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Abstract: This paper examines two subclasses of multivalent analytic functions defined with higher-
order derivatives. These classes of functions are generalizations of several known subclasses that have
been studied in separate works. Moreover, we find several interesting results for functions in these
classes, including subordination results, containment relations, and integral preserving properties.
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1. Introduction

Let Ap denote the family of analytic functions z be defined in the open unit disc
U = {z : |z| < 1} of the complex plane C with the following form:

z(z) = zp +
∞

∑
l=p+1

alzl , (1)

where p ∈ N = {1, 2, . . .}. Additionally, let A1 := A. If there exists a Schwarz function ω
analytic in U with ω(0) = 0 and |ω(z)| < 1, such that z(z) = g(ω(z)), then we say that
the function z is subordinate to g in U, expressed as z(z) ≺ g(z), (or simply z ≺ g). The
subordination is identical to z(0) = g(0) and z(U) ⊂ g(U) if the function g is univalent in
U. A function z ∈ Ap is said to be in the class S∗p,k(α) if it satisfies the inequality

< zz(k+1)(z)

(p− k)z(k)
(z)

> α (0 ≤ α < 1, z ∈ U), (2)

where p > k, p ∈ N, and k ∈ N0 := N∪ {0}. Additionally, A function z ∈ Ap is said to be
in the class Kp,k(α) if it satisfies the following inequality

<

(
zz(k+1)(z)

)′
(p− k)z(k+1)(z)

> α, (0 ≤ α < 1, z ∈ U). (3)

The classes S∗p,k(α) and Kp,k(α) were introduced and studied by Nunokawa [1] and Srivas-
tava et al. [2] (see also [3–9]). We note that, S∗1,0(α)

∼= S∗(α) and K1,0(α) ∼= C(α), where
S∗(α) and C(α) are the well known families of starlike and convex functions of order
α(0 ≤ α < 1), respectively, introduced by Robertson [10]. It is assumed in the sequel that ϕ
is an analytic and convex function with a positive real part in the open unit disc U, satisfies
ϕ(0) = 1, ϕ

′
(0) > 0, and ϕ(U) is symmetrical with respect to the real axis. In [11], Ali et al.
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defined the classes Sn
p,k(ϕ) and Cn

p,k(ϕ) consist, respectively, of Ma–Minda type starlike
and convex p-valent functions z with higher-order derivatives given by

Sp,k(ϕ) =

{
z ∈ Ap :

zz(k+1)(z)

(p− k)z(k)
(z)
≺ ϕ(z) (z ∈ U)

}

and

Cp,k(ϕ) =

z ∈ Ap :

(
zz(k+1)(z)

)′
(p− k)z(k+1)(z)

≺ ϕ(z) (z ∈ U)

.

Here, we introduce the class Sα
p,k(ϕ), which unifies the classes Sp,k(ϕ) and Cp,k(ϕ)

as follows:

Definition 1. Denote by Sα
p,k(ϕ) the family of functions z ∈ Ap satisfying the following

condition

1
p− k

αz
(

zz(k+1)
(z)
)′

+ (1− α)zz(k+1)(z)

αzz(k+1)
(z) + (1− α)z(k)

(z)
≺ ϕ(z) (α ≥ 0, z ∈ U). (4)

Remark 1. 1. S0
p,k(

1+(1−2β)z
1−z ) ∼= Sp,k(ϕ), and S1

p,k(
1+(1−2β)z

1−z ) ∼= Cp,k(ϕ),

2. Sα
p,0(

1+(1−2β)z
1−z ) ∼= T(p, α, β) (see Wang et al. [12]),

3. Sα
1,0(

1+(1−2β)z
1−z ) ∼= K(β), where K(β) is the class of β-starlike functions introduced by Pascu

and Podaru [13].

A function z ∈ A is said to be starlike with respect to symmetrical points in U if
it satisfies,

<
{

zz
′
(z)

z(z)−z(−z)

}
> 0 (z ∈ U).

Sakaguchi [14] introduced and studied this class. In addition, Shanmugam et al. [15],
Lashin [16], Khan et al. [17], and Mahmood et al. [18] have studied some related classes.

For a given positive integer n, let

zn(z) : =
1
n

n−1

∑
υ=0

ε−υpz(ευz)

= zp + ap+nzp+n + ap+2nzp+2n + . . .
(

ε = exp(
2πi
n

), z ∈ U
)

. (5)

Let Sn
p,k(ϕ) be the class of functions z ∈ Ap satisfying

zz(k+1)(z)

(p− k)z(k)
n (z)

≺ ϕ(z) (z ∈ U).

Also, let Cn
p,k(ϕ) be the class of functions z ∈ Ap satisfying

(
zz(k+1)(z)

)′
(p− k)z(k+1)

n (z)
≺ ϕ(z) (z ∈ U).

The classes Sn
p,0(ϕ) ∼= Sn

p(ϕ) of p-valent starlike functions with respect to n-symmetric
points and Cn

p,0(ϕ) ∼= Cn
p(ϕ) of p-valent convex functions with respect to n-symmetric

points were recently introduced and studied by Ali et al. [19]. Moreover, the classes
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Sn
1,0(ϕ) ∼= Sn

s (ϕ) and Cn
1,0(ϕ) ∼= Cn

s (ϕ), which were studied by Miller and Mocanu ([20]
page 314) and Wang et al. [21]. Following them, many authors discussed these classes and
its subclasses (see [22–32]).
The following class Sn,α

p,k (ϕ) unifies the two above classes Sn
p,k(ϕ) and Cn

p,k(ϕ).

Definition 2. Let zn be the family of functions defined by (5). By Sn,α
p,k (ϕ), we denote the family of

functions z ∈ Ap satisfying

1
p− k

αz
(

zz(k+1)
(z)
)′

+ (1− α)zz(k+1)(z)

αzz(k+1)
n (z) + (1− α)z(k)

n (z)
≺ ϕ(z) (α ≥ 0; z ∈ U). (6)

Remark 2. With the appropriate selection of p, k, n, α, and ϕ in Definition 2, the following known
subclasses are obtained.

1. Sn,0
p,k(ϕ) ∼= Sn

p,k(ϕ) and Sn,1
p,k(ϕ) ∼= Cn

p,k(ϕ),

2. Sn,0
1,0 (ϕ) ≡ Sn

s (ϕ) and Sn,1
1,0 (ϕ) ≡ Cn

s (ϕ),
3. The class Sn,α

1,0 (ϕ) is equivalent to the class Kn(α, ϕ) of α-starlike functions with respect
to n-symmetric points introduced by Paravatham and Radha [33],

4. If we put n = 2, α = 0, and ϕ = 1+z
1−z then S2,0

1,0(
1+z
1−z ) is equivalent to the class Ss of

starlike functions with respect to the symmetrical points introduced by Sakaguchi [14].

Definition 3. A function z ∈ Ap is said to be α-close to convex of higher order with respect to n-
symmetric points if it satisfies,

1
p− k

αz
(

zz(k+1)
(z)
)′

+ (1− α)zz(k+1)(z)

αzς
(k+1)
n (z) + (1− α)ς

(k)
n (z)

≺ ϕ(z) (α ≥ 0; z ∈ U),

where ςn(z) = 1
n

n−1
∑

υ=0
ω−pυς(ωυz) with ς(z) ∈ Sn,α

p,k (ϕ) . We denote this class by Kn,α
p,k (ϕ).

Using techniques involving differential subordination, we examine some interesting
subordination criteria and inclusion relations, as well as integral operators for functions be-
longing to the class Sn,α

p,k (ϕ). In addition, we discuss some properties of functions belonging
to the class Kn,α

p,k (ϕ).

2. Preliminary Lemmas and Some Properties of Sα
p,k(ϕ) and Sp,k(ϕ)

The two lemmas below are often used in our subsequent investigations.

Lemma 1 ([33]). Let α, σ any two complex numbers, and ϕ be convex and univalent in U with
ϕ(0) = 1 and <[αϕ(z) + σ] > 0. Also let Q analytic in U with Q(0) = 1 and Q(z) ≺ ϕ(z). If
ρ = 1 + ρ1z + . . . , analytic in U, then

ρ(z) +
zρ
′
(z)

αQ(z) + σ
≺ ϕ(z) ⇒ ρ(z) ≺ ϕ(z). (z ∈ U).

Lemma 2 ([34]). Let α, σ any two complex numbers, and ϕ be convex and univalent in U with
ϕ(0) = 1 and <[αϕ(z) + σ] > 0. If ρ = 1 + ρ1z + . . . , analytic in U, then

ρ(z) +
zρ
′
(z)

αρ(z) + σ
≺ ϕ(z) ⇒ ρ(z) ≺ ϕ(z) (z ∈ U).
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Proposition 1. Let z ∈ Ap and < 1
α [(p − k)αϕ(z) + 1 − α] > 0. If z ∈ Sα

p,k(ϕ), then
z ∈ Sp,k(ϕ).

Proof. Let

h(z) :=
zz(k+1)(z)

(p− k)zz(k)
(z)

, (7)

then the function h is of the form h(z) = 1 + h1z + . . . . By taking the derivatives in the
both sides of (7), we obtain

1
p− k

αz
(

zz(k+1)
(z)
)′

+ (1− α)zz(k+1)(z)

αzz(k+1)
(z) + (1− α)z(k)

(z)
= h(z) +

αzh
′
(z)

(p− k)αh(z) + 1− α
.

If we apply Lemma 2 with β = p− k and δ = 1−α
α , then

zz(k+1)(z)

(p− k)zz(k)
(z)

= h(z) ≺ ϕ(z).

Proposition 2. Let <(c) > −p and <[(p− k)ϕ(z) + k + c] > 0. Also let z ∈ Ap and

ξ(z) = L[z(z)] =
c + p

zc

z∫
0

z(t)tc−1dt. (8)

If z ∈ Sp,k(ϕ) then ξ ∈ Sp,k(ϕ).

Proof. From (8) we obtain

zξ
′
(z) + cξ(z) = (c + p)z(z). (9)

Differentiating (9) k times we have

zξ(k+1)(z) + (k + c)ξ(k)(z) = (c + p)z(k)(z). (10)

If we set h(z) := zξ
(k+1)

(z)
(p−k)ξ(k)(z)

, then

h(z) +
zh
′
(z)

(p− k)h(z) + k + c
=

zz(k+1)
(z)

(p− k)z(k)(z)
.

Applying Lemma 2 with β = p− k and δ = k+ c now yields h(z) = zξ
(k+1)

(z)
(p−k)ξ(k)(z)

≺ ϕ(z).

3. Main Results

Throughout this section, inclusion relations for functions in classes Sn,α
p,k (ϕ) and Kn,α

p,k (ϕ)

are obtained. Bernardi integral operator is also discussed.

Theorem 1. Let the function z ∈ Ap belongs to the class Sn,α
p,k (ϕ), then the function zn defined

by equality (5) belongs to the class Sα
p,k(ϕ). Further, if < 1

α [(p− k)αϕ(z) + 1− α] > 0 and α 6= 0,
then zn ∈ Sp,k(ϕ).
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Proof. From the definition of Sn,α
p,k (ϕ), we have

1
p− k

αz
(

zz(k+1)
(z)
)′

+ (1− α)zz(k+1)(z)

αzz(k+1)
n (z) + (1− α)z(k)

n (z)
≺ ϕ(z) (α ≥ 0; z ∈ U). (11)

Since εn = 1, if we change z by ευz in (11) where υ = 0, 1, . . . , n− 1, then the left side of (11)
is equivalent to

1
p− k

αευz[z(k+1)
(ευz) + ευzz(k+2)

(ευz)] + (1− α)ευzz(k+1)(ευz)

αzευz(k+1)
n (ευz) + (1− α)z(k)

n (ευz)
, (12)

where z ∈ U. The following identities are immediately derived from the definition (5)
of zn. 

zn(ευz) = ευpzn(z),

ευ(k−p)z(k)
n (ευz) = z(k)

n (z) = 1
n

n−1
∑

ν=0
ευ(k−p)z(k)

(ενz).
(13)

Using (13), (12) becomes

1
p− k

αz[ευ(1+k−p)z(k+1)
(ευz) + zευ(2+k−p)z(k+2)

(ευz)] + (1− α)zευ(1+k−p)z(k+1)(ευz)

αzz(k+1)
n (z) + (1− α)z(k)

n (z)
.

By taking the summation relation to υ from 0 to n− 1, we find

1
n(p− k)

×
n−1

∑
υ=0

αz[ευ(1+k−p)z(k+1)
(ευz) + zευ(2+k−p)z(k+2)

(ευz)] + (1− α)zευ(1+k−p)z(k+1)(ευz)

αzz(k+1)
n (z) + (1− α)z(k)

n (z)

=
1

p− k

αz
(

zz(k+1)
n (z)

)′
+ (1− α)zz(k+1)

n (z)

αzz(k+1)
n (z) + (1− α)z(k)

n (z)
. (14)

Since z ∈ Sn,α
p,k (ϕ), then each the terms in the left-hand side of Equation (14) is subordinate

to ϕ(z). Therefore, there exists µ,
υs in U such that

1
p− k

αz
(

zz(k+1)
n (z)

)′
+ (1− α)zz(k+1)

n (z)

αzz(k+1)
n (z) + (1− α)z(k)

n (z)
≺ 1

n

n−1

∑
υ=0

ϕ(µυ) = ϕ(µo).

Since ϕ(U) is convex, we have µo ∈ U, and so zn ∈ Sα
p,k(ϕ). Since < 1

α [(p− k)αϕ(z) + 1−
α] > 0, it follows from Proposition 1 that zn ∈ Sp,k(ϕ).

Theorem 2 below shows that Sn,α
p,k (ϕ) ⊂ Sn,0

p,k(ϕ).

Theorem 2. Let < 1
α [(p− k)αϕ(z) + 1− α] > 0 with α 6= 0. If z ∈ Ap belongs to the class

Sn,α
p,k (ϕ), then we have z ∈ Sn

p,k(ϕ).

Proof. Let z ∈ Ap belongs to the class Sn,α
p,k (ϕ), and let

h(z) :=
zz(k+1)(z)

(p− k)z(k)
n (z)

, Q(z) =:
zz(k+1)

n (z)

(p− k)z(k)
n (z)

,
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then Theorem 1 gives Q(z) ≺ ϕ(z). It is easy to obtain that

1
p− k

αz
(

zz(k+1)
(z)
)′

+ (1− α)zz(k+1)
(z)

αzz(k+1)
n (z) + (1− α)z(k)

n (z)
= h(z) +

αzh
′
(z)

(p− k)αQ(z) + 1− α
.

Since z ∈ Sn,α
p,k (ϕ), then we have

h(z) +
αzh

′
(z)

(p− k)αQ(z) + 1− α
≺ ϕ(z).

If we apply Lemma 1, we get
h(z) ≺ ϕ(z),

which implies z ∈ Sn
p,k(ϕ), and this completes the proof.

Remark 3. 1. Putting p = 1, k = 0, and ϕ = 1+z
1−z in Theorem 2, we get the result obtained by

Wang et al. [12].
2. Putting p = 1, k = 0, α = 0, and ϕ = 1+z

1−z in Theorem 2, we get the result obtained by
Wang et al. [21].

3. Putting p = 1 and k = 0 in Theorem 2, we obtain the result obtained by Parvatham and
Radha [33].

Theorem 3. Let z ∈ Ap and <[(p− k)ϕ(z) + k + c] > 0, also, let ξ given by Equation (8) . If
z ∈ Sn

p,k(ϕ), then ξ ∈ Sn
p,k(ϕ).

Proof. Take into account the definition of zn(z) given by Equation (5) with ξ(z) instead

of z(z). Hence, ξn(z) = 1
n

n−1
∑

υ=0
ε−υpξ(ωυz), it is obvious that ξn(z) = c+p

zc

z∫
0
zn(t)tc−1dt.

Differentiating this equation with respect to z, we have

cξn(z) + zξ
′
n(z) = (c + p)zn(z). (15)

Differentiating (15) k times we get

zξ
(k+1)
n (z) + (k + c)ξ(k)n (z) = (c + p)z(k)

n (z). (16)

Also, from (8) we get

zξ(k+1)(z) + (k + c)ξ(k)(z) = (c + p)z(k)(z). (17)

Considering that z ∈ Sn
p,k(ϕ) then, by applying the first section of Theorem 1 when α = 0

we obt ainzn ∈ Sp,k(ϕ). Then, Proposition 2 gives ξn ∈ Sp,k(ϕ), or equivalently,

zξ
(k+1)
n (z)

(p− k)ξ(k)n (z)
≺ ϕ(z). (18)

If we let

h(z) :=
zξ

(k+1)
(z)

(p− k)ξ(k)n (z)
, (19)

and

Q(z) :=
zξ

(k+1)
n (z)

(p− k)ξ(k)n (z)
, (20)
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then, both the functions h and Q are analytic in U such that p(0) = Q(0) = 1 and Q(z) ≺
ϕ(z). Differentiating (17) and using (19), we obtain

h(z) +
zh
′
(z)

(p− k)Q + k + c
=

(c + p)zz(k+1)(z)

(p− k)[(p− k)Q + k + c]ξ(k)n (z)
.

On using (16), we see that

h(z) +
zh
′
(z)

(p− k)Q + k + c
=

zz(k+1)
(z)

(p− k)z(k)
n (z)

≺ ϕ(z).

Based on Lemma 1, we have h(z) ≺ ϕ(z), which ends the proof.

Theorem 4. Let < 1
α [(p− k)αϕ(z) + 1− α] > 0. Then, we have Kn,α

p,k (ϕ) ⊂ Kn,0
p,k(ϕ).

Proof. Let z ∈ Kn,α
p,k (ϕ). Setting

h(z) =:
zz(k+1)

(z)

(p− k)ς(k)n (z)
, Q(z) =:

zς
(k+1)
n (z)

(p− k)ς(k)n (z)
,

we obtain

1
p− k

αz
(

zz(k+1)
(z)
)′

+ (1− α)zz(k+1)(z)

αzς
(k+1)
n (z) + (1− α)ς

(k)
n (z)

= h(z) +
αzh

′
(z)

α(p− k)Q(z) + (1− α)
.

Theorem 1 gives us Q(z) ≺ ϕ(z) because ς(z) ∈ Sn,α
p,k (ϕ). Lemma 1 is once more applied to

produce h(z) ≺ ϕ(z), proving Theorem 4.

Remark 4. Putting p = 1 and k = 0 in Theorem 4, we reach the result obtained by Parvatham
and Radha [33].

4. Conclusions

Analytic p-valent functions were recently studied using higher-order derivatives. With
the higher-order derivatives, we defined two subclasses of analytic p-valent functions with
n-symmetric points, which unify the previously introduced and studied subclasses. This
paper aims to present several exciting subordination results, containment relations, and
integral preserving properties for functions in these classes. Some of our results extend
previously known results and some of our results are new. This work can be extended to the
classes of harmonic multivalent n-symmetric and meromorphic multivalent n-symmetric
type functions involving quantum calculus, as discussed in [35–39].
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