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Abstract: Anti-sliding piles are commonly implemented to reinforce landslides. Considering the
complex nature of this medium, there is substantial spatial variability in the mechanical parameters
of rock and soil masses. However, the influence of spatial variability on the anti-sliding pile remains
unclear. In this study, the Erdaogou landslide is taken as a case study in terms of the random response
of anti-sliding piles considering spatial variability. Based on comprehensive on-site investigations,
various numerical calculations were conducted for the comparative analysis, involving stability
analysis and the reliability evaluation of the Erdaogou landslide. The results show that treating
mechanical parameters of sliding masses as random variables could result in the probability of
overestimating landslide failure, leading to the squandering of supporting materials. Specifically,
the coefficient of variation has the greatest influence on failure probability, and the vertical scale of
fluctuation showed a larger impact on reliability than that of the horizontal scale of fluctuation. As
for the rotation anisotropy, the failure probability fluctuated with the increase in the rotation angle.
Taking spatial variability into account, pile top displacements and maximum bending moments tower
above those obtained via stability analysis. The related studying methods could provide guidance for
the optimal design of anti-sliding piles and the threat control of landslides.

Keywords: landslide stability; spatial variability; rotational anisotropy; random response; anti-sliding
pile

MSC: 65C20

1. Introduction

As a common geological hazard, landslides pose a significant threat to human life [1–3].
Considering the complex nature of this medium, previous studies have revealed that the
spatial variability of rock and soil mass has an impact on the evolution of landslides [4].
Affected by sedimentation and post-deposition processes, load and stress history, and other
geological conditions, the parameters of rock and soil mass generally exhibit a certain
degree of spatial correlation [5–7], which varies across different regions [8–10].

The mechanical parameters of rock and soil mass have a correlation in different spatial
locations. This correlation decreases with an increase in the spatial distance, causing the
complexity of landslides [11–14]. Griffiths et al. [15] demonstrated that ignoring the spatial
variability of soil parameters could lead to underestimating slope stability. Generally,
natural spatial variability can be described by random fields and probabilistic methods are
often used to evaluate landslide reliability [16–18]. Li et al. [19] generated a random field
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by combining the random finite element method with the Monte Carlo Simulation (MCS),
thereby improving computational efficiency.

In practice, anti-sliding piles have often been used to improve the stability of the
landslide. Under the action of landslide thrust, anti-sliding piles can make full use of the
resistance of the consolidated stratum. The influence of uncertainty on anti-sliding piles
can be studied by the failure probability of landslides [20]. Huang et al. [21] proposed an
evaluation method for the stability of landslides reinforced by anti-sliding piles based on
the reliability theory, combining the strength reduction method (SRM) and response surface
method. Li and Liang [22] adapted the calculation algorithm to study the failure probability
of slopes reinforced by the anti-sliding pile, considering a given slip surface. Chen et al. [4]
discussed the influence of pile position and length on the failure modes of slopes using the
limit equilibrium method, while Gong et al. [23] presented an optimal design framework
that considered the uncertainties of spatial variability, model, and structural parameters.
Lü et al. [24] combined Support Vector Machine (SVM) with Uniform Design (UD) to study
the stability of landslides when reinforced by anti-sliding piles and verified the feasibility
of the method.

At present, there are still a few studies regarding the combining of the spatial variability
of landslides with anti-sliding piles, causing the unclear influence of spatial variability
on anti-sliding piles. This paper uses the example of a typical section of the Erdaogou
landslide to investigate safety factors using the Morgenstern–Price method and strength
reduction method (SRM). Moreover, the random limit equilibrium method (RLEM) and
random finite difference method (RFDM) are used to estimate the failure probability of
landslides reinforced by anti-sliding piles. The methods proposed in this paper can provide
significant guidance for optimizing the design of anti-sliding piles (Figure 1).
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2. Reliability Calculation Based on RLEM and RFDM
2.1. Random Field Theory

The spatial autocorrelation of geotechnical parameters can be described using the
mean value, coefficient of variation (COV), correlation coefficient, and scale of fluctuation,
as outlined in the random field theory [25]. The traditional methods for slope stability
evaluation can be applied to calculate the failure probability while considering spatial
variability [26], such as RLEM, RFDM, etc. Parameters that follow a lognormal distribution
can effectively avoid generating negative values and provide a good representation of
the spatial variability of rock and soil mass, as demonstrated by numerous geological
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surveys and applications [27]. If a parameter obeys a lognormal distribution, the following
equations can be obtained:

µ = exp

(
µln +

σ2
ln
2

)
(1)

σ2 =
[
exp

(
σ2

ln

)
− 1
]

exp
(

2µln + σ2
ln

)
(2)

where µ and σ2 are the mean value and variance of parameters, respectively, and uln and
σ2

ln are the mean and variance of the logarithm of the parameter values, respectively. When
describing the spatial autocorrelation of a single parameter, in addition to the mean and
variance, the autocorrelation function represents the attenuation of the parameter with an
increase in distance [28]. Li and Lumb [29] found that landslide stability reliability was
insensitive to the form of the autocorrelation function while sensitive to the correlation
length. Therefore, the exponential correlation function can be adopted as:

ρ(τx, τz) = exp
[
−
(

2τx

σh
+

2τz

σv

)]
(3)

where ρ is the autocorrelation coefficient between two points, τx and τz are the horizontal
and vertical distances between the grids, respectively, and σh and σv are the horizontal and
vertical scale of fluctuations.

Geological tectonic movements, including strata faults and bending folds, can cause
rock and soil masses to exhibit rotational transverse anisotropy [30]. Tian et al. [31] found
that the influence of rotational anisotropy on slope reliability gradually weakened with the
increase in parameter variation. Cheng et al. [32] pointed out that the correlation function
of rotational anisotropy could be expressed by Equation (4), where σϕ is the autocorrelation
distance and ϕ is the direction angle:

ρ(τx, τz) = exp
[
−|τxcosβ+ τzsinβ|

θ1
− |−τxsinβ+ τzcosβ|

θ2

]
(4)

θϕ =
θ1θ2

θ2|cosϕ cosβ+ sinϕ sinβ|+ θ1|−cosϕ sinβ+ sinϕ cosβ| (5)

where, θ1 and θ2 are the correlation distance in the corresponding direction of x and z,
and β is the rotation angle of the correlation structure. When β is 0, the equation is the
autocorrelation function of transverse anisotropy. The transverse anisotropy and rotational
anisotropy in rock mass are shown in Figure 2. Specifically, isotropic represents the consis-
tent correlation of rock and soil parameters in each direction. Transverse anisotropy refers
to the fact that the correlation of parameters has two orthogonal principal axes in space,
with the strongest correlation in the long-axis direction and the weakest in the short-axis
direction. The implementation of rotational anisotropy is based on transverse anisotropy
and then rotated at an appropriate angle [30].
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At present, simulation methods of random field commonly include the Covariance
matrix decomposition method, Karhunen–Loève series expansion method, Stepwise de-
composition method and so on. Cholesky decomposition and spectral decomposition
are commonly used in matrix decomposition, which can directly obtain a lower triangu-
lar matrix by the decomposition of the correlation matrix. It shares the advantages of
a simple calculation and is easy to implement in the program. Therefore, the Cholesky
decomposition method was used in this paper to generate random fields:

L× LT = C (6)

C =


1 ρ

(
τx1,2 , τy1,2

)
· · · ρ

(
τx1,n , τy1,n

)
ρ
(
τx2,1 , τy2,1

)
1 · · · ρ

(
τx2,n , τy2,n

)
...

...
. . .

...

ρ
(
τxn,1 , τyn,1

)
ρ
(
τxn,2 , τyn,2

) ... 1

 (7)

where C is the n× n correlation matrix, and n is the total number of grids; L is the matrix
obtained by Cholesky decomposition, and generates the relevant standard normal random
field Gi with the given matrix L:

Gi = ∑i
k=1 LikZk i = 1, 2, · · · · · · , n (8)

where, Zk is an independent standard normal random variable.

2.2. Failure Probability Calculation

SRM is used in FLAC (Fast Lagrangian Analysis of Continua) to calculate the safety
factor of a slope. The strength parameters of rock and soil mass can be changed by altering
the reduction coefficient until the slope is unstable. Based on the Mohr–Coulomb criterion,
SRM can be presented through the following equations:

tanϕt =
tanϕ

F
(9)

ct =
c
F

(10)

where ϕ and c are the friction angle and cohesion before reduction, respectively; ϕt and ct
are the reduced friction angle and cohesion; F is the reduction coefficient.

The Morgenstern–Price method is classified as a strict limit equilibrium method, which
considers the interaction of shear forces between strips, satisfies the force and moment
balance conditions and makes no assumptions about the shape of the sliding surface. The
calculation equation is as follows:

FS =
∑(c∆LR cosα+ RN tanϕ cosα)

∑ N sinα
(11)

FS =
∑(c∆LR + RN tanϕ)

∑ WLW −∑ NLN
(12)

N =
W + λf(x)

(
c∆L cosα

FS

)
− c∆L sinα

FS(
cosα+ sinα tanϕ

FS
)
− λf(x)

( cosα tanϕ
FS − sinα

) (13)

where λ is the COV of the force among soil the strips, f(x) is the varying function of the
force among soil strips, and the relationship between the vertical and transverse force is
assumed to be Y = λf(x)X. L is the length of the soil strip on the sliding plane; LW is
the length of the moment arm from the center of the soil strips to the center of the slip
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surface; LN is the distance between the midpoint of the soil strips on the slip surface and
the corresponding normal line; α is the included angle between the tangent line of the soil
strips and horizontal plane; R is the moment arm length of the center of the circle; N is the
normal force of sliding against the soil strips.

The MCS can accurately calculate the failure probability of the slope. It inputs a large
amount of random data into the analysis model for calculation and then the analysis of the
occurrence probability of the event. The failure probability can be defined as follows:

Pf =
1

NMC
∑NMC

i=1 I
[
FSi
(
X̂i
)
< 1

]
(14)

I =
{

0, if FSi > 1
1, if FSi < 1

(15)

where NMC is the times of MCS; FSi is the safety factor calculated at the i-th time; I is an
indicative function.

Equation (14) reveals that the failure probability is linked to the number of MCS.
Therefore, it is essential to conduct convergence analysis when using the MCS to calculate
failure probability. With the increase in MCS times, the failure probability gradually
converges to a constant value. When the COV of failure probability is less than a certain
value, this probability is regarded as the failure probability of a slope. In this paper, the
COV failure probability can be determined according to Equation (16). If the value is
less than 0.3, it is judged as computational convergence. To further verify the rationality
of simulation times, the changes in the mean and variance of the safety factor with the
simulation times can be analyzed.

COVPf =
√
(1− Pf)/(NMC · Pf) (16)

3. Stability Analysis of Landslide
3.1. Geologic Environment

The Erdaogou landslide, categorized as a compound soil landslide, is situated in the
Kangning Community of Yufu Street in Fengjie County (109◦30′21.86′′ E, 31◦2′34.59′′ N).
The trailing edge’s elevation is approximately 330 m, while the leading-edge ranges from
224 m to 240 m. Measuring 220 m in longitudinal length and 135 m in average width, the
landslide presents a mean thickness of 13.4 m. The total slide volume, as per the records, is
estimated to be around 398,000 m3, with the main slide direction being 124◦. The study
area exposes Quaternary Late Pleistocene (Q3) and Holocene Series (Q4) strata, as well as
the third and fourth sections of the Middle Triassic Badong Formation (T2b3 and T2b4). The
typical section is shown in Figure 3.
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3.2. Deterministic Analysis

The landslide is mainly composed of four kinds of rock and soil mass: silty clay
with crushed stone, piece of gravel soil, sliding-zone soil, collapsed deposit and Middle
Triassic Badong Formation. The related parameters were obtained by the indoor tests, as
shown in Table 1. Based on the landslide’s typical section, the SLIDE2 and FLAC 2D was
used to carry out the stability analysis. The Morgenstern–Price method calculated a safety
factor of 1.252 (Figure 4a), while the strength reduction method yielded a safety factor of
1.195 (Figure 4b). The difference between the calculation method and grid division may
lead to different results.

Table 1. Properties of rock and soil mass.

Rock and Soil Mass Modulus of
Elasticity (E)/MPa Poisson’s Ratio (µ) Severe

(γ)/(kN·m−3)
Cohesion
(c)/(kPa)

The Angle of Internal
Friction (ϕ)/(◦)

Silty clay with crushed stone (Q4
del) 40 0.35 19.6 33.15 13.37

Piece of gravel soil (Q3
del) 71.5 0.15 19.72 26.12 29.4

Sliding-zone soil 25 0.2 17 21.02 24.82
Stratified cataclastic rock mass (Q3

col) 9000 0.26 25.5 290 31.9
Middle Triassic Badong Formation (T2b) 8000 0.22 23 1000 35
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3.3. Reliability Analysis

SLIDE2 can obtain the safety factor and reliability index for two-dimensional soil or
rock slopes based on the limit equilibrium method. To improve the computational efficiency
of the random response of an anti-sliding pile in FLAC 2D, SLIDE2 was used for modeling
to study the variation laws of slope reliability considering the spatial variability of the piece
of gravel soil (Q3

del) and sliding mass. In this analysis, the COV of cohesion c and internal
friction angle ϕ varied from 0.1 to 0.5, while the correlation coefficient was constant at −0.4.
When studying the influence of ρc,ϕ on failure probability, COV was set as 0.3. Spatial
variability was considered, and the horizontal and vertical scales of fluctuation δh, δv were
100 m and 50 m, respectively.

To ensure the convergence criterion, the slope stability was analyzed with different
numbers of realizations. The failure probability is an important indicator in assessing
the accuracy of the reliability analysis. Figure 5 shows the variation in the probability
of failure and its COV with the increasing number of MCS. The obtained COV value of
0.3 represented the failure probability that could support the results well. This convergence
criterion has been adopted in subsequent analyses.
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Figure 5. Variation in probability of failure and its COV with the number of MCS.

The results show that when the parameters of stratified rock mass were considered as
random variables, the failure probability of the landslide was almost 0, and the uncertainty
had a minimal impact on the reliability of the landslide. Therefore, this study focused on
the effect of the sliding mass uncertainty and on the landslide’s reliability. Figures 6 and 7
present the comparison results when considering the parameters of sliding mass as random
variables and random field variables, respectively. The analysis shows that considering
the parameters of the sliding mass as random variables result in an overestimation of the
landslide failure probability and a conservative support design, which can lead to the
unnecessary wastage of materials.
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Figure 7. Influence of different ρc,ϕ on slope failure probability.

Figure 8 presents a summary of the sliding surfaces under random field analysis
conditions. The uncertainty of parameters may generate more sliding surfaces in the
sliding mass. As the study did not fully take into consideration the effect of external factors
such as rainfall and earthquakes, the results are relatively conservative. Future engineering
support designs should fully consider the influence of potential sliding faces on slopes to
ensure the stability of landslides in complex environments.
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4. Pile Response and Slope Reliability

The anti-sliding pile was situated at an elevation of 285.0 m. To ensure that the length
of the anti-sliding pile was embedded in the stable sliding bed, the pile’s length was
designed between 17 m and 37 m. Fully bonded anchors, with a horizontal spacing of 3 m
and vertical spacing of 2.5 m, had designed lengths of 10 and 13 m and an incline angle of
20◦. The parameters of the anchors are shown in Table 2 [33]. Figure 9 indicates that even
though the safety factor of the landslide did not significantly improve after reinforcement,
the position of the sliding surface of the landslide shifted from the predetermined sliding
zone to the lower junction of the sliding zone and the sliding mass, which suggests that the
provided support was effective.

Table 2. Anchor mechanical properties.

Type Density
(kg/m3)

Modulus of
Elasticity

(GPa)

Cross-Sectional
Area/mm2

Slurry Cohesion/
(N/m)

Internal
Friction
Angle/◦

Shear
Stiffness/(N/m2)

Paste the
Perimeter/

mm

Compression
Strength/kN

Tensile
Strength/kN

Anchor 7800 195 181.37 2 × 105 0.08 1.75 × 107 471 337.35 337.35
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The maximum displacement at the top and maximum bending moment of the pile
were crucial parameters in designing laterally loaded piles. The anti-sliding pile, as a type
of laterally loaded pile, was challenging to characterize using explicit equations. Therefore,
it was challenging to determine the statistical properties, such as the mean and variance of
the anti-sliding piles. In this section, the response of the anti-sliding pile considering the
spatial variability of the sliding mass and the estimation of slope failure probability was
achieved by a large number of calculations. Figure 10 shows that the mean and variance of
the pile top displacement and the maximum bending moment converged when the number
of simulations was 350, with a fluctuation range of less than 5%, to improve computational
efficiency and satisfy the accuracy requirements.
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Figure 10. Variations in mean and standard deviation of monitoring parameters with the number of
simulations. (a) Pile top displacement, (b) Maximum bending moment.

4.1. Effect of COV

In deterministic analysis, the pile top displacement was 0.0701 m, and the maximum
bending moment was 9.81 MN·m. The mean value of the pile top displacement and the
maximum bending moment increased when taking into account the spatial variability of
the sliding mass compared to the values determined during deterministic analysis. Further-
more, it was found that the sliding surface of the landslide was not along the previously
identified sliding zone after support but was located on the right portion of the sliding
mass. Figure 11 illustrates the impact of COV on the pile top displacement and maxi-
mum bending moment of the anti-sliding pile. The correlation coefficient ρc,ϕ was −0.4,
while a horizontal scale of fluctuation δh at 50 m and a vertical scale of fluctuation δv at
25 m, respectively. With the increase in COV, the mean and COV of the pile top displace-
ment and maximum bending moment increased significantly, and the failure probability
and slip volume of the landslide increased. As a result, the sliding force increased, the
instability was enhanced, while the bearing capacity of the anti-sliding pile decreased. This
could have a negative impact on the design and construction of the pile foundation, high-
lighting the need for sufficient attention to be paid to the variability of the sliding mass in
practical engineering.
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Figure 11. Influence of different COV. (a) Pile top displacement, (b) Maximum bending moment.

4.2. Effect of Correlation Coefficient

Figure 12 shows the effect of the correlation coefficient ρc,ϕ on the random response of
the anti-sliding pile. The COV was 0.3, the horizontal scale of fluctuation δh was 50 m, and
the vertical scale of fluctuation δv was 25 m. With the increase in the correlation coefficient
ρc,ϕ, the mean value and COV of the pile top displacement and maximum bending moment
both increased. Meanwhile, COV increased gradually at first but rapidly increased once the
correlation coefficient surpassed −0.4. It was found that with the increase in the correlation
coefficient, when the negative correlation between the parameters of the sliding mass
(cohesion c and internal friction angle ϕ) weakened, the failure probability of the landslide
and the volume of the sliding mass increased in different degrees, leading to an increase in
the landslide sliding force. The influence of the correlation coefficient on the COV of the
pile-top displacement was more significant than that of the maximum bending moment,
which illustrated that the pile-top displacement had a high degree of dispersion, as depicted
in Figure 12.
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Figure 12. Influence of different ρc,ϕ: (a) Pile top displacement, (b) Maximum bending moment.

4.3. Effect of Scale of Fluctuation

Figures 13 and 14 display a comparison between the impact of different scales of
fluctuations on both the pile top displacement and the maximum bending moment of the
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anti-sliding pile. The COV was 0.3, and the correlation coefficient ρc,ϕ was taken as 0.4.
When examining the influence of the horizontal scale of fluctuation δh, the vertical scale of
fluctuation δv was selected to be 10 m, and the δh ranged from 10 m to 100 m. Similarly,
when studying the influence of δv, δh was fixed at 50 m and δh ranged from 2 m to 25 m.
It could be seen that an increase in δh lead to higher mean values and COV for both the
pile top displacement and maximum bending moment, with the mean value showing a
slight increase. With the increase in δv, the mean value of the pile top displacement and
maximum bending moment decreased firstly and then increased, while the COV continued
increasing. However, the increasing rate decreased gradually. In the case of δv = 10 m, the
curve representing the mean value reached its minimum point, suggesting that there may
have been an optimal scale of fluctuation that could enhance the stability of the anti-sliding
pile. Additionally, the findings indicate that the influence degree of δv on the mean value of
pile response was lower than that of δh. This is because the increase in δv may have caused
the sliding mass in the vertical direction to be homogeneous, which could act together with
the anti-sliding pile to reduce the risk of landslide.
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Figure 13. Influence of different δh. (a) Mean pile top displacement, (b) Maximum bending moment.
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Figure 14. Influence of different δv. (a) Mean pile top displacement, (b) Maximum bending moment.

4.4. Effect of Correlation Coefficient Rotation Angle

This section studies the random response of the anti-sliding pile considering the
rotational anisotropy of the sliding mass. The scale of fluctuation in the principal axis
and secondary axis was 50 m and 5 m, respectively. Similarly, COV was taken as 0.3 and
ρc,ϕ as 0.4. Figure 15 shows the influence of the different rotation angles on the pile top
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displacement and maximum bending moment of the anti-sliding pile. As the rotation angle
increased, the mean value and COV of the pile top displacement and maximum bending
moment presented sinusoidal fluctuations similar to those of a trigonometric function, with
the coefficient variation being one cycle less than that of the mean value. Same as per the
previous analysis, the COV of the pile response varied widely.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 16 
 

 

increased, the mean value and COV of the pile top displacement and maximum bending 
moment presented sinusoidal fluctuations similar to those of a trigonometric function, 
with the coefficient variation being one cycle less than that of the mean value. Same as per 
the previous analysis, the COV of the pile response varied widely. 

  
(a) (b) 

Figure 15. Influence of different β. (a) Mean pile top displacement, (b) Maximum bending moment. 

5. Discussion 
MCS was adopted to calculate landslide failure probability, and 350 calculation results 

obtained from random field analysis were statistically analyzed. The safety factor was plot-
ted on the X-axis to determine the cumulative probability distribution. We transformed the 
sample data by taking the logarithm and then used the mean value and sample variance to 
create a cumulative distribution curve for a lognormal distribution, as shown in the purple 
curve in Figure 16. It was found that the cumulative distribution curve of the safety factor 
was in good agreement with the lognormal distribution curve, indicating that the lognormal 
distribution curve could describe the distribution law of the safety factor well. 

 
Figure 16. Cumulative distribution curves of safety factor. 

Figure 17 shows the estimation of the failure probability for landslides supported by 
an anti-sliding pile. As the COV, correlation coefficient and scale of fluctuation increased, 
the failure probability tended to increase. With the increase in the rotation angle, the fail-
ure probability showed a periodic fluctuation similar to the sinusoidal trigonometric func-
tion, as illustrated in Figure 17d. 

0 40 80 120 160 200
0.00

0.03

0.06

0.09

0.12

0.15

 Mean value
 Variable coefficient

Rotation angle

M
ea

n 
pi

le
 to

p 
di

sp
la

ce
m

en
t (

m
)

0.00

0.12

0.24

0.36

0.48

0.60

V
ar

ia
tio

n 
co

ef
fic

ie
nt

 o
f p

ile
 to

p 
di

sp
la

ce
m

en
t

0 40 80 120 160 200
0

3

6

9

12

15

Rotation angle
M

ea
n 

of
 m

ax
im

um
 b

en
di

ng
 m

om
en

t (
M

N
·m

)

0.0

0.1

0.2

0.3

0.4

0.5

V
ar

ia
tio

n 
co

ef
fic

ie
nt

 o
f m

ax
im

um
 b

en
di

ng
 m

om
en

t

 Mean value
 Variable coefficient

0.75 1.00 1.25 1.50 1.75
0.00

0.25

0.50

0.75

1.00

C
um

ul
at

iv
e 

fre
qu

en
cy

 d
ist

rib
ut

io
n

Safety factor

 Data fitting curve
 Standard curve
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5. Discussion

MCS was adopted to calculate landslide failure probability, and 350 calculation results
obtained from random field analysis were statistically analyzed. The safety factor was
plotted on the X-axis to determine the cumulative probability distribution. We transformed
the sample data by taking the logarithm and then used the mean value and sample variance
to create a cumulative distribution curve for a lognormal distribution, as shown in the
purple curve in Figure 16. It was found that the cumulative distribution curve of the safety
factor was in good agreement with the lognormal distribution curve, indicating that the
lognormal distribution curve could describe the distribution law of the safety factor well.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 16 
 

 

increased, the mean value and COV of the pile top displacement and maximum bending 
moment presented sinusoidal fluctuations similar to those of a trigonometric function, 
with the coefficient variation being one cycle less than that of the mean value. Same as per 
the previous analysis, the COV of the pile response varied widely. 

  
(a) (b) 

Figure 15. Influence of different β. (a) Mean pile top displacement, (b) Maximum bending moment. 

5. Discussion 
MCS was adopted to calculate landslide failure probability, and 350 calculation results 

obtained from random field analysis were statistically analyzed. The safety factor was plot-
ted on the X-axis to determine the cumulative probability distribution. We transformed the 
sample data by taking the logarithm and then used the mean value and sample variance to 
create a cumulative distribution curve for a lognormal distribution, as shown in the purple 
curve in Figure 16. It was found that the cumulative distribution curve of the safety factor 
was in good agreement with the lognormal distribution curve, indicating that the lognormal 
distribution curve could describe the distribution law of the safety factor well. 

 
Figure 16. Cumulative distribution curves of safety factor. 

Figure 17 shows the estimation of the failure probability for landslides supported by 
an anti-sliding pile. As the COV, correlation coefficient and scale of fluctuation increased, 
the failure probability tended to increase. With the increase in the rotation angle, the fail-
ure probability showed a periodic fluctuation similar to the sinusoidal trigonometric func-
tion, as illustrated in Figure 17d. 

0 40 80 120 160 200
0.00

0.03

0.06

0.09

0.12

0.15

 Mean value
 Variable coefficient

Rotation angle

M
ea

n 
pi

le
 to

p 
di

sp
la

ce
m

en
t (

m
)

0.00

0.12

0.24

0.36

0.48

0.60

V
ar

ia
tio

n 
co

ef
fic

ie
nt

 o
f p

ile
 to

p 
di

sp
la

ce
m

en
t

0 40 80 120 160 200
0

3

6

9

12

15

Rotation angle
M

ea
n 

of
 m

ax
im

um
 b

en
di

ng
 m

om
en

t (
M

N
·m

)

0.0

0.1

0.2

0.3

0.4

0.5

V
ar

ia
tio

n 
co

ef
fic

ie
nt

 o
f m

ax
im

um
 b

en
di

ng
 m

om
en

t

 Mean value
 Variable coefficient

0.75 1.00 1.25 1.50 1.75
0.00

0.25

0.50

0.75

1.00

C
um

ul
at

iv
e 

fre
qu

en
cy

 d
ist

rib
ut

io
n

Safety factor

 Data fitting curve
 Standard curve

Figure 16. Cumulative distribution curves of safety factor.

Figure 17 shows the estimation of the failure probability for landslides supported by
an anti-sliding pile. As the COV, correlation coefficient and scale of fluctuation increased,
the failure probability tended to increase. With the increase in the rotation angle, the failure
probability showed a periodic fluctuation similar to the sinusoidal trigonometric function,
as illustrated in Figure 17d.
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The method proposed in this paper effectively quantified the random response of
anti-sliding piles for the landslide considering spatial variability. After introducing the
discontinuities of rock mass, the determination of spatial variation is more difficult [34].
Moreover, it is significant to expand the 2D numerical model to 3D; thus, the distribution
and interaction of anti-slide piles need to be further analyzed [35,36]. Machine learning can
also be used to link the monitoring data and failure modes of landslides when conducting
a large number of numerical calculations and data processing [37,38]. As for the landslides
caused by complex inducing factors [39,40], these research directions could help numer-
ical systems to be closer to the actual working conditions, thus guiding the prevention
of landslides.

6. Conclusions

Taking the Erdaogou landslide as an example, this study investigated the land-
slide reliability and random response of the anti-sliding pile when considering the spa-
tial variability and rotational anisotropy of the sliding mass. The failure probability of
the landslide reinforced by the anti-sliding pile was estimated, and the conclusions are
listed below:

In deterministic analysis, the slip surface calculated by the limited equilibrium method
in SLIDE2 and the strength reduction method in FLAC2D was consistent with the preset
slip zone, and their safety factors were similar. Compared with random field variables,
sliding mass parameters as random variables could overestimate the failure probability of
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landslides, which may lead to the waste of supporting materials and is not conducive to
engineering design and construction.

When considering the spatial variability of the sliding mass, the mean value and
COV of the pile top displacement presented similar trends, and the curve turned only
when the vertical scale of fluctuation was equal to 10 m. However, the pile response
trend was complex after introducing rotational anisotropy. In deterministic analysis, pile
top displacement was 0.0701 m, and the maximum bending moment was 9.81 MN·m,
which is lower than those obtained by the random field analysis. Therefore, it could be
inferred that the spatial variability of sliding mass is not conducive to the stability of the
anti-sliding pile.

The safety factors calculated by MCS were fitted with lognormal distribution to
estimate the failure probability of landslides considering spatial variability and rotational
anisotropy. The vertical scale of fluctuation showed a more obvious influence on the failure
probability than that of the horizontal scale. Moreover, the failure probability increased with
the rotation angle, showing a fluctuating trend similar to that found in existing research.
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