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Abstract: Airborne transmission is the dominant route of coronavirus disease 2019 (COVID-19)
transmission. The chances of contracting COVID-19 in a particular situation depend on the local
demographic features, the type of inter-individual interactions, and the compliance with mitigation
measures. In this work, we develop a multiscale framework to estimate the individual risk of infection
with COVID-19 in different activity areas. The framework is parameterized to describe the motion
characteristics of pedestrians in workplaces, schools, shopping centers and other public areas, which
makes it suitable to study the risk of infection under specific scenarios. First, we show that exposure
to individuals with peak viral loads increases the chances of infection by 99%. Our simulations
suggest that the risk of contracting COVID-19 is especially high in workplaces and residential areas.
Next, we determine the age groups that are most susceptible to infection in each location. Then, we
show that if 50% of the population wears face masks, this will reduce the chances of infection by
8%, 32%, or 45%, depending on the type of the used mask. Finally, our simulations suggest that
compliance with social distancing reduces the risk of infection by 19%. Our framework provides
a tool that assesses the location-specific risk of infection and helps determine the most effective
behavioral measures that protect vulnerable individuals.

Keywords: COVID-19; airborne transmission; social force models; face masks; physical distancing;
hybrid modeling

MSC: 70-10; 92-08; 92-10; 92B05; 93A16

1. Introduction

Highly transmissible infectious diseases cause surges of infections and hospitalizations
which, overwhelms the healthcare capacity. The risk of getting infected with a particular
disease depends on the exposure to infectious individuals, which in turn, depends on the
contact patterns between individuals in particular locations [1]. In public areas, pedestrians
tend to keep a regular walking velocity and distance from other individuals. It was shown
that these motion characteristics vary depending on the location where the individuals
move [2]. Understanding the motion properties of pedestrians in different locations would
help us gain new insights into the factors that drive the transmission of infectious diseases,
such as the coronavirus disease 2019 (COVID-19), in different areas of activity.

Compartmental models are widely used in epidemiology to predict the temporal
evolution of epidemics [3–6]. Age-structured compartmental models use contact matrices
to calculate the rate of disease transmission. These matrices are usually calculated from sur-
veys where individuals report the average number of individuals with whom they were in
contact during a typical day [7–9]. Thus, these surveys rarely consider the temporal changes
that shape the patterns of social contacts due to holidays, weekends, non-pharmaceutical

Mathematics 2023, 11, 254. https://doi.org/10.3390/math11010254 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010254
https://doi.org/10.3390/math11010254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6148-5713
https://orcid.org/0000-0001-9479-0039
https://doi.org/10.3390/math11010254
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010254?type=check_update&version=2


Mathematics 2023, 11, 254 2 of 19

measures or seasonality. Recently, some studies addressed this limitation by studying the
effects of seasonality on human-to-human interactions on social contact patterns [10,11].
Still, conventional methods such as surveys do not accurately capture the effect of rush
hours and physical distancing on disease propagation [12]. Moreover, collecting surveys
requires a lot of time, effort and resources. To overcome these limitations, some researchers
resorted to using agent-based models and numerical simulations to create “synthetic popu-
lations” whose underlying contact patterns simulate social contact dynamics. For example,
a model was constructed to mimic a synthetic Italian society and was used to compute the
rates of daily contacts in various locations [13]. Another one used a similar approach to
quantify the contact mixing patterns of 26 European countries [14]. Both models study the
contact dynamics at the city and country levels but do not investigate mixing patterns in
specific places of daily activity.

Social force models are a class of mathematical models that are used to simulate the
movement of pedestrians in complex conditions such as crowded areas and panic situations.
In these models, Newton’s second law of dynamics is used to compute the movement
trajectories of pedestrians [15–17]. An important advantage of these models is that they are
physics-based and thus can be analyzed to gain insights into contact patterns in specific
locations. Social force models were also previously applied to study the transmission
dynamics of infectious diseases. Indeed, a social force model was applied to quantify the
impact of non-pharmaceutical interventions on indoor disease transmission [18]. We have
previously used a social force model to develop a multi-scale framework that describes
COVID-19 transmission dynamics [19–21]. This framework describes transmission through
respiratory droplets and contamination by infected surfaces. The characteristic times that
describe the evolution of the disease are sampled from the appropriate probabilistic distri-
butions. The model was used to gain insights into the epidemiological characteristics of
COVID-19 and the impact of non-pharmaceutical interventions (NPIs). Another important
feature of social force models is their ability to describe physical distancing. Indeed, these
models assume that individuals tend to keep an interpersonal distance from others. The
value of this distance depends on the social and cultural environment as well as the area of
activity [2,22]. Social force models are also able to accurately capture the effect of panic on
the motion of individuals.

Recent studies have shown that COVID-19 infects mainly through airborne transmis-
sion [23–25]. In this route of transmission, infectious individuals produce virus aerosols that
diffuse through the air as they talk, cough or sneeze. Large aerosols fall to the ground or
contaminate surrounding surfaces while smaller ones keep diffusing in the air for a longer
time and can infect susceptible individuals later on. To estimate the risk of infection upon
inhaling aerosols, dose-response models were developed to estimate the probability of
getting infected upon exposure to viral particles. Wells-Riley models estimate the risk in the
case where microbial suspension is well-mixed throughout the room [26–28]. This method
was used to evaluate the effectiveness of mitigation measures against tuberculosis [29].
Recently, it was also used to gain insight into COVID-19 transmission [30–32].

In this work, we develop a multi-scale modeling framework to estimate the risk of
infection in different locations such as workplaces, schools, shopping centers, residential
areas and public spaces. We begin by collecting data on the movement and demographic
features in each of these areas. Then, we incorporate these data into our multi-scale
framework, which combines a discrete agent-based model with a continuous model for
SARS-CoV-2 production, transmission and inhalation. We begin by applying the framework
to estimate the risk of infection in different locations. Then, we take advantage of the fidelity
of the framework to explore the risk of exposure to individuals with peak viral load. Lastly,
we quantify the impact of non-pharmaceutical interventions like face masks and physical
distancing and determine their effect on the risk of infection.
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2. Multiscale Modeling of Disease Transmission

In this section, we introduce a new multi-scale modeling framework that describes
COVID-19 transmission and infection. The framework relies on a social force model that
captures the movement of individuals in crowded areas. It uses a continuous model
to describe the concentration of aerosols in the surrounding environment as well as the
accumulation of the virus within individual hosts. The movement model was calibrated
using available data on the demographics of pedestrians and their movement features. The
chances of contracting the virus are estimated through a probability which depends on the
concentration of the inhaled virus.

2.1. Social Force Model of Pedestrian Movement

We describe the movement of individuals in specific locations by considering a social
force formalism. This framework considers each pedestrian as a particle which is subject to
different forces. It uses Newton’s second law of dynamics to calculate the displacement of
pedestrians. Social force models were first introduced by Helbing and Molnar [15]. Then,
they were used to study pedestrian flows in diverse conditions like bottleneck entrance
or panic situations. In our study, we use a previously validated version of social force
models that accurately describe the movement of individuals in crowded settings [33,34].
We describe the movement of each individual as in Figure 1:

Figure 1. Schematic representation of the model parameters defining the interactions between two
pedestrians described as blue disks. Each individual has a center xi and a radius ri. The distancing
separating the two individuals i and j is described dij, while we denote the distance separating an
individual from a wall w by diw. The desired velocity of each individual is vd,i and φij is the angle
between the direction of the desired velocity of i and the distance between the individual i and j.

mi
dvi
dt

= fsel f
i + fsoc

i + fobs
i , (1)

where mi is the mass of the individual, vi is their velocity, fsel f
i the self-driven force, that

describes the adaptation of the pedestrian movement speed to the desired velocity vd,i
given by:

fsel f
i = mi

vd,i − vi

τi
, (2)

vd,i = vd,i ed,i, (3)

where ed,i is the desired direction, τi is the relaxation time, which represents the needed
time for the pedestrian velocity to adapt to the desired speed (Figure 2). Next, we introduce
the social psychological force exerted by pedestrians towards each other. The original form
of this force was introduced by Helbing and Molnàr [15]. Then, it was modified in recent
studies to integrate avoidance between neighboring individuals and allow them to keep
the desired distance [33,35]:

fsoc
i = ∑ fsoc

ij , (4)
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where fsoc
ij is the social psychological force between the i-th and j-th individuals, given

as follows:

fsoc
ij =

{
Asoc exp

( dij−dsoc
βsoc

)(
γ + (1 − γ)

1+cos φij
2

)
eij, i f dij < dsoc

0, elsewhere
. (5)

Here, Asoc represents the magnitude of the social psychological force, dij is the distance
between the two pedestrians i and j, dsoc is the desired interpersonal distance which
describes the distance that individuals tend to keep between them, βsoc is the falloff length
of the social psychological force, γ describes the effect of interactions taking place behind
the individual, taken between 0 and 1 while φij represents the angle between the desired
velocity and the actual one. The interactions of each individual with the environment are
captured using the force fobs

iw , which is an exponential repulsive force that increases when
the individual get close to walls:

fobs
iw =

{
Aobs exp

(
diw−dobs

βobs

)
, i f diw < dobs

0, elsewhere
. (6)

Some parameters depend on the age and activity area (Table 1). Their values are provided in
Tables S1–S6 of the supplementary material. More details regarding the derivation of the
social force model are provided in previous studies [15,16,33,35].

Table 1. A summary of the model parameters and their dependency on age and the place of activity.
The source of each parameter is also provided.

Parameter Age-
Dependent

Activity Area-
Dependent Source

vd,i yes yes adapted to the demographic structure [36,37]

τi yes no [38,39]

dsoc yes yes adapted to the demographic structure [22]

dobs no no [35]

Asoc no no [33,35,40–43]

Aobs no no [33,35,40–43]

βobs no no [33,35,40–43]

βsoc no no [33,35,40–43]

γ no no [33]

mi yes no Moroccan population weight [44–47]

2.2. Parameterization of Population Movement Using Real Data

The social force model presents a physical description of the movement of a heteroge-
neous population of pedestrians. Hence, some parameters can be varied according to age or
location to accurately capture the walking pattern of pedestrians. Others will be taken con-
stant for all individuals such as the amplitude and falloff length of the social psychological
force (Asoc = 700 N; Aobs = 1000 N; βsoc = 0.8 m ; βobs = 0.8 m) [33,35,40–43].

We stratify the population according to 16 age groups of 5 years, corresponding to age
categories ranging from ‘0–5’ to ‘over 75’. We consider that the relaxation time depends
on the age according to previous studies [38,39]. The desired interpersonal distances
depend on the location and the cultural environment as well as the age of the individuals.
Age-specific interpersonal distances are taken according to the values estimated in the
literature [2,22]. We consider three types of interpersonal distances: intimate, personal
and social distances [22]. The intimate distance corresponds to lengths from 0 to 46 cm,
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personal distance represents interactions that keep a length between 46 cm and 122 cm,
and social distance refers to lengths from 122 to 210 cm. In our simulations, we consider
that individuals maintain intimate distances in residential areas and households, personal
distances in schools and workplaces, and social distances in shopping centers and public
spaces. Changes in the three distances caused by age are estimated in a previous study [22].
Here, we sample interpersonal distances from a Gaussian distribution fitted to data for
each age group (Tables S1–S5 in the Supplementary Material).

We also consider heterogeneity in the desired walking speed that depends on the age
of each individual, as well as the location where they walk. For the latter, we consider
estimates for walking speeds provided for educational, commercial, mixed, recreational,
residential and shopping areas [48] (Tables S1–S5 in the Supplementary Material). In these
estimates, residential and shopping areas displayed lower average walking speeds, while
educational places had the fastest walking speeds. Another study has shown that walking
speed was highest in workplaces and malls [36]. In our work, we use the estimates provided
by this study for all locations, except in the residential areas where we use the ones provided
by [37].

We sample the ages of the individuals from the Moroccan demographic structure [44–47]
(Table S6 in the Supplementary Material). For location-specific simulations, we sample
the ages from the distributions corresponding to demographics in the corresponding
location [49–53]. We consider the same density for all locations. A summary of collected
data is available in the supplemental Material.

2.3. Modeling Virus Diffusion and Disease Transmission
2.3.1. Virus Transport and Diffusion

We restrict our study to airborne transmission since it is considered to be the main
route of COVID-19 transmission [54–56]. The model accounts for both short-range and
long-range airborne transmission as some particles can linger in the air and travel for longer
distances while others shortly fall on the floor after their emission [56,57]. Here, we model
the transport and diffusion of the virus in the air following a cough or sneeze of an infectious
individual. We consider that whenever an individual coughs or sneezes, they produce a
concentration of the virus between 277 × 10−6 copies/cm3 and 36,030 copies/cm3 [58–60],
depending on their viral load, and within a diameter of d0 = 1 m. Then, the concentration
of viral particles is spread to the computational mesh using a radial-basis function [19–21]:

Wd(x) =

{
w
4

(
1 + cos

(
πd(x)

d0

))
, d ≤ d0

0, d ≥ d0
(7)

where d is the distance between the position of an infectious coughing person and the
surrounding points of the computational grid. We describe the concentration of the virus
in the air using the following equation:

∂Ca

∂t
(x, t) = D∆Ca(x, t) + αWd(x)− µCa(x, t), (8)

where Ca is the concentration of the virus at position x at time t, D is the virus diffusion
rate in the air which varies from 0.2 to 0.8 m2/s [57], α is the percentage of particles that
linger in the air following a cough or sneeze, taken equal to 0.585 [61] , and µ is the rate of
virus decay and deposition, considered to be equal to µ = 9.25 × 10−5 s−1 [62]. We apply
the Dirichlet boundary conditions Ca = 0 at the walls of the computational domains. Next,
we describe the inhaled concentration of SARS-CoV-2 by each susceptible individual:

dCacc,i

dt
= ρCa(xi, t)− γCacc,i. (9)

Here, xi and Cacc,i describe respectively the position of a susceptible person i and the
accumulated concentration of virus in his respiratory tract, ρ = 1.3 × 10−4 m3/s is the
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rate of virus inhalation [63] and γ = 1.9 × 10−6 s−1 is his virus clearance rate [64], due to
humidity or virus-specific antibodies.

We have considered that individuals change the direction of their movement once they
reach a boundary and we imposed a Dirichlet condition of Ca = 0 on the four boundaries.
This corresponds to the situation where there are impermeable walls surrounding the
computational domain.

2.3.2. Infection Probability

We use a Well-Riley model to estimate the risk of infection depending on the inhaled
concentration of the virus [32]:

Pa,i = 1 − exp(−Cacc,i I), (10)

where Pa,i is the risk of infection of a person i, Cacc,i is the concentration of virus that they
inhaled and we set I = 0.0069 m3/copies [32].

2.4. Settings of Numerical Simulations

We consider a computational domain corresponding to a space of 50 m × 50 m. At the
beginning of each simulation, 100 pedestrians are generated and randomly placed in the
domain with an initial velocity set to zero. The initial direction of their movement is chosen
to be random. Every 10 s, 30% of pedestrians alter their directions. We also consider that
individuals change the direction of their movement when they reach a boundary of the
domain. To ensure the robustness of the results and reduce stochastic noises, we assume
that infectious individuals have the same demographic and movement characteristics in
all simulations. We consider that the ratio of infectious people corresponds to 3% of the
population as estimated in Morocco [65,66]. Therefore, three agents are considered to be
infectious, and their locations are chosen randomly in each simulation. A snapshot of a
numerical simulation is provided in Figure 2. To further calibrate the model, we conduct
a sensitivity analysis where we explore the effects of the variable parameters, such as
inhalation rate, diffusion coefficient, and movement velocity on the average absorbed virus
(Appendix A).
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Figure 2. A screenshot of a numerical simulation showing the location of pedestrians and the
concentration of the virus in the air. White circles describe susceptible individuals. Pink and green
ones represent infectious and infected individuals, respectively. The size of each individual correlates
with its weight. The green to yellow gradient describes the concentration of the virus in the air.
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2.5. Computer Implementation

The model was implemented using the software Matlab. The code uses an object-orient
programming paradigm to efficiently couple within- and between-host processes. The CPU
time of each simulation corresponding to 10 min of physical time is approximately 2 h on a
standard computer with an i5 processor and 16GB RAM.

3. Results
3.1. Risk of Contracting SARS-CoV-2 Depending on the Age and the Location
3.1.1. Average Infection Risk in Different Areas of Activity

We introduce three infectious individuals that release a viral load w = 637, 000 copies/m3

per second [60]. We run numerical simulations for 10 min; each simulation is repeated
multiple times and the median values and 95% confidence intervals are calculated in each
case. We set the diffusion coefficient of D = 0.05 m2/s, [57]. We estimate the average
risk of infection in individuals moving at different places of activity. To achieve this,
we calculate the average concentration of inhaled SARS-CoV-2. Figure 3A shows the
accumulated inhaled concentration in different locations of activity. Simulations show
that individuals moving in residential areas inhale a higher concentration of the virus
(Cacc = 9286 ± 386 copies). Individuals moving into workplaces accumulate roughly
21.16% fewer virions than in residential areas (Cacc = 7281 ± 110 copies). While people
who move in schools inhale Cacc = 6573 ± 190 copies, which is approximately 8.9% fewer
than what individuals inhale when in workplaces. Finally, moving in public spaces and
shopping results in inhaling 5.3% fewer virions than in schools. The distribution of the
inhaled concentration is represented in Figure 3B. It shows that the concentration follows
a Gaussian distribution with a reduced standard deviation for public spaces, shopping
centers, schools, and workplaces and a higher standard deviation for residential areas.

(A)

d
e

n
s
it
y
 o

f 
p

ro
b

a
b

ili
ty

(B)

Shopping center

Residential area

School

Public space

Workplace

Figure 3. The average SARS-CoV-2 inoculum in different activity areas. (A) The mean Cacc in each
place of activity, the black ribbons describe the 95% confidence intervals. (B) The distribution of the
inhaled virus concentration among individuals in different locations.

Reduced interpersonal distance is generally associated with increased inhalation of
the virus. In residential areas, the interpersonal distance is the lowest among all places
(dsoc = 0.46 m). The effect of the desired velocity depends on the diffusion coefficient, as
shown in Appendix A.2. For the considered value, increasing the desired velocity decreases
the inhaled concentration. For example, the desired velocity in residential areas, where
inhalation is maximal, is equal to vd,i = 1.42 m/s, while it is estimated at vd,i = 1.25 m/s in
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schools. Table 2 represents the average and standard deviation of the inhaled concentration
in each area as well as the interpersonal distance and the desired velocity.

Table 2. The average and standard deviation (SD) inhaled viral charge (Cacc) in each place of activity.
We also provide the social-psychological distance (dsoc) and the desired walking speed (vd,i) in
each area.

Place Shopping Center Residential Area School Public Space Workplace

average Cacc 6257 9286 6573 6260 7281

SD Cacc 97.6 386 190 128 109

dsoc (m) 2.18 0.46 1.35 2.18 1.42

vd,i (m/s) 1.37 1.42 1.25 1.28 1.40

3.1.2. Age-Specific Risk of Infection in Each Location

We consider the same simulation settings and we estimate the average inhaled con-
centration of SARS-CoV-2 for each age group in the five locations. Results in Figure 4A–E
show that in shopping centers, the age groups 25–30, 40–45, and 45–50 are more likely to
be infected. Results in Figure 4A–E show that in shopping centers, the age groups of 25
to 45 years are more likely to be contaminated. In residential areas, the age groups 15–20,
35–40, and 55–60 are at a higher risk of infection. Simulations of pedestrian movement in
schools reveal that the age groups 15–20, 20–25, and 30–35 are more exposed to the infection.
While the most susceptible age groups to infection in public spaces are 10–15, 50–55, and
65–70. Finally, the age groups 15–20, 30–35, and 60–65 are at higher risk of infection in
workplaces.
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(B)                                           
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(C)                                           
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Figure 4. Average number of inhaled virus particles per age group in different locations of activity.
(A–E) The average inhaled concentration (Cacc) by age group in shopping centers, residential areas,
schools, public spaces, and workplaces. (F–J) Scatterplot of the inhaled concentration Cacc and the
weight in shopping centers, residential areas, schools, public spaces and workplaces.
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We investigate the association between the weight of individuals and the risk of
infection. The data presented in Figure 4F–J show that individuals with increased weight
inhale relatively more virions. Although it is difficult to establish a clear relationship
between their desired velocity, interpersonal distance and their susceptibility to inhale
the virus.

3.2. Exposure to Individuals with Peak Viral Load Significantly Upregulates the Risk of
Getting Infected

The viral load can be different depending on the course of the infection as well as
the vaccination and health status of the infectious individual. Several studies have es-
timated the viral load at different stages of the infection [58–60]. Collected saliva from
COVID-19 patients indicated that the viral load is 3.3 × 106 copies/mL [58]. Other stud-
ies have reported an average viral load of 7 × 106 copies/mL with peak values reach-
ing 2.39 × 109 copies/mL [59]. While some experimental works estimated that infec-
tious individuals release a viral concentration that ranges from 49 × 10−7 copies/cm3 to
0.637 copies/cm3 [60]. In this section, we estimate the accumulated inhaled concentration
(Cacc) by susceptible individuals under three scenarios: (a) exposure to three infectious
individuals with typical viral load who emit a concentration of w = 4.9 copies/m3 when
breathing and w = 277, 000 copies/m3 during coughs. We supposed that these individu-
als produce two series of coughs after 3 and 6 min of the simulation start. (b) exposure
to three infectious individuals who only breathe but emit higher viral concentrations of
w = 637, 000 copies/m3, (c) exposure to three highly infectious individuals with higher
viral load who breathe and cough and emit w = 637, 000 copies/m3 during breathing and
w = 277, 000 copies/m3 when they cough.

We run numerical simulations using standard parameters that consider the demo-
graphic features of the Moroccan population (Table S6 of the Supplementary Material). We
consider that all individuals tend to keep an interpersonal distance of 1.22 m and move
with a desired velocity equal to 1.34 m/s. Simulations were conducted for 10 min and
repeated multiple times to ensure that stochastic noises do not change the outcome and
three infectious individuals are chosen randomly in each simulation. Figure 5 shows the
average accumulated concentration of the virus under scenarios (a), (b) and (c) in the log
scale. These simulations suggest that the viral concentration inhaled is maximal in scenario
(c), with individuals inhaling Cacc = 9.32 × 106 ± 6.27 × 105 copies on average. In scenario
(b), we estimated that individuals inhale Cacc = 7308 ± 174 copies on average, while the
average individual accumulates a concentration of Cacc = 69 ± 3.5 copies in scenario (a).

1 2 3
0

5

10

15

20

25

30

lo
g
(C

a
c
c
)

(a) Typical emitter breathing and coughing

(b) High emitter breathing

(c) High emitter breathing and coughing

95 % Confidence interval

Figure 5. The inhaled concentration of SARS-CoV-2 following exposure to three infectious individuals
who emit different concentrations of the virus. The risk of infection is estimated in three scenarios
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where desired interpersonal distances and desired velocities are homogeneous dsoc = 1.22 m,
vd,i = 1.34 m/s. The considered scenarios are: (a) typical emitters breathing and making two series
of coughs at minutes 3 and 6 of the simulation time. When breathing, they release w = 4.9 copies/m3

and when they cough they produce the concentration w = 277,000 copies/m3, (b) high emitters of
SARS-COV-2 who only breathe while moving w = 637,000 copies/m3, (c) high emitters breathing and
making two series of coughs at different moments. When breathing, they release 637,000 copies/m3

and when they cough, they emit w = 36,030 × 106 copies/m3. The average Cacc is estimated for each
scenario. 95% confidence intervals are represented as error bars.

3.3. Impact of Non-Pharmaceutical Interventions on the Individual Risk of Infection
3.3.1. Mask Wearing Protects against SARS-CoV-2 Infection Depending on the Compliance
Level and the Type of the Used Masks

We investigate the impact of face masking on the risk of infection by considering the
effectiveness of three types of face masks in blocking transmission: N95 respirators, surgical
masks, and cover clothes. Since not all individuals comply with mask wearing, we assume
that only a percentage of these individuals wear masks. In this regard, we run several
numerical simulations where the percentage of people wearing masks is varied. Several
studies were conducted to estimate the filtering ability of face masks. It was shown the
aerosol filtering capacity of face masks is 83–99% for N95 respirators, 42–88% for surgical
masks, and 16–23% for cover clothes [67]. In our simulations, we consider the average
filtering capacity for each face mask type: 91% for respirators, 65% for surgical masks, and
19.5% for cover clothes. We estimate the reduction of the probability of infection as follows:

Ds = 1 − average Pa,i when a portion is wearing masks
average Pa,i when no one is wearing masks

. (11)

We consider simulations where individuals wear different types of masks and are
exposed to three infectious individuals for 10 min. In particular, we study three scenarios
where 25%, 50%, and 75% of the population are wearing masks. The results are shown in
Table 3. Our simulations were repeated multiple times and the obtained results suggest that
when these individuals wear N95 respirators, the reduction in the probability of infection
corresponds to Ds = 23%, 45%, and 68% when 25%, 50%, and 75% of the individuals
wear masks. When individuals wear surgical masks, simulations show a reduction in the
probability of infection by 15%, 32% and 49%, when 25%, 50% and 75% of individuals
comply to mask wearing mandates. Finally, when individuals wear cover clothes, we
estimated that the reduction in infection probability corresponds to 5%, 8% and 13%,
when 25%, 50% and 75% of individuals wear masks. The resulting reductions in infection
probabilities are compared in Figure 6.

Table 3. The average probabilities of infection when different proportions of individuals wear N95
respirators, surgical masks, or cover clothes.

Percent of Individuals Wearing Mask N95 Surgical Mask Cloth Mask

75 68 49 13

50 45 32 8

25 23 15 5
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Figure 6. The estimated reduction in the average risk of infection as a function of compliance to mask
wearing and the type of used masks. The average reduction in the infection probability was estimated
for several simulations where proportions of individuals wear masks with different filtering efficacy.

3.3.2. Physical Distancing Has Limited Effect on Reducing the Risk of Airborne Transmission

The risk of infection can be minimized if pedestrians keep a certain distance between
them. To investigate the impact of physical distancing on the individual risk of infection,
we run several numerical simulations where we change the interpersonal distance and
estimate the probability of infection. We set the desired movement velocity to 1.34 m/s
for all pedestrians in all simulations [15,68,69] and vary the interpersonal distance from
0.5 m to 1.83 m, which corresponds to the recommended distance that individuals should
keep [70]. In all simulations, we consider that three infectious individuals are randomly
chosen and that they continuously release a typical viral concentration of w = 277 copies/m3

w = 637,000 copies/m3.
As expected, increasing the interpersonal distance decreases the probability of infection

(Figure 7). As we increase the interpersonal distance, the probability of infection goes from
0.54 for dsoc = 0.5 m to 0.435 dsoc = 1.83 m, while the inhaled virus concentration goes
from 7685 copies/m3 for dsoc = 0.5 m to 6065 copies/m3 dsoc = 1.83 m. This suggests that
the physical distancing could reduce the chances of getting infected by only 19%, and
the average inhaled concentration by 21%. It is important to note that our work only
considers airborne transmission. Other routes of transmission such as direct contact can be
significantly stopped by physical distancing.
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Figure 7. Impact of social distancing on the individual chances of infection. The average inhaled
concentration of the virus infection as a function of the interpersonal distance (dsoc). Intervals indicate
95% confidence intervals.

4. Discussion

Airborne transmission is the main route of transmission of COVID-19 [23–25]. It con-
sists of the inhalation of aerosols produced by infectious individuals. The chances of
inhaling SARS-CoV-2 particles depend on exposure to infectious individuals as well as
the underlying interaction patterns in the area of activity. To model airborne transmission
in different social settings, we combine a crowd dynamics framework with a continuous
model that describes virus shedding, diffusion and accumulation. The hybrid approach
allows the estimation of the chances of both short-range [54–56] and long-range airborne
transmission [56,57]. Furthermore, we compute the inhaled concentration of SARS-CoV-2
by each individual to estimate their risk of getting infected. One of the main features of the
model is that it incorporates the effect of the mass on the movement of individuals. The
mass determines the resistance of individuals to changes in their velocity due to inertia.
Further, it regulates the speed by which they adapt their velocity to the desired speed.
The model was parameterized using data that reflect social and demographic features of
movement in different locations. Then, it was used to gain insights into the age-specific
and weight-specific risks of getting infected in several areas of activity. Simulations have
shown that residential areas and households represent the area where the risk of infection is
high, while shopping centers and public spaces represent locations with reduced infection
chances. In general, younger adults were the ones who are at a higher risk of infection in
residential areas, schools and shopping centers, while both younger and older adults were
at risk in workplaces and public spaces. In residential areas, the age groups 15–20, 35–40,
and 55–60 are at a higher risk of infection. Simulations of pedestrian movement in schools
reveal that the age groups 15–20, 20–25, and 30–35 are more exposed to the infection. The
most susceptible age groups to infection in public spaces, meanwhile, are 10–15, 50–55, and
65–70. The age groups 15–20, 30–35, and 60–65 are at higher risk of infection in workplaces.
In the shopping center, the age groups of 25 to 45 years are more likely to be contaminated.
These results could be attributed to differences in the relative population, movement speed
and preferred interpersonal distance of each age group.

A report has shown most COVID-19 reported cases in Morocco correspond to individ-
uals from 40 to 65, followed by people in the range 25–40 [71]. To compare these results
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with our model’s predictions, we have merged the results of the five places of activity and
illustrated them in Figure 8A, while we have shown data extracted from [71] in Figure 8B.
In the report of the Moroccan Ministry of Health from 2020 the age group most likely to be
contaminated is 25–40 followed by 40–65, and 15–25, respectively. In our study, the most
susceptible age group is 15–25 followed by the age groups 25–40 and 40–65, respectively.
This difference could be explained by the assumption that the movement of younger indi-
viduals under 40 is characterized by high desired speeds and low desired distances. Both
studies suggest that the age group 15–65 is the most susceptible to infection. Furthermore,
our simulations suggest that overweight people are at a high risk of getting infected due
to a higher exposure period to virus particles. The association between a high body mass
index and the risk of contracting COVID–19 was demonstrated in previous works [72,73].
The high exposure period could be explained by their reduced walking speed. The high
exposure period could be an explanation for this result.
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Figure 8. Comparison of our age groups that are most likely to be infected with the data reported by
the Moroccan Ministry of health on 2020. (A) The estimated average inhaled virus concentration (Cacc)
in all places of activity per age group, calculated using our model. (B) The probability of infection per
age group according to the Ministry of health report [71].

Next, we studied the effect of exposure to infectious individuals with peak viral loads.
This question was motivated by the heterogeneity in the viral loads of COVID-19 patients,
which depends on the progression of the infection as well as the health and vaccination
status of the patient. To estimate the individual risk of infection, we run several simulations
where a susceptible population is exposed to infectious individuals with normal and
peak viral load values. The results show that exposure to individuals with peak viral
load increases the average inhaled concentration by over 99%. This agrees with previous
studies suggesting that infectious individuals with peak viral loads can be the drivers of
superspreading events [74].

Finally, we have studied the impact of mask wearing and physical distancing on the
transmission of COVID-19. Using estimates for the filtering capacity of different masks [67,75],
we calculated the probability of infections when proportions of the population wear N95
respirators, surgical masks or cloth masks. Our simulations show that the use of N95
respirators, surgical masks, and cloth covers by half of the population decreases the risk
of infection by roughly 45%, 32%, and 8%. The impact of physical distancing was also
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explored by our model. Numerical simulations suggest that if all individuals comply with
physical distancing, this will reduce the probability of getting infected by 19%. These results
suggest that physical distancing has a limited impact on stopping airborne transmission.
This is probably because of the long-range airborne transmission. As a result, ventilation
and face masking should be adopted as the primary measures for stopping COVID-19
airborne transmission indoors [76].

It is important to note that the study relies on a few limitations. First, the model
was parameterized to describe the movement of Moroccans in different areas of activity
in order to make the conclusions useful for local public health officials. However, we
had difficulty finding all data on the movement of the Moroccan population and we had
to use values corresponding to other countries in some cases. However, the objective
is not to give accurate predictions for the movement patterns in Morocco, but rather to
present a framework which can be readily used to estimate the individual risk of infection
in different settings. Another limitation concerns uncertainties on the values of some
parameters such as the diffusion coefficient of aerosols and the uptake rate. There exist
different estimates for these parameters in the literature. To gain insight into the effect of
these uncertainties on the findings of our study, we conducted a sensitivity analysis for
key parameters. We present the main results of this sensitivity analysis in the Appendix A.
Another limitation concerns the considered boundary conditions. While we restricted our
study to the situation where individuals are trapped in the computational domain and
cannot leave it, it is possible to use the same frameworks to study other situations where
there is an inflow and outflow of pedestrians like corridors [77]. The reason behind our
choice was to allow the interpretation of the obtained results. Finally, the considered model
does not consider the effect of collective motion. It is possible that the movement of some
individuals would be affected by the motion of a subgroup of individuals to whom they
belong [78]. Incorporating such effects would increase the fidelity of the model. However,
it will also make the obtained results harder to interpret. In the future, we will use the same
framework to identify the most effective intervention measures for each location and under
a wide range of plausible scenarios regarding individuals’ motion and infection.

Supplementary Materials: The software code is available at https://www.mdpi.com/article/10.339
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Appendix A. Sensitivity Analysis

Appendix A.1. Effects of the Inhalation and Degradation Rates

In this section, we assess the effect of mask wearing on virus exposure and inhalation.
We consider that each individual moves with a velocity equal to 1.34 m/s [15,68,69] and
tends to keep a personal distance of 1.22 m from other individuals [2]. Other parameters
related to the distribution of the mass and relaxation time are available in Table S6 of the
supplementary material. In the simulations, we consider that individuals who do not wear
face masks inhale the virus and eliminate it at the same rates, regardless of their age or
weight. We set the viral load of all infectious individuals to w = 1248 copies/cm3.

To estimate the effect of mask wearing, we run several numerical simulations where
we compute the effect of the virus inhalation and elimination rates during five minutes

https://www.mdpi.com/article/10.3390/math11010254/s1
https://www.mdpi.com/article/10.3390/math11010254/s1
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(Figure A1). As expected, increasing the inhalation rate significantly increases the average
absorbed virus, while upregulating the elimination rate reduces it. In particular, simulations
show increasing the elimination rate delayed the onset of the accumulation of the virus.

(A) (B)

Figure A1. The impact of the virus inhalation and virus clearance rates. (A) The average Cacc for
three values of the inhalation rate ρ = 1.3 × 10−5, 1.3 × 10−5, 2 × 10−3 m3/s. (B) The average Cacc

for three values of the virus clearance rate ρ = 1.9 × 10−6, 1.9 × 10−4, 3 × 10−2 s−1.

Appendix A.2. Impact of the Coefficient of Diffusion, Velocity and Interpersonal Distances on the
Risk of Infection

We investigate the impact of the diffusion coefficient D of virus particles in the air on
the risk of infection. Three infectious persons are randomly chosen among the populations
with a viral load equal to w = 277 copies/cm3. We consider that all individuals move
with a velocity 1.34 m/s [15,68,69] and tend to maintain a personal distance of 1.22 m [2].
Other parameters such as the weight and the relaxation time are provided in Table S6 of
the supplementary material. Results shown in Figure A2 suggest that higher diffusion of
viral particles leads to decreased concentration of the absorbed virus on average. High
values of the diffusion coefficient imply frequent long-range airborne transmission [57].
This constitutes a threat for long exposure time in the presence of a COVID-19 high emitter
who emits 36,030 copies/cm3 during a cough [60].

0 200 400 600 800 1000 1200

0

2

4

6

8

10

12

14

0.005 m
2
/s

0.05 m
2
/s

0.1 m
2
/s

1 m
2
/s

1.5 m
2
/s

Figure A2. The impact of diffusion coefficient on the accumulation of the virus. Other parameters are
fixed and the considered population is homogeneous.
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Appendix A.3. Impact of the Walking Velocity on Virus Contraction

We continue our investigation by assessing the impact of the velocity. We set the
desired distance for all individuals to 1.22 m [2] and vary the velocity from 0.5 m/s to
1.66 m/s. Results show the diffusion coefficient modulates the relationship between velocity
and risk of infection: for high diffusion coefficient values, individuals who walk fast do not
accumulate a high concentration of the virus (Figure A3A). As discussed in the previous
section when D is high, particles travel long distances (>3 m) so this results in a reduction
of the exposure time to the virus when a susceptible person moves faster. For low values of
D an increase in the velocity increases Cacc in Figure A3B. Indeed, the number of contacts
raises when the velocity increases. This situation is similar to rush hours in metro stations.
A previous study raises the uncertainty about atmospheric diffusivity so the value of D
presents some variability [57]. In another study [79], it was reported that the diffusion
coefficient depends on environmental conditions.
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Figure A3. Impact of the walking velocity on the risk of infection in a homogeneous population
dsoc = 1.22 m; with three infectious persons who continuously release a viral load w = 277 copies/m3.
The coefficient of diffusion moderates the relationship between velocity and risk of infection. We
represent the impact of the velocity on Cacc for a diffusion coefficient D = 0.5 m2/s (A). and the
impact of the velocity on Cacc for D = 0.01 m2/s (B).
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