 0.080
E2 0.031 0.051 0.049 0.037 0.041 0.059 0.057 0.047 0.046 0.058 0.056 0.062
E3 0.026 0.046 0.045 0.040 0.040 0.058 0.052 0.048 0.049 0.056 0.052 0.060
E4 0.029 0.044 0.042 0.042 0.031 0.046 0.045 0.035 0.030 0.044 0.038 0.044

3:2:1 E1 0.041 0.060 0.063 0.072 0.037 0.050 0.046 0.069 0.040 0.046 0.046 0.078
E2 0.032 0.055 0.057 0.054 0.035 0.046 0.043 0.049 0.034 0.044 0.042 0.042
E3 0.032 0.051 0.045 0.055 0.038 0.056 0.052 0.050 0.032 0.049 0.045 0.046
E4 0.033 0.047 0.053 0.050 0.032 0.059 0.057 0.052 0.038 0.050 0.048 0.038
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Table A2. Cont.

N = 200 N = 300 N = 400

Scen. nE :nR :nP Case SHT SRI SAI CC SHT SRI SAI CC SHT SRI SAI CC

(C) 2:1:1 E1 0.033 0.067 0.064 0.077 0.029 0.054 0.050 0.069 0.032 0.062 0.054 0.082
E2 0.043 0.059 0.056 0.051 0.048 0.047 0.047 0.066 0.050 0.058 0.052 0.064
E3 0.027 0.050 0.049 0.050 0.042 0.062 0.060 0.042 0.028 0.050 0.051 0.059
E4 0.028 0.051 0.051 0.043 0.026 0.044 0.042 0.042 0.026 0.046 0.045 0.050

2:2:1 E1 0.021 0.049 0.047 0.081 0.044 0.068 0.067 0.082 0.030 0.042 0.044 0.090
E2 0.026 0.047 0.043 0.037 0.039 0.058 0.056 0.060 0.024 0.040 0.042 0.054
E3 0.026 0.046 0.045 0.040 0.058 0.052 0.048 0.049 0.049 0.056 0.052 0.060
E4 0.029 0.044 0.042 0.042 0.031 0.046 0.045 0.035 0.030 0.044 0.038 0.044

3:2:1 E1 0.039 0.069 0.069 0.082 0.036 0.051 0.048 0.074 0.034 0.046 0.044 0.082
E2 0.039 0.058 0.055 0.065 0.037 0.045 0.047 0.052 0.034 0.044 0.042 0.042
E3 0.031 0.051 0.050 0.046 0.030 0.056 0.054 0.050 0.029 0.050 0.047 0.050
E4 0.029 0.050 0.052 0.048 0.036 0.058 0.060 0.058 0.031 0.044 0.044 0.045

Note: SHT, SRI, SAI and CC denote Wald-type test approaches based on IPW, terline regression imputation, AIPW
and CC, respectively.

Appendix A.3. Figures: Powers for Scenario (A) with a, n, Treatment Effects, Parameters α and γ

Figure A1 presents empirical powers against a = (µE−µP)/(µR−µP) for missingness
data mechanism models E1–E4 under the balanced designs, with n = 50, 100 and 150.
Figure A2 presents empirical powers against a = (µE − µP)/(µR − µP) for missingness
data mechanism models E1–E4 under the unbalanced designs with nE:nR:nP = 2:1:1.
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Figure A1. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against a for missingness data mechanism model E1 (left panel),
E2 (left second panel), E3 (right second panel) and E4 (right panel) for n = 50 (the first row), 100
(middle row) and 150 (the last row) under the balanced designs.



Mathematics 2023, 11, 246 20 of 26

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=120

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=120

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=120

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=120

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=200

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=200

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=200

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=200

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=280

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=280

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=280

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a 

P
ow

er

SHT
SRI
SAI
CC
0.05

 n=280

Figure A2. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against a for missingness data mechanism models E1 (left panel),
E2 (left second panel), E3 (right second panel) and E4 (right panel) for N = 120 (the first row), 200
(middle row) and 280 (the last row) under the unbalanced designs with nE:nR:nP = 2:1:1.

Figure A3 presents empirical powers against the sample size n for missingness data
mechanism models E1–E4 under balanced design for a = 0.4 and 0.6. Figure A4 presents
empirical powers against the sample size n for missingness data mechanism models E1–E4
under unbalanced design with nE:nR:nP = 2:1:1.
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Figure A3. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against the sample size n for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for a = 0.4
(upper row) and 0.6 (lower row) under balanced design.
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Figure A4. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against the sample size n for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for a = 0.4
(upper row) and 0.6 (lower row) under unbalanced design (nE:nR:nP = 2:1:1).

Figure A5 presents empirical powers against treatment effect αE1 for four missingness
data mechanism models E1–E4 under balanced design. Figure A6 presents empirical
powers against treatment effects αE1 for four missingness data mechanism models E1–E4
under unbalanced design with nE:nR:nP = 2:1:1.
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Figure A5. Cont.
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Figure A5. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against treatment effect αE1 for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for
(a, n) = (0.2,80) (the first row), (0.2,120) (the second row), (0.6,80) (the third row) and (0.6,120) (the
last row) under the balanced designs.
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Figure A6. Cont.
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Figure A6. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against treatment effect αE1 for missingness data mechanism
models E1 (left panel), E2 (left second panel), E3 (right second panel) and E4 (right panel) for
(a, n) = (0.2,200) (the first row), (0.2,320) (the second row), (0.6,200) (the third row), and (0.6,320) (the
last row) under the unbalanced designs with nE:nR:nP = 2:1:1.

Figure A7 presents empirical powers against the tilting parameter γ for three missing-
ness data mechanism models E2–E4 under balanced design. Figure A8 presents empirical
powers against the tilting parameter γ for three missingness data mechanism models E2–E4
under unbalanced design with nE:nR:nP = 2:1:1.
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Figure A7. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against γ for missingness data mechanism models E2 (the first
row), E3 (the middle row) and E4 (the last row) together with (a, n) = (0.2,80), (0.2,120), (0.6,80) and
(0.6,120), respectively, under the balanced designs.
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Figure A8. SHT, SRI, SAI and CC represent empirical powers evaluated from IPW, regression
imputation, AIPW and CC methods against γ for missingness data mechanism models E2 (the first
row), E3 (the middle row) and E4 (the last row) together with (a, n) = (0.2,200), (0.2,320), (0.6,200) and
(0.6,320), respectively, under the unbalanced designs with nE:nR:nP = 2:1:1.
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