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1. Introduction

There are many Hermitian symmetric spaces of rank 2. For example, complex two-
plane Grassmannians and complex hyperbolic two-plane Grassmannians, which are de-
noted by G2(Cm+2) = SUm+2/S(U2Um) and G∗2 (Cm+2) = SUm,2/S(U2Um), respectively.
They are Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped
with the Kähler structure J and quaternionic Kähler structure J.

The complex quadric Qm = SOm+2/SOmSO2 is another kind of compact Hermitian
symmetric space different from the above ones. For m ≥ 2, the maximal sectional curvature
of Qm is equal to 4 (see [1,2]). It is the complex hypersurface in complex projective space
CPm+1 [3], and it is also a kind of real Grassmannian manifold with rank 2 [4]. So, we
know that apart from the Kähler structure J, there is another distinguished geometric
structure, namely, a parallel rank two vector field bundle A that contains an S1-bundle of
real structures, that is, complex conjugations A on the tangent spaces of Qm. The complex
conjugation A and the Kähler structure J anti-commute with each other, that is, AJ = −JA.

The Kähler manifold is the subject of symplectic geometry. Contact geometry appears
as the odd dimensional counterpart of symplectic geometry, in which the almost-contact
manifold corresponds to the almost complex manifold. Mathematicians are interested
in submanifolds or hypersurfaces with some certain structure or curvature properties
(see [5–11]). The real hypersurface M in the complex quadric Qm is naturally an almost
contact metric manifold. Many mathematicians have investigated it from various aspects.
For example, some classifications of M related to the parallel Ricci tensor and Reeb-parallel
Ricci tensor were obtained in Suh [12,13]. Moreover, Suh studied the real hypersurface
M with the commuting Ricci tensor and the Ricci soliton in [14,15]. In [16], Suh and his
partner Pérez gave the classification of the real hypersurface M in Qm with the killing shape
operator, and in [17], Pérez obtained some results when the structure vector field of the
almost contact structure of M was of the Jacobi type.
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The real hypersurface M is a Hopf hypersurface when the integral curves of the Reeb
vector field ξ are geodesic. Moreover, the integral curves of ξ are geodesic if and only if ξ is
a principal curvature vector of M everywhere, that is,

Sξ = αξ,

where S is the shape operator of M, and α is Reeb function. The classification of the Hopf
hypersurface M in Qm with some other geometric properties can be found in [12].

The unit normal vector field N of the real hypersurface M in Qm has a great impact on
the geometric properties of the hypersurface M. Usually, N can be put into two classes: N
is A-principal or A-isotropic. In [18], Berndt and Suh proved that if M has isometric Reeb
flow, then N is A-isotropic, and it is locally congruent to a tube over a totally geodesic CPk

in Q2k. When M is in contact with the A-principal unit normal vector field N, then the
classification of M can be found in [19].

In differential geometry, the Ricci tensor Ric is very significant to the nature of a
manifold. For example, in [12] Suh proved that there was no Hopf real hypersurface with a
parallel Ricci tensor in the complex quadric Qm, m ≥ 4. Moreover, in [20], Lee, Suh, and
Woo showed that there were not any Hopf real hypersurfaces in the complex quadric Qm

with the semi-symmetric Ricci tensor and the A-principal unit normal vector field and gave
the classification when the unit normal vector field was A-isotropic. In [21], Suh classified
the the real hypersurface in the complex quadric Qm with the Reeb-invarient Ricci tensor,
and some classification about the Reeb-parallel Ricci tensor could be found in [13]. In [22],
we obtained several properties on Lorentzian generalized Sasakian space-forms, which are
related to the Ricci tensor.

Apart from the Ricci tensor, there is another important curvature tensor for the almost-
contact manifold, that is, the ∗-Ricci tensor Ric∗. The notion of the ∗-Ricci tensor was
introduced by Tachibana in [23], and Hamada extended this notion to almost-contact
manifolds in [24]. Its definition is similar to the Ricci tensor, but its properties are different
from the Ricci tensor. For instance, it may be not symmetric since it is related to the structure
tensor φ. If the ∗-Ricci tensor is symmetric, we can directly investigate it. Many authors
has investigated the ∗-Ricci soliton, which replaced Ricci tensor with the ∗-Ricci tensor
in the Ricci soliton (see [25,26]) . In [27], we gave the classification of the trans-Sasakian
three-manifolds with the Reeb invariant ∗-Ricci opertator. In [28], we gave the notion of
the semi-symmetric ∗-Ricci tensor and investigated the properties of it on the (κ, µ)-contact
manifold.

In the present paper, we study the real hypersurface M in Qm with the Reeb invariant
and the Reeb-parallel ∗-Ricci operator. We also investigate the Hopf real hypersurfaces
with the semi-symmetric ∗-Ricci tensor.

Generally, the conditions of the Reeb invariant ∗-Ricci operator and the Reeb-parallel
∗-Ricci operator are not the same since the Reeb invariant ∗-Ricci operator is defined by
Lξ Q∗ = 0 and the Reeb-parallel ∗-Ricci operator is ∇ξ Q∗ = 0; in other words, one is a Lie
derivative and the other is a connection derivative. However, we can see from the following
theorem that they are the same for the Hopf real hypersurface in the complex quadric with
the singular-unit normal vector field.

Theorem 1. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 3, with the
A-principal or A-isotropic unit normal vector field N; then,

Lξ Q∗ = ∇ξ Q∗ = 0,

where Q∗ is the ∗-Ricci operator, ξ is Reeb vector field, L is Lie derivative, and ∇ is Riemannian
connection of M. That is, the ∗-Ricci operator on a Hopf real hypersurface in the complex quadric
Qm, m ≥ 3, with a singular-unit normal vector field that is both Reeb-flow-invariant and Reeb-
parallel.
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Aa an analogue to the notion of the semi-symmetric Ricci tensor, we consider the
notion of the semi-symmetric ∗-Ricci tensor defined by

0 = (R(X, Y)Ric∗)(Z, W) = −Ric∗(R(X, Y)Z, W)− Ric∗(Z, R(X, Y)W),

for any vector field X, Y, Z, and W on the manifold. It has been proved that there are no
Hopf hypersurfaces in the complex quadric with the semi-symmetric Ricci tensor and the
A-principal unit normal vector field in [20]. For the ∗-Ricci tensor, we draw the conclusion
that:

Theorem 2. Hopf real hypersurfaces with the semi-symmetric ∗-Ricci tensor and A-principal unit
normal vector field do not exist in the complex quadric Qm, m ≥ 3.

2. Some General Equations and Key Lemmas

As we have mentioned above, the complex quadric Qm is the complex hypersurface
in the complex projective space CPm+1. If z0, . . . , zm+1 are the homogeneous coordinates
of CPm+1, then Qm is the image of the equation z2

0 + . . . + z2
m+1 = 0. Now, we denote the

Kähler structure of CPm+1 by (J, ḡ), where ḡ is the Fubini–Study metric on CPm+1, which
has constant holomorphic sectional curvature 4. We know that the complex hypersurface
of a Kähler manifold has an induced Kähler structure; in other words, it is a Kähler
manifold. Then, the complex quadric Qm has a canonical induced Kähler structure (J, g),
where g is the Riemannian metric on Qm induced from the Fubini–Study metric ḡ. Now,
we explain why Qm is SOm+2/SOmSO2. Firstly, it is known that the complex projective
space CPm+1 = SUm+2/S(Um+1U1) because it is a Hermitian symmetric space of the
special unitary group SUm+2. As the subgroup of SUm+2, SOm+2 acts on CPm+1 with
cohomogeneity one. If the orbit of SOm+2 contains the fixed point of the action of the
stabilizer S(Um+1U1), namely, o = [0, . . . , 0, 1] ∈ CPm+1, then this orbit is a totally geodesic
real projective space RPm+1 ⊂ CPm+1. The complex quadric Qm = SOm+2/SOmSO2 is just
the second singular orbit of this action. It also gives the geometric interpretation of why
Qm is the Grassmann manifold G+

2 (Rm+2) of oriented 2-planes in Rm+2. In this paper, we
focus on the condition of m ≥ 3 because Q1 is just S1 and Q2 is S1 × S1.

Let us denote the unit normal vector field of Qm by N̄, and AN̄ is the shape operator
of Qm respect to N̄. AN̄ is anti-commuting with the Kähler structure J, and it is involution.
Then, the shape operator AN̄ is one of the complex conjugations A restricted to TQm. In
some sense, we can consider the set of all shape operators of Qm as the complex conjugations
on TQm. Then, the tangent space of Qm can be decomposed as

TQm = V(AN̄)⊕ JV(AN̄),

where V(AN̄) and JV(AN̄) are the (+1)-eigenspace and (−1)-eigenspace, respectively. So,
AN̄ defines a real structure, and since the real codimension of Qm in CPm+1 is 2, there is an
S1-subbundle A of the endomorphism bundle End(TQm) consisting of complex conjugations.

In terms of the complex conjugations A ∈ A and the Kähler structure J, we can obtain
the curvature tensor R̄ of Qm from the Gauss equation for Qm ⊂ CPm+1

R̄(X, Y)Z = g(Y, Z)X− g(X, Z)Y + g(JY, Z)JX− g(JX, Z)JY− 2g(JX, Y)JZ

+g(AY, Z)AX− g(AX, Z)AY + g(JAY, Z)JAX− g(JAX, Z)JAY.

A nonzero vector field Z ∈ TQm is singular if it is A-principal or A-isotropic. For these
two types of singular vector fields, we have

1. If there is a conjugation A ∈ A so that Z ∈ V(A), then Z is A-principal.
2. If there is a conjugation A ∈ A and two orthonormal vector fields X, Y ∈ V(A) so

that Z/||Z|| = (X + JY)/
√

2, then Z is A-isotropic.
Let M be the real hypersurface of Qm and (φ, ξ, η, g) be its induced almost contact

structure. Then, we have the following basic equations [29]:
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φξ = 0, η ◦ φ = 0,

φ2X = −X + η(X)ξ, η(ξ) = 1,

η(X) = g(ξ, X),

g(φX, φY) = g(X, Y)− η(X)η(Y),

where φ is the structure tensor, ξ is Reeb vector field, and η is the dual 1-form of ξ, for any
vector fields X and Y. Moreover, ξ = −JN where J is the Kähler structure of Qm and N
is the unit normal vector field of M. The structure tensor φ and the Kähler structure J are
related by

JX = φX + η(X)N.

Thus, φ and J coincide with each other when restricted to the kernel of η.
For any complex conjugation A ∈ A, we can choose two orthonormal vectors Z1, Z2 ∈

V(A), such that
N = cos(t)Z1 + sin(t)JZ2,

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1,

where 0 ≤ t ≤ π
4 (see [12]). The A-principal unit normal vector field N corresponds to

the value t = 0; thus, we have g(AN, N) = −g(ξ, Aξ) = 1, g(N, AY) = g(AN, Y) = 0.
The A-isotropic unit normal vector field N corresponds to the value t = π

4 , so we have
g(AN, N) = g(ξ, Aξ) = 0. Thus, AN ∈ TM.

In particular, we see that Aξ is always the tangent on M (because it holds

g(Aξ, N) = g(sin(t)Z2 + cos(t)JZ1, cos(t)Z1 + sin(t)JZ2)

= sin(t)cos(t)g(Z2, Z1) + sin2(t)g(Z2, JZ2)

+cos2(t)g(JZ1, Z1) + cos(t)sin(t)g(JZ1, JZ2)

= 0,

for two orthonormal vectors Z1z, Z2 ∈ V(A)). So, from this and the property of JA = −AJ,
we obtain

AN = AJξ = −JAξ = −φAξ − g(Aξ, ξ)N.

In fact, on a real hypersurface M in the complex quadric Qm, for any vector field X on
M, we can put

AX = BX + g(AX, N)N = BX + ρ(X)N,

here, BX denotes the tangential part of AX and 1-form ρ is given by

ρ(X) = g(X, AN) = g(AX, N)

= g(X,−φAξ − g(Aξ, ξ)N)

= −g(X, φAξ),

so

JAX = JBX + g(X, AN)JN

= JBX− g(X, φAξ)JN

= JBX + g(X, φAξ)ξ

= φBX + η(BX)N + g(X, φAξ)ξ

= φBX + η(BX)N − ρ(X)ξ,

and

(JAX)T = φBX− ρ(X)ξ,
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where (· · · )T denotes the tangential component of the vector (· · · ) in Qm.
Denote the induced Riemannian connection and the shape operator on M by ∇, S,

respectively. Then, the Gauss–Weingarten equations are

∇̄XY = ∇XY + g(SX, Y)N, ∇̄X N = −SX,

where ∇̄ is the Riemannian connection on Qm with respect to ḡ. Moreover, we have the
following two equations:

(∇Xφ)Y = η(Y)SX− g(SX, Y)ξ, ∇Xξ = φSX.

Additionally, from the Gauss–Weingarten equation, in terms of the Kähler structure J
and the complex conjugation A ∈ A, the curvature tensor R of M induced from R̄ of Qm is

R(X, Y)Z = g(Y, Z)X− g(X, Z)Y + g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ

+g(AY, Z)(AX)T − g(AX, Z)(AY)T + g(JAY, Z)(JAX)T

−g(JAX, Z)(JAY)T + g(SY, Z)SX− g(SX, Z)SY

= g(Y, Z)X− g(X, Z)Y + g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ

+g(BY, Z)BX− g(BX, Z)BY

+g(φBY, Z)φBX− g(φBY, Z)ρ(X)ξ − ρ(Y)η(Z)φBX

−g(φBX, Z)φBY + g(φBY, Z)ρ(Y)ξ + ρ(X)η(Z)φBY

+g(SY, Z)SX− g(SX, Z)SY.

For an almost contact metric manifold, the ∗-Ricci tensor Ric∗ is (see [24,25])

Ric∗(X, Y) =
1
2

trace{Z → R(X, φY)φZ}.

So, we can calculate the ∗-Ricci tensor Ric∗ of M

Ric∗(X, Y) =
1
2

2m−1

∑
i=1

g(R(X, φY)φei, ei)

=
1
2
{g(φX, φY) + g(φX, φY) + g(φX, φY)

+g(φX, φY) + 4(m− 1)g(φX, φY)− g(φBφY, BX)

+g(φBX, BφY)− g(φ2BφY, φBX) + g(φ2BφY, ξ)ρ(X)

+g(φ2BφX, φBφY) + g(φ2BX, ξ)ρ(φY)

−g(SX, φSφY) + g(φSX, SφY)}
= 2mg(φX, φY) + 2g(φBX, BφY) + g(φSX, SφY),

where {ei} is a local orthonormal basis of M.
Generally, Ric∗ is not symmetric because it has an asymmetric part g(φBX, BφY)

and g(φSX, SφY). So, it is not a geometric invariant. The asymmetric ∗-Ricci tensor is
just a tensor on a manifold; it makes little sense of geometry or physics . Hence, when
we investigate the ∗-Ricci tensor, we only focus on the symmetric ∗-Ricci tensor or the
symmetric part of the ∗-Ricci tensor. The following theorem tells us when the ∗-Ricci tensor
is symmetric on a Hopf hypersurface in the complex quadric.

Theorem 3. Let M be a Hopf hypersurface in the complex quadric Qm, m ≥ 3. Then, the ∗-Ricci
tensor Ric∗ of M is symmetric if and only if the unit normal vector field N of M is singular, that is,
N is either A-principal or A-isotropic.

In particular, if N is A-principal, then

Ric∗(X, Y) = 2(m− 1)g(φX, φY)− g((φS)2X, Y),

if N is A-isotropic, then
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Ric∗(X, Y) = 2(m− 1)g(φX, φY)− g((φS)2X, Y)

+2g(X, Aξ)g(Y, Aξ) + 2g(X, AN)g(Y, AN),

for any vector fields X, Y on M.

Proof. In [25], it has been proved that if M is Hopf, then (φS)2 = (Sφ)2. So, we have

g(φSX, SφY) = −g((φS)2X, Y) = −g((Sφ)2X, Y) = g(φSY, SφX).

Now, we calculate g(φBX, BφY):

g(φBX, BφY) = g(JBX− η(BX)N, BφY) = g(JBX, BφY)

= g(JBX, AφY− g(AφY, N)N)

= −g(BX, JAφY− g(AφY, N)JN)

= −g(AX− g(AX, N)N, JAφY− g(AφY, N)JN)

= −g(AX, JAφY) + g(AφY, N)g(AX, JN) + g(AX, N)g(N, JAφY)

= g(X, φ2Y) + g(JY, AN)g(AX, JN)− η(Y)g(N, AN)g(AX, JN)

+g(X, AN)g(Y, AN)

= g(X, φ2Y) + g(Y, Aξ)g(X, Aξ) + η(Y)g(N, AN)g(X, Aξ)

+g(X, AN)g(Y, AN).

First, we assume the ∗-Ricci tensor is symmetric, that is, Ric∗(X, Y) = Ric∗(Y, X).
From the above equation, there must be

η(Y)g(N, AN)g(X, Aξ) = η(X)g(N, AN)g(Y, Aξ),

If g(N, AN) = 0, that is, N is A-isotropic. If g(N, AN) 6= 0, putting X = ξ, Y = Aξ, we
have g(Aξ, ξ)2 = η(ξ)g(Aξ, Aξ) = 1. We know

g(Aξ, ξ) = g(sin(t)Z2 + cos(t)JZ1, sin(t)Z2 − cos(t)JZ1)

= −cos(2t),

where 0 ≤ t ≤ π
4 . According to these facts, g(Aξ, ξ) = −1, that is, t = 0. It implies that the

normal vector field N is A-principal.
Conversely, if N is A-principal, from g(AN, N) = −g(ξ, Aξ) = 1, g(N, AY) =

g(AN, Y) = 0, we have

Ric∗(X, Y) = 2mg(φX, φY) + 2g(φBX, BφY) + g(φSX, SφY)

= 2mg(φX, φY) + 2g(X, φ2Y) + g(X, ξ)g(Y, ξ)− η(Y)g(X, ξ)

+g(φSX, SφY)

= 2(m− 1)g(φX, φY)− g((φS)2X, Y).

If N is A-isotropic, from g(AN, N) = g(ξ, Aξ) = 0, we have

Ric∗(X, Y) = 2mg(φX, φY) + 2g(φBX, BφY) + g(φSX, SφY)

= 2mg(φX, φY) + 2(g(X, φ2Y) + g(Y, Aξ)g(X, Aξ)

+g(X, AN)g(Y, AN)) + g(φSX, SφY)

= 2(m− 1)g(φX, φY)− g((φS)2X, Y)

+2g(X, Aξ)g(Y, Aξ) + 2g(X, AN)g(Y, AN),

From the above two equations, we know that when the condition of N is singular, the
∗-Ricci tensor is symmetric.

When the ∗-Ricci tensor is symmetric, we can define the ∗-Ricci operator by

Ric∗(X, Y) = g(Q∗X, Y).
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The following are some important theorems that will be used in the proof of our main
theorems.

Theorem 4 ([30]). Let M be a real hypersurface in the complex quadric Qm, M ≥ 3, with
A-principal normal vector field N. Then,

(a) AφX = −φAX,
(b) AφSX = −φSX,
(c) ASX = SX− 2g(SX, ξ)ξ and SAX = SX− 2η(X)Sξ,

for any X ∈ TM.
In particular, if M is Hopf, then we obtain ASX = SAX for any tangent vector field X on M.

Theorem 5 ([12]). Let M be a Hopf real hypersurface in the complex quadric Qm, M ≥ 3. Then,
M has an A-principal singular normal vector field N if and only if M is a contact real hypersurface
with constant mean curvature and non-vanishing Reeb function in Qm.

Moreover, for a contact manifold, we have

Theorem 6 ([29]). Let M be a hypersurface of a Kähler manifold, (φ, ξ, η, g) its induced almost
contact metric structure, and S its shape operator. Then, (φ, ξ, η, g) is a contact metric structure if
and only if Sφ + φS = −2φ.

Theorem 7 ([31]). Let M be a Hopf hypersurface in the complex quadric Qm with the singular
unite normal vector field; then, the Reeb function α is the constant function.

3. Proof of Theorem 1 with A-Principal unit Normal VECTOR field

Firstly, let us calculate the derivative and Lie derivative of Q∗ along ξ. Now

Lξ(g(Q∗X, Y)) = ξ(g(X, Y)) = ∇ξ(g(Q∗X, Y)).

So, we have

(Lξ g)(Q∗X, Y) + g((Lξ Q∗)X, Y) + g(Q∗(Lξ X), Y) + g(Q∗X, LξY)
= g((∇ξ Q∗)X, Y) + g(Q∗(∇ξ X), Y) + g(Q∗X,∇ξY).

(1)

From ∇Xξ = φSX, we have

(Lξ g)(X, Y)) = g(∇Xξ, Y) + g(X,∇Yξ)

= g(φSX, Y) + g(X, φSY)

= g((φS− Sφ)X, Y).

Then, Equation (1) becomes

g((∇ξ Q∗)X, Y) + g(Q∗(∇ξ X), Y) + g(Q∗X,∇ξY)

= g((φS− Sφ)Q∗X, Y) + g((Lξ Q∗)X, Y)

+g(Q∗(∇ξ X−∇Xξ), Y) + g(Q∗X,∇ξY−∇Yξ).

From the above equation, we have

g((Lξ Q∗)X, Y) = g((∇ξ Q∗)X, Y)− g(φSQ∗X, Y) + g(Q∗φSX, Y)
= g((∇ξ Q∗)X, Y) + g(Q∗X, SφY) + g(Q∗φSX, Y)

(2)

In this section, we assume the real hypersurface M in Qm is Hopf and the unit normal
vector field is A-principal. From Theorem 3, we have
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g((Lξ Q∗)X, Y) = g((∇ξ Q∗)X, Y) + g(Q∗X, SφY) + g(Q∗φSX, Y)

= g((∇ξ Q∗)X, Y)

+2(m− 1)g(φX, φSφY)− g((φS)2X, SφY)

+2(m− 1)g(φ2SX, φY)− g((φS)2φSX, Y)

= g((∇ξ Q∗)X, Y),

we have (Lξ Q∗)X = (∇ξ Q∗)X.
Now, we prove that when N is A-principal, then (Lξ Q∗)X = (∇ξ Q∗)X = 0. The

Codazzi equation (see [12]) is

g((∇XS)Y− (∇YS)X, Z) = η(X)g(φY, Z)− η(Y)g(φX, Z)− 2η(Z)g(φX, Y)

+g(X, AN)g(AY, Z)− g(Y, AN)g(AX, Z)

+g(X, Aξ)g(JAY, Z)− g(Y, Aξ)g(JAX, Z). (3)

Putting X = ξ in (3) and in considerationation of g(AN, N) = −g(ξ, Aξ) = 1, we have

g((∇ξ S)Y− (∇YS)ξ, Z) = g(φY, Z)− g(JAY, Z). (4)

Since M is Hopf, Sξ = αξ and α are constant from Lemma 7,

(∇YS)ξ = ∇Y(Sξ)− S(∇Yξ) = α∇Yξ − SφSY = αφSY− SφSY. (5)

From Equations (4) and (5), we have

g((∇ξ S)Y, Z) = g(φY, Z)− g(JAY, Z) + g((∇YS)ξ, Z)

= g(φY, Z)− g(JAY, Z) + g(αφSY− SφSY, Z). (6)

In [12], Suh proved that for a Hopf hypersurface M in Qm, the following equation:

0 = 2g(SφSY, Z)− αg((φS + Sφ)Y, Z)− 2g(φY, Z)

+2g(Y, AN)g(Z, Aξ)− 2g(Z, AN)g(Y, Aξ)

+2g(ξ, Aξ){g(Z, AN)η(Y)− g(Y, AN)η(Z)}, (7)

holds for all vector fields Y, Z on M. From Equations (6) and (7), in consideration of
g(X, AN) = 0, we have

g((∇ξ S)Y, Z) = −g(JAY, Z) + αg(φSY, Z)− α

2
g((φS + Sφ)Y, Z)

= g(AJY, Z) +
α

2
g((φS− Sφ)Y, Z). (8)

When the unit normal vector field N is A-principal, we have that the ∗-Ricci tensor
Ric∗ on M is

g(Q∗Y, Z) = Ric∗(Y, Z) = 2(m− 1)g(φY, φZ)− g((φS)2Y, Z),

from Theorem 3. Applying ∇ξ to both side of this equation, we have

g((∇ξ Q∗)Y, Z) = g((∇ξ S)φSY, φZ)− g((∇ξ S)Y, φSφZ), (9)

by (∇ξ φ)Y = η(Y)Sξ − g(Sξ, Y)ξ = 0. Putting Equation (8) in Equation (9), we have
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g((∇ξ Q∗)Y, Z) = g(AJφSY, φZ) +
α

2
g((φS− Sφ)φSY, φZ)

−g(AJY, φSφZ)− α

2
g((φS− Sφ)Y, φSφZ)

= g(AJφSY, φZ) + g(JAY, φSφZ)

= g(φ2SY, AφZ)− g(AY, φ2SφZ)

= −g(SY, AφZ) + g(AY, SφZ)

= g((φAS− φSA)Y, Z), (10)

by JX = φX + η(X)N and Aξ = −ξ if N is A-principal.
From Lemma 4 and Equation (10), we have

g((∇ξ Q∗)Y, Z) = g((φAS− φSA)Y, Z) = 0.

That is
(∇ξ Q∗)X = 0.

4. Proof of Theorem 1 with A-Isotropic unit Normal Vector Field

In this section, we assume the real hypersurface M in Qm is Hopf and the unit normal
vector field is A-isotropic. We have g(AN, N) = g(ξ, Aξ) = 0 and AN ∈ TM.

In [12], the authors have proved that for a Hopf hypersurface M in Qm, m ≥ 3, with
A-isotropic unit normal vector field N, the following two equations are satisfied:

SAN = 0, and SAξ = 0.

Thus, we have

g(X, AN)g(SφY, AN) = g(X, AN)g(φY, SAN) = 0,

g(X, Aξ)g(SφY, Aξ) = g(X, Aξ)g(φY, SAξ) = 0,

g(Y, AN)g(φSX, AN) = g(Y, AN)g(AN, JSX− η(SX)N)

= g(Y, AN)g(AJN, SX)

= −g(Y, AN)g(SAξ, X) = 0

g(Y, Aξ)g(φSX, Aξ) = g(Y, Aξ)g(Aξ, JSX− η(SX)N)

= −g(Y, Aξ)g(JAξ, SX)

= g(Y, Aξ)g(AJξ, SX)

= g(Y, Aξ)g(SAN, X) = 0.

Then, from Equation (2) and Theorem 3, we have

g((Lξ Q∗)X, Y) = g((∇ξ Q∗)X, Y) + g(Q∗X, SφY) + g(Q∗φSX, Y)

= g((∇ξ Q∗)X, Y)

+2(m− 1)g(φX, φSφY)− g((φS)2X, SφY)

+g(X, Aξ)g(SφY, Aξ) + g(X, AN)g(SφY, AN)

+2(m− 1)g(φ2SX, φY)− g((φS)2φSX, Y)

+g(Y, Aξ)g(φSX, Aξ) + g(Y, AN)g(φSX, AN)

= g((∇ξ Q∗)X, Y),

we obtain (Lξ Q∗)X = (∇ξ Q∗)X. From

g(Q∗X, Y) = 2(m− 1)g(φX, φY)− g((φS)2X, Y)

+2g(X, Aξ)g(Y, Aξ) + 2g(X, AN)g(Y, AN),
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we can calculate that

g((∇ξ Q∗)X, Y) = 2g(∇ξ(AN), X)g(AN, Y) + 2g(∇ξ(AN), Y)g(AN, X)

+2g(∇ξ(Aξ), X)g(Aξ, Y) + 2g(∇ξ(Aξ), Y)g(Aξ, X)

−g(φ(∇ξ S)φSX, Y)− g(φSφ(∇ξ S)X, Y), (11)

by AN ∈ TM and (∇ξ φ)X = 0.
In the following, we give the proof of

g(φ(∇ξ S)φSX, Y) + g(φSφ(∇ξ S)X, Y) = 0. (12)

From Equation (7) and g(ξ, Aξ) = 0, we have

0 = 2g(SφSX, Y)− αg((φS + Sφ)X, Y)− 2g(φX, Y)

+2g(X, AN)g(Y, Aξ)− 2g(Y, AN)g(X, Aξ).

Then, we have

SφSX =
1
2

α(φS + Sφ)X + φX− g(X, AN)Aξ + g(X, Aξ)AN. (13)

From φAN = JAN = Aξ and φAξ = JAξ = −AN, we have

SφSX + φSφSφX =
1
2

α(φS + Sφ)X + φX− g(X, AN)Aξ + g(X, Aξ)AN

1
2

αφ(φS + Sφ)φX + φ3X− g(φX, AN)φAξ

+g(φX, Aξ)φAN

= 0 (14)

Putting X = ξ in Codazzi Equation (3) and in consideration of

g(AN, N) = g(ξ, Aξ) = 0,

we have

g((∇ξS)Y− (∇YS)ξ, Z) = g(φY, Z)− g(Y, AN)g(Aξ, Z)− g(Y, Aξ)g(JAξ, Z),

thus,

g((∇ξ S)Y, Z) = g(φY, Z)− g(Y, AN)g(Aξ, Z)

−g(Y, Aξ)g(JAξ, Z) + g(αφSY− SφSY, Z),

by Equation (5). So, we have

(∇ξ S)Y = φY− g(Y, AN)Aξ + g(Y, Aξ)AN + αφSY− SφSY. (15)

Then, from Equations (13) and (15), we have

(∇ξ S)Y = αφSY− 1
2

α(φS + Sφ)Y =
α

2
(φS− Sφ)Y.

From Equation (14), we have

g(φ(∇ξ S)φSX, Y) + g(φSφ(∇ξS)X, Y)

=
α

2
g(φ(φS− Sφ)φSX, Y) +

α

2
g(φSφ(φS− Sφ)X, Y)

= 0.

Thus, we prove Equation (12).
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The derivative of AN and Aξ is

∇X(AN) = ∇̄X(AN)− g(SX, AN)N

= (∇̄X A)N + A(∇̄X N)

= q(X)JAN − ASX

= q(X)Aξ − ASX,

∇X(Aξ) = ∇̄X(Aξ)− g(SX, Aξ)N

= (∇̄X A)ξ + A(∇̄Xξ)

= (∇̄X A)ξ + A(∇̄X(−JN))

= q(X)JAξ − A((∇̄X J)N + J(∇̄X N))

= q(X)JAξ + AJSX

= q(X)JAξ − JASX,

by (∇̄U A)V = q(U)JAV for all U, V ∈ TQm, so ∇ξ(AN) = q(ξ)Aξ − αAξ and ∇ξ(Aξ) =
q(ξ)JAξ − αJAξ, to obtain Equation (11) , we have

g((∇ξ Q∗)X, Y) = 2g(q(ξ)Aξ − αAξ, X)g(AN, Y)

+2g(q(ξ)Aξ − αAξ, Y)g(AN, X)

+2g(q(ξ)JAξ − αJAξ, X)g(Aξ, Y)

+2g(q(ξ)JAξ − αJAξ, Y)g(Aξ, X)

= 2(q(ξ)− α)(g(Aξ, X)g(AN, Y) + g(Aξ, Y)g(AN, X))

+2(q(ξ)− α)(g(JAξ, X)g(Aξ, Y) + g(JAξ, Y)g(Aξ, X))

= 0

So, there must be (∇ξ Q∗)X = 0. So (Lξ Q∗)X = (∇ξ Q∗)X = 0.

5. Proof of Theorem 2

First, we assume that the ∗-Ricci tensor of the Hopf real hypersurface M2m−1 of the
complex quadric Qm is semi-symmetric, that is,

0 = (R(X, Y)Ric∗)(Z, W) = −Ric∗(R(X, Y)Z, W)− Ric∗(Z, R(X, Y)W).

Putting W = Y = ξ and from the fact that

Ric∗(R(X, ξ)Z, ξ) = 0,

and

R(X, ξ)ξ = X− η(X)ξ + g(Aξ, ξ)(AX)T − g(AX, ξ)(Aξ)T

+g(JAξ, ξ)(JAX)T − g(JAX, ξ)(JAξ)T

+αSX− α2η(X)ξ,

since the unit normal vector filed N is A-principal, we have AN = N and Aξ = −ξ,
(AX)T = BX = AX; then, the above equation becomes

R(X, ξ)ξ = X− η(X)ξ − BX− η(X)ξ + αSX− α2η(X)ξ

= X− 2η(X)ξ − AX + αSX− α2η(X)ξ.
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Then, from Theorem 3, we have

0 = Ric∗(R(X, ξ)ξ, Z)

= 2(m− 1)g(φR(X, ξ)ξ, φZ)− g((φS)2R(X, ξ)ξ, Z)

= 2(m− 1)g(φX− φAX + αφSX, φZ)

−g((φS)2X− (φS)2 AX + α(φS)2SX, Z)

= 2(m− 1)g(AX− X− αSX, φ2Z)

−g((X− AX + αSX, (φS)2Z)

= g(AX− X− αSX, 2(m− 1)φ2Z + (φS)2Z) (16)

where we have used the fact that (φS)2 = (Sφ)2 since M is Hopf.
By replacing X with AX in Equation (16) and from Lemma 4, we have

0 = Ric∗(R(AX, ξ)ξ, Z)

= g(A2X− AX− αSAX, 2(m− 1)φ2Z + (φS)2Z),

= g(X− AX− αSX + 2α2η(X)ξ, 2(m− 1)φ2Z + (φS)2Z),

= g(X− AX− αSX, 2(m− 1)φ2Z + (φS)2Z). (17)

From Equations (16) and (17), we have

0 = αg(SX, 2(m− 1)φ2Z + (φS)2Z).

By replacing Z by φZ in the above equation, we have

0 = αg(SX, 2(m− 1)φ3Z + (φS)2φZ)

= αg(SX,−2(m− 1)φZ + φ2SφSZ)

= αg(SX,−2(m− 1)φZ− SφSZ)

= αg(X,−2(m− 1)SφZ− S2φSZ).

So, we have

2(m− 1)SφZ + S2φSZ = 0, (18)

since α is a nonzero constant from Lemma 5 and the arbitrariness of vector field X.
Applying A to both sides of Equation (18), and the fact that AφSZ = −φSZ, ASZ =

SAZ from Lemma 4, we have

0 = 2(m− 1)ASφZ + AS2φSZ

= 2(m− 1)ASφZ + S2 AφSZ

= 2(m− 1)ASφZ− S2φSZ (19)

From Equations (18) and (19), we have

ASφZ + SφZ = 0. (20)

From Lemma 4, we have

ASφZ = SφZ− 2g(SφZ, ξ)ξ = SφZ,

to obatain Equation (20) , we have

SφZ = 0.

From Lemmas 5 and 6, we know the Hopf hypersurface M is in contact and SφZ +
φSZ = −2φZ. So,
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φSZ = −2φZ.

Then, we will have

0 = (Sφ)2Z = (φS)2Z = 4φ2Z.

That is, φ2 = 0, which cannot happen. Thus, we complete the proof of Theorem 2.

6. Conclusions

In our paper, we study the Hopf real hypersurface M in the complex quadric Qm,
m ≥ 3, with some certain ∗-Ricci operator properties. We give the necessary and sufficient
condition that the ∗-Ricci tensor on the Hopf real hypersurface in the complex quadric is
symetric. We know that the ∗-Ricci operator on the Hopf real hypersurface M with the
singular-unit normal vector field N is Reeb-invariant and Reeb-parallel. Moveover, we
prove that the ∗-Ricci tensor on the Hopf real hypersurface M in the complex quadric with
the A-principal unit normal vector field cannot be semi-symmetric.

Author Contributions: Writing—original draft preparation, R.M.; writing—review and editing, D.P.;
and funding acquisition, D.P. and R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: The first author is funded by Yanshan University Basic Innovation Scientific Research
Cultivation Project (Youth Project). The second author is funded by the National Natural Science
Foundation of China grant number 11671070.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their sincere thanks to the referees.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klein, S. Totally geodesic submanifolds of the complex quadric. Differ. Geom. Appl. 2008, 26, 79–96. [CrossRef]
2. Reckziegel, H. On the geometry of the complex quadric. In Geometry and Topology of Submanifolds VIII; World Scientific Publishing:

Brussels, Belgium, 1995; Nordfjordeid, Norway, 1995; River Edge, NJ, USA, 1996; pp. 302–315.
3. Smyth, B. Differential geometry of complex hypersurfaces. Ann. Math. 1967, 85, 246–266. [CrossRef]
4. Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Wiley Classics Library; John Wiley & Sons, Inc.: New York, NY,

USA, 1996; Volume II; pp. xvi+468. Reprint of the 1969 original, A Wiley-Interscience Publication.
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