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Abstract: It is challenging to ensure satisfying co-evolution efficiency for the multi-agents in dynamic
environments since during Actor-Critic training there is a high probability of falling into local
optimality, failing to adapt to the suddenly changed environment quickly. To solve this problem,
this paper proposes a multi-agent adaptive co-evolution method in dynamic environments (ACE-
D) based on the classical multi-agent reinforcement learning method MADDPG, which effectively
realizes self-adaptive new environments and co-evolution in dynamic environments. First, an
experience screening policy is introduced based on the MADDPG method to reduce the negative
influence of original environment experience on exploring new environments. Then, an adaptive
weighting policy is applied to the policy network, which accordingly generates benchmarks for
varying environments and assigns higher weights to those policies that are more beneficial for new
environments exploration, so that to save time while promoting adaptability of the agents. Finally,
different types of dynamic environments with complexity at different levels are built to verify the
co-evolutionary effects of the two policies separately and the ACE-D method comprehensively. The
experimental results demonstrate that, compared with a range of other methods, the ACE-D method
has obvious advantages helping multi-agent adapt to dynamic environments and preventing them
from falling into local optima, with more than 25% improvement in stable reward and more than 23%
improvement in training efficiency. The ACE-D method is valuable and commendable to promote
the co-evolutionary effect of multi-agent in dynamic environments.

Keywords: multi-agent; dynamic environment; co-evolution; adaptive; experience screening
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1. Introduction

Co-evolution is used to realize collaboration between multi-agent [1] dealing with
complex task environments. At present, most of the multi-agent co-evolution methods
are based on stable and static environments with which the agents therein interact so
that to generate experiences and learn to adapt to the environment gradually, such as the
ISGE-NCE method and MPT-NCE method based on non-cooperative equilibrium [2,3].
However, in a dynamic environment where the task conditions are constantly changing, the
best policy made by the agents based on the current information would no longer be the
‘best’ as the environment changes [4]. Take the scene of chasing for instance; the number
and position of the agents, obstacles and targets, the obstacle motion mode, and any change
of these factors lead to a dynamic environment. With this understanding, the optimal
parameters learned for the agents based on the original experience obtained from previous
environment may become over-fitting as a set of local optimal solutions [5]. In this case,
to restart the training is a straight way to avoid the local optimum but is time-consuming.
To realize quick adaptive co-evolution of a multi-agent within dynamic environments, it
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is of great significance to solve the problem of a possible local optimum in the process of
learning and evolution of the multi-agent.

In recent years, the exploration of a dynamic environment has been carried out in
many applications, such as robot navigation in a dynamic environment [6] and a patrol
task in a dynamic environment [7]. Transfer learning is a common method for solutions
in those works, owning the advantage of timesaving for multi-agent learning to adapt to
environmental changes [8], by using negotiation and knowledge transfer methods to cope
with environment changes [9,10], by combining the concept of incremental learning with
the dynamic environment in the evolutionary strategies [11], by adopting a scalable transfer
learning framework to solve dynamic environments [12], by using neural networks to trans-
mit information on changes in the environment [13], and by using the deep convolutional
transfer learning model (DCTL) to cope with changing tasks [14]. In addition to transfer
learning, Q learning [15,16] has also been used to solve random dynamic environments
successfully. The combination of table Q learning and transfer learning [17] also presented
excellent performance in highly dynamic emergencies. The above methods show their
capacity to cope with a dynamic environment in a low-dimensional continuous action space
to some extent; however, it is still challenging to transfer knowledge between different en-
vironments [18]. In the actual environment, the action space is often high-dimensional, and
the reinforcement learning (RL) in the high-dimensional space is often plagued by the curse
of dimensionality. The number of parameters to be learned increase exponentially with the
increase of environmental complexity [19]. In the high-dimensional action space, frequent
sampling and integration are very computationally intensive, especially in the multi-agent
field. The increase in the number of agents will significantly affect the robustness of the
environment exploration.

Many methods for solving high-dimensional action space have been proposed in
recent decades. For example, the Deterministic Policy Gradient (DPG) [20], whose policies
are deterministic, requiring no sampling integration in the action space, greatly cutting the
required sample data, thus improving the computational efficiency. The Deep Deterministic
Policy Gradient (DDPG) algorithm combines the advantages of DPG and Deep Q Network
(DQN), for which as a basis, the ‘Actor-Critic’ framework is introduced additionally to
realize real-time tracking [21,22] and dynamic programming of autonomous driving [23–25],
as well as some other dynamic problems. The traditional RL method is difficult to be used
for multi-agent, because the policy of each agent is constantly changing during the training
process, which would cause the environment to be unstable; apparently the policy learned
in an unstable environment is meaningless. For multi-agent systems, a consensus for a
generic linear multi-agent system with heterogeneous inputs and communication delays is
proposed [26]. Knowledge reuse for multi-agent systems is studied [27]. MADDPG is a
classical algorithm in the field of multi-agent, and by extending DDPG to the field of multi-
agent, MADDPG realizes the co-evolution of multi-agent and solves the problem of flocking
control in dynamic obstacle environment [28]. On this basis, the MiniMax Multi-agent Deep
Deterministic Policy Gradient (M3DDPG) [29], which can achieve generalization when
the opponent’s policy changes, and the ATT-MADDPG algorithm [30], which adaptively
models the dynamic joint policy of teammates, are also proposed. The multi-agent time
delay deep deterministic policy gradient (TD3) reduces the overestimation error of neural
network approximation and the variance of estimation results by means of policy updating
delay, so that it improves the ability of agents to adapt to complex tasks [31]. The MADDPG
algorithm is applied to the control of unsignalized traffic intersections, in which a partial
static environment is constructed by selecting reference vehicles to solve the problem of
dynamic vehicles in the real environment [32]. A temporal convolutional network (TCN)
model for modeling and predicting adversary behavior, the OM-TCN, is proposed to cope
with the environmental non-stationarity caused by adversary policy changes [33]. The
ESB-MADDPG method for swarm robots can improve the decision-making ability of the
multi-agent [34]. Compared with MADDPG, the above methods pay more attention to
improving the ability of multi-agent to adapt to complex tasks or enhancing robustness
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and have good performance in static environment testing. However, the existing research
rarely involves the co-evolution of a multi-agent in a dynamic environment and has not
been tested thoroughly in dynamic environments.

This paper proposes a multi-agent adaptive co-evolution method in a dynamic environ-
ment, which aims to improve the ability of multi-agent to adapt to a dynamic environment,
enhance the capacity of a multi-agent to get rid of local optimum, improve the speed of the
multi-agent to adapt to a new environment, and finally realize the adaptive co-evolution of
the multi-agent in different dynamic environments. On the premise that the experience
has been learned from the original environment, the policies experience screening (ES)
and adaptive weighting (AW) are proposed. First of all, some experiences obtained from
original environments would affect the adaptation of multi-agent to the new environment,
and the agents need to eliminate such interference as much as possible. The experience
screening policy separates the experience into that of the old and new environments and
then screens the experience of the new environment to guide the agents correctly explore
and quickly adapt to the new environment. Secondly, prioritizing the action learning of
which that performs better is conducive to adapting to the new environment, but different
dynamic environments have different benchmarks for judging the advantages and disad-
vantages of actions. The adaptive weighting policy selects actions that are more worthy of
priority learning and to higher weights according to the adaptive generation benchmarks
of the environment, encouraging the replacement of the originally optimal actions with
new actions that are more adapted to the new environment as soon as possible. Experi-
ence screening and adaptive weighting work together to realize the adaptive co-evolution
function of a multi-agent in a dynamic environment. Finally, experiments are designed
and carried out with different dynamic environments for methods evaluation, and the
adaptability of the proposed method in different types of dynamic environments is verified.

2. Related Work
2.1. Dynamic Environment

A dynamic environment means that in the process of training, the environment is
not static, but changes at a certain moment. Therefore, the dynamic environment is
regarded as a series of continuous fixed tasks along the time scale, and each task has
corresponding environmental characteristics at certain time period. Assume that the
dynamic environment S includes different tasks Mt in different time periods, that is,
S = {M1, M2, . . . , Mt, Mt+1, . . .}, where Mt ∈ M represents the task in the t time period [4].

The initial training parameter is assumed to be θ0. The task in the t time period
is Mt, and the optimal parameter learned by the agent is θt; when the task is changed
to Mt+1 in the t + 1 time period, the optimal parameter will be changed to θt+1. The
new environment is not completely different from the initial environment, and there is a
certain connection between them. The optimal parameters (θt, θt+1, θt+2, · · ·) are gradually
changed with the dynamic changes of the environment, so there is also a connection
between the optimal parameters. Using this connection, it is more advantageous to adapt
to the new environment on the basis of the original environment ( θt+1 ← θt , θt+2 ← θt+1 )
than to retrain ( θt+1 ← θ0 , θt+2 ← θ0 ).

2.2. MADDPG Algorithm

The MADDPG algorithm is a deep learning model with the AC architecture and is
an extension of DDPG in multi-agent tasks. Its core idea is to centralize training and
decentralize execution. Each agent has its corresponding policy network and critic network.
The input of the policy network is the current state St; the output is the determined
policy At and interacts with the environment to generate the next moment state St+1. The
critic network judges the value of the policy and outputs the evaluation Q. The learning
purpose of the policy network is to obtain a larger Q value, and the learning purpose of
the critic network is to reduce the error between the actual Q value and the approximate
evaluation yt.
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The “centralized training, decentralized execution” of MADDPG is to use the expe-
rience of all agents during training, and each agent uses its own observations to obtain
policies separately during execution. The critic network contains observations and actions
of all agents. The loss function of the critic network is evaluated as Equation (1):

L =
1
K ∑K

t=1

(
yt −Q

(
St, At, θQ

))2
, (1)

where θQ is the critic network parameter, and Q
(
St, At, θQ) is the actual Q value of the

critic network output. The approximate evaluation yt at the next moment is obtained by
Equation (2).

yt = Rt + γQ′
(

St+1, At+1, θQ′
)

, (2)

where γ is the discount factor and Q′ is the predicted Q value of the target critic
network output.

The gradient calculation formula of the policy network is as Equation (3)

∇θu J =
1
K ∑K

t=1∇θu π(St, θu)∇Q
(

St, At, θQ
)

, (3)

where θu is the policy network parameter. MADDPG uses delayed updates, so the data in
the above equations are randomly sampled from the experience replay buffer.

2.3. Prioritized Experience Replay

The update of the critic network is achieved by calculating the gap between the actual
Q value and the approximate evaluation yt. Therefore, the larger the difference δ = yt −Q,
the higher the value. Therefore, the priority experience replay method is adopted to update
the array with a larger δ value [35]. The probability of each array being extracted is set
according to the size of δ. The probability is shown in Equation (4):

pj = |δ|+ ε, (4)

where ε is a small number; the probability of preventing data from being extracted is 0.
Normalization is shown in Equation (5):

Pj =
pj

α

∑k pa
k

. (5)

The weight of each experience is calculated by Equation (6):

ωk =
1(

X·Pj
)µ , (6)

where X is the capacity of the replay buffer. The loss function of the critic network becomes
Equation (7):

L =
1
K ∑K

k=1 ωk

(
yt −Q

(
st, a1, a2, . . . , aN , θQ

))2
. (7)

The principle of Prioritized Experience Replay is to find out the data with a larger gap
between the predicted value and the actual value through the time difference (TD) method.
Such data indicate inaccurate predictions and have a higher learning value and need to be
prioritized, therefore giving these data a higher probability of being selected.

3. Methodology of This Article

This section first introduces the classification of dynamic environments, then describes
in detail the experience screening and adaptive weighting policies proposed in this paper,
and finally gives a multi-agent adaptive co-evolution method in dynamic environments
based on the above policies. Among them, Section 3.1 is about the experience screening;
Section 3.2 is about the adaptive weighting, and Section 3.3 is about the proposed multi-
agent adaptive co-evolution method ACE-D in dynamic environments.
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The dynamic environment is the environmental state in different time periods, and the
dynamic changes of its self-environment and the external environment cause the diversity
of the dynamic environment. The self-environment studied in this paper mainly refers
to the dynamic changes of the initial position, number, and motion mode of the agent.
The external environment mainly refers to the dynamic changes of the initial position,
number, and motion mode of the obstacle. In addition, the dynamic environment in this
paper maintains the same state space and action space; only the agent and the obstacle
change dynamically.

Once the environment changes, it is undoubtedly more beneficial to continue learning
on the basis of the optimal parameters inherited from the original environment, while
aiming to adapt to the new environment. However, at this time, the experiences of both
original environment and new environment are mixed in the experience replay buffer. Since
the agents have been trained in the original environment, its own critic criterion would
be formed more biased towards the policy that suits the original environment. Especially
in the process of interactive learning with the new environment, the data extracted from
the replay buffer contain the original environment information, which further affects the
agent’s discrimination of better policies for the new environment. In addition, the agent’s
policy is the only deterministic policy generated by the policy network. The agent is likely
to fail in finding a better alternative policy in the new environment but fall into a state of
overfitting; that is, it is easier to be locally optimal.

Based on this, this paper proposes a multi-agent adaptive co-evolution method in a
dynamic environment. As shown in Figure 1, the multi-agent learns the optimal action
Aθ in the original environment Mθ through the policy network and the critic network.
Since then, the environment has changed dynamically to Mθ+1, and the action Aθ can still
obtain a high Q value from the critic network, but it is not the optimal action in Mθ+1. At
this time, the experience screening and adaptive weighting policies are enabled to help
the multi-agent adjust Aθ to the optimal action Aθ+1 in Mθ+1. The experience screening
policy distinguishes the experience of the original environment and furtherly eliminates
the interference of them, then keeping only the experience of the new environment, so as
to reduce the time spent on adapting to the new environment and avoid falling into the
local optimum. The adaptive weighting policy adaptively allocates weights according to
the rewards of actions in the new environment, avoiding the critic network continuously
giving Aθ a high Q value but ignoring other better actions in the new environment. By
giving high weights to these preferred actions, the agents can quickly adapt to the new
environment and prevent falling into local optimum. When the environment continues to
change to Mθ+2, the above process is repeated to quickly adapt to the new environment
and learn the optimal action Aθ+2.
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Figure 1. Scheme diagram of multi-agent adaptive co-evolution method in dynamic environment. 
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3.1. Experience Screening (ES)

The replay buffer D of MADDPG is

St, at
1, at

2, . . . , at
N , rt

1, rt
2, . . . , rt

N , St+1.

The experience replay buffer continuously stores experience and deletes the very
previous experience when the buffer reaches its storage upper limit. As the environment
changes, the experience of the old and new environments would coexist in the experience
replay buffer.

Therefore, after the environment changes, it is assumed that totally K sets of experience
are extracted from the replay buffer D, where N sets are the experience of the original envi-
ronment and M sets are of the new environment. Since experience is randomly extracted
from the experience replay buffer, the order of experience in the original environment and
the new environment is random; thus, N and M only represent the amount but not the
order of experience. The policy network is updated as Equation (8):

∇θu J = 1
K

(
∑N

t=1∇θu π(st, θu)∇Q
(
st, a1, a2, . . . , aN , θQ)+

∑M+N
i=N+1∇θu π(si, θu)∇Q

(
si, a1, a2, . . . , aN , θQ)). (8)

Critic network updates as Equation (9):

L =
1
K

(
∑N

t=1

(
yt −Q

(
st, a1, a2, . . . , aN , θQ

))2
+ ∑M+N

i=N+1

(
yi −Q

(
si, a1, a2, . . . , aN , θQ

))2
)

. (9)

It can be seen from Equations (8) and (9) that after the environment changes, the
experience of the original environment would keep affecting the multi-agent, which is
not applicable for agents learning to adapt to new environment. These experiences will
inevitably adversely affect the learning process of the multi-agent, reduce the efficiency of
the multi-agent to adapt to the new environment, and even lead to a local optimum. How
to avoid an unfavorable old experience has become a problem waiting to be solved. The
essence of prioritized experience replay is to select more valuable experience that contains
more information. In a dynamic environment, the learnability of the new environment is
much higher than that of the original environment. It is more conducive to quickly adapt to
the new environment by abandoning the old experience and directly learning the experience
of the new environment based on the original model. Prioritized experience replay assigns
weights to experiences through TD method. Low weight goes to old experience offering
low learning value, so to reduce the effect of these experiences to a certain extent. However,
the prioritized experience replay method needs to traverse the replay buffer when fixing
the weights, which takes a lot of time and greatly increases the training time.

As shown in Figure 2, the experience screening policy establishes a temporary replay
buffer D′. As the environment changes dynamically, the experience in the new environment
is stored in the temporary replay buffer D′ and is extracted from D′ to participate in the
update of the critic network. The updating of the policy network is carried out in accordance
with Equation (10), and the updating of the critic network is executed as Equation (11). At
this time, K = M:

∇θu J =
1
M∑M

i=1∇θu π(si, θu)∇Q
(

si, a1, a2, . . . , aN , θQ
)

, (10)

L =
1
M∑M

i=1

(
yi −Q

(
si, a1, a2, . . . , aN , θQ

))2
. (11)

The temporary replay buffer D′ will not be disturbed by the information of the original
environment, and the data in the experience replay buffer D will gradually be replaced
by the experience of the new environment. After the experience replay buffer D is full of
new environmental experience, it begins to extract data from D, and the temporary replay
buffer D′ is emptied, waiting for the next environmental change. The experience screening
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policy separates the old and new experiences and prioritizes learning the experience of the
new environment, which eliminates the interference of unfavorable old experience and
increases the efficiency of multi-agent adaptation to the new environment.
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3.2. Adaptive Weighting (AW)

MADDPG adopts the deterministic policy, that is, At = πθ(St, θu). Action At is
the only deterministic optimal policy under the environment St, and θu is the optimal
parameter to adapt to the environment St. When the environment St changes to the new
environment Sm, the optimal parameter for the new environment would not keep being
θu; therefore, the policy generated by θu might not be the optimal policy facing the new
environment. In this case, the unique certainty of the deterministic policy actually would
hinder the agent learning and exploring the new environment effectively.

It can be seen from Equation (3) that the update of the policy network is related to the
Q value of the critic network, and the policy updates willing to obtain a higher Q value from
the critic network; consequently, the action recommended by the policy network would
be inclined to increase the Q value of the critic network rather than to increase the reward.
When the environment changes, the parameters of the critic network are still the optimal
parameters for the original environment, so it is still biased towards the optimal action for
the original environment, with high likelihood to ignore the new action that offers higher
rewards in the new environment. That is easy to result in the inaccuracy of the Q value
derived by the critic network in the new environment; in other words, it is not appropriate
to evaluate the action only by Q value. Therefore, an adaptive weighting policy is proposed,
which introduces both the reward and Q value as a new form of critic criterion to guide
multi-agent learning of the actions to perform better in the new environment, helping the
multi-agent adapt to the new environment and prevent falling into local optimum.

In the adaptive weighting policy, once the environment changes, the value of the action
is judged according to the policy randomly selected in the replay buffer together with the
corresponding reward, and the weight ω is calculated simultaneously. The optimal policy
for the same environment differs at different stages, as does the optimal policy for different
environments at the same stage and their corresponding rewards. Therefore, it is necessary
to adjust the value of the policy according to the situation of the environment. Notice that
it is not realistic to set a fixed benchmark artificially. Therefore, this paper proposes to
adaptively generate and automatically adjust the decision benchmark according to the
environmental parameters. That is to select the average reward mean of the previous
training, saying the kn ∼ kn+m sets training of the current environment, as the benchmark,
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and to adjust the benchmark automatically with the period of m sets. The policy network
update is shown as Equation (12):

∇θu J =
1
M∑M

i=1 ωi∇θu π(si, θu)∇Q
(

si, a1, a2, . . . , aN , θQ
)

, (12)

where ωi is the weight calculated adaptively according to the current reward of the action
rewi, as shown in Equation (13):

ωi = 1 +
rewi −mean
rewi + mean

. (13)

When rewi > mean, the weight ωi is positive and becomes concerned in learning.
When rewi < mean, the weight ωi is negative, and the reward of the policy is already lower
than the average reward at this time and therefore does not need to be focused in learning.
When the interactive environment converges, the reward has also reached stability, at which
time ωi ≈ 0. In addition, this paper specifies the boundary of ωi to prevent the cases when
special sets of rew and mean drive the ωi beyond the range of (−1, 1), when ωi > 1, ωi is
randomly taken from (0, 1), and when ωi < −1, ωi is randomly taken from (−1, 0).

3.3. Multi-Agent Adaptive Co-Evolution Method in Dynamic Environments (ACE-D)

The multi-agent adaptive co-evolutionary method in dynamic environments, the pro-
posed ACE-D, distinguishes the experiences of the old and new environments through
experience screening policy and selects those more valuable experiences for learning
through adaptive weighting policy to help the multi-agent quickly adapt to the new en-
vironment and achieve co-evolution. The dynamic environment S = {M1, M2, . . . MT} is
defined, and the time period that the task MT occupied is T (T ≥ 1). It is assumed that the
original policy network parameter is θu, the critic network parameter is θQ, the network
parameters in the training process are θu

t and θQ
t , and the optimal parameters learned by the

agents in MT are θu
T and θQ

T . The ACE-D method is presented by Equations (14) and (15):
Policy network updates:

∇θu J =


1
M

M
∑

i=1
ωi∇θu π(si, θu)∇Q

(
si, a1, a2, . . . , aN , θQ) (

T 6= 1 and θu
t 6= θu

T , θQ
t 6= θQ

T

)
1
K

K
∑

t=1
∇θu π(st, θu)∇Q

(
st, a1, a2, . . . , aN , θQ) (else)

, (14)

critic network updates:

L =

{
1
M ∑M

i=1
(
yi −Q

(
si, a1, a2, . . . , aN , θQ))2

(
T 6= 1 and θu

t 6= θu
T , θQ

t 6= θQ
T

)
1
K ∑K

t=1
(
yt −Q

(
st, a1, a2, . . . , aN , θQ))2

(else)
, (15)

where K is the number of experience sets extracted from the replay buffer D during network
update, M is the number of experience sets extracted from the temporary replay buffer D′,
and ωi is the weight calculated by Equation (13). The pseudo-code of ACE-D is shown in
Table 1:
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Table 1. The pseudo-code of the ACE-D method.

pseudo-code

Initialize the dynamic environment S = {M1, M2, . . . MT} and task MT occupies the time period
of T(T ≥ 1). Setting the environmental change at time point m.
If T equal to 1 then

1. Randomly initialize the network parameters θu, θQ, θu ′ = θu, θQ ′ = θQ, clear the experience
replay buffer.

2. If convergence not reached

(a) The policy network obtains At = πθ(St) based on the state St, performs At to obtain
a new state St+1 and reward Rt, and stores it in the experience replay buffer D.

(b) K samples are collected from D to update the network. The target policy network
calculates the next moment policy At+1, the target critic network outputs yt
according to Equation (2), the critic network is updated by Equation (1), and the
policy network is updated by Equation (3)

End
Else

1. Initialize θu
m = θu

m−1, θQ
m = θQ

m−1, enable temporary replay buffer D′ and adaptive
weighting module.

2. If convergence not reached

(a) Agents execute At, and the acquired experience{
st, at

1, at
2, . . . , at

N , rt
1, rt

2, . . . , rt
N , st+1

}
is stored in D and D′ at the same time. The

reward Rt is given to the adaptive weighting module to participate in the calculation
of the benchmark mean.

(b) M samples are collected from the temporary replay buffer D′ to update the network,
M = K. The adaptive weighting module calculates the policy weight according to
ωi = 1 + rewi−mean

rewi+mean , where rewi is the reward corresponding to the policy in the
replay buffer.

(c) The critic network is updated according to

L = 1
M ∑M

i=1
(
yi −Q

(
si, a1, a2, . . . , aN , θQ))2.

(d) The adaptive weighting module participates in the update of the policy network by
∇θu J = 1

M ∑M
i=1∇θu π(si, θu)∇Q

(
si, a1, a2, . . . , aN , θQ).

(e) After replacing the old experience with the new experience in D, empty the
temporary replay buffer D′ and enable the experience replay buffer D.

(f) If the number of iterations reaches the frequency of network parameter updates, the
target critic network and target policy network parameters are updated by

θQ′ = τθQ + (1− τ)θQ′

θu′ = τθu + (1− τ)θu′ τ is the update coefficient
End

End

4. Experiment

In order to evaluate the multi-agent adaptive co-evolutionary method in dynamic
environment (ACE-D) proposed in this paper, three sets of dynamic environments are built
for experiments based on MPE scenario and python3.8. Among them, Section 4.1 is about
the ablation experiments, to investigate the effects of the experience screening policy (ES),
adaptive weighting policy (AW), and ACE-D method separately in a simple pursuit scene;
Section 4.2 is about the composite dynamic environment experiments, to verify whether the
ACE-D method is still effective when environment change to a more complex and composite
situation within which the initial position of the obstacles and the agents vary at different
levels; Section 4.3 is about the continuously changing dynamic environment experiments,
in which the environment changing happens more than once, to verify whether the ACE-D
method is still effective when facing dynamically changing environments.

In this paper, the experiment uses Ubuntu20.04; the initial parameters θu, θQ are all
set to 0.5.
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The algorithm MADDPG is taken for comparison, and when facing environment
changing, two training modes are alternative for multi-agent co-evolution. One is to
retrain the agents using the new environment information, denoted as MA-S; the second
is to continue the training on the basis of the model trained in the previous environment,
denoted as MA-D. Our ACE-D is designed special for dealing with the dynamic changes of
the environment and therefore faces no choice to retrain or retain.

Recall that the purpose of multi-agent co-evolution is to achieve high efficiency while
achieving maximum rewards. Therefore, this paper evaluates the co-evolution effect by
checking the reward value and convergence efficiency in a stable state. It has to remind one
that facing dynamic environments, the local optimum would appear in the experiment. If
it falls into the local optimum, the multi-agent will converge to an abnormal stable state. It
is meaningless to compare the convergence efficiency; in this case, only the reward is used
as an effective index. If it does not fall into local optimum, the reward growth rate and
convergence efficiency growth rate are used as evaluation indicators.

Local optima definitely impact the performance of the algorithms; thus, it is recom-
mend to be considered as an influencing factor. Considering the influence of the dynamic
environment, the parameter σ is designed to represent the degree of local optimum as
shown in Equation (16):

σ =
R− r′′

r′′
(16)

where r′′ is the average reward of MADDPG by retraining towards a stable state in a static
new environment (MA-S), and R is the average stable reward of other different methods
used in the experiment to deal with dynamic environment. The local optimal degree σ is
based on r′′ and represents the degree of difference between different methods and MA-S.
If σ ≤ τ, it is considered to be trapped in local optimum, where τ is a constant and set to be
τ = −0.2.

The other experimental parameters and meanings are shown in Table 2:

Table 2. Experimental parameters in dynamic environment.

Parameters r r′ k k′

Meaning Stable rewards
of MADDPG Stable rewards of ACE-D Number of

MADDPG training
Number of

ACE-D training

Parameters ϕ′ ϕ′′ σ

Meaning
Rewards growth rate

ϕ′ = r′−r
r

Efficiency growth rate
ϕ′′ = k−k′

k

Local optimal degree
σ = R−r′′

r′′

4.1. Ablation Experiments

The ablation experiments are designed as shown in Figure 3; there are three hunters,
three prey, and two obstacles in this experimental scene. The hunters are rewarded by
shortening the distance between them and the prey as well as capturing the prey, while the
prey will move away from the hunters to obtain the reward.

The experiment trains 30,000 episodes; each episode includes 25 iterations. The initial
positions of hunters and obstacles are randomly generated in the environment, while
the initial positions of prey change over time. In the first 10,000 episodes, the training
environment is as shown in Figure 3a. The initial position of the prey is fixed in the inner
area of the dotted box in the lower left corner of the scene. Then, the environment changes
to the new environment shown in Figure 3b, and the initial position of the prey is randomly
generated in the whole map.



Mathematics 2023, 11, 2379 11 of 18

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 19 
 

 

where 𝑟ᇱᇱ is the average reward of MADDPG by retraining towards a stable state in a 
static new environment (MA-S), and 𝑅  is the average stable reward of other different 
methods used in the experiment to deal with dynamic environment. The local optimal 
degree 𝜎 is based on 𝑟ᇱᇱ and represents the degree of difference between different meth-
ods and MA-S. If 𝜎 ≤ 𝜏, it is considered to be trapped in local optimum, where 𝜏 is a 
constant and set to be 𝜏 = −0.2. 

The other experimental parameters and meanings are shown in Table 2: 

Table 2. Experimental parameters in dynamic environment. 

Parameters 𝒓 𝒓ᇱ 𝒌 𝒌ᇱ 
Meaning Stable rewards of MADDPG Stable rewards of ACE-D 

Number of MADDPG 
training 

Number of 
ACE-D training 

Parameters 𝝋ᇱ    𝝋ᇱᇱ 𝝈  

Meaning 
Rewards growth rate 𝜑ᇱ = 𝑟ᇱ − 𝑟𝑟  

Efficiency growth rate 𝜑ᇱᇱ = 𝑘 − 𝑘ᇱ𝑘  

Local optimal degree 𝜎 = 𝑅 − 𝑟ᇱᇱ𝑟ᇱᇱ  
 

4.1. Ablation Experiments 
The ablation experiments are designed as shown in Figure 3; there are three hunters, 

three prey, and two obstacles in this experimental scene. The hunters are rewarded by 
shortening the distance between them and the prey as well as capturing the prey, while 
the prey will move away from the hunters to obtain the reward. 

The experiment trains 30,000 episodes; each episode includes 25 iterations. The initial 
positions of hunters and obstacles are randomly generated in the environment, while the 
initial positions of prey change over time. In the first 10,000 episodes, the training envi-
ronment is as shown in Figure 3a. The initial position of the prey is fixed in the inner area 
of the dotted box in the lower left corner of the scene. Then, the environment changes to 
the new environment shown in Figure 3b, and the initial position of the prey is randomly 
generated in the whole map. 

Obstacles

Hunters

Prey Obstacles

Hunters

Prey

 
(a) (b) 

Figure 3. Ablation Experiment: (a) shows the original environment; (b) shows the new environment. 

As shown in Figure 3, the environment changes from the original environment to the 
new environment. Five methods are used for learning, which are MA-D, experience 
screening policy (ES), adaptive weighting policy (AW), MA-S, and ACE-D. Comparisons 
about their effects are carried out as ES vs. MA-D, AW vs. MA-D, ACE-D vs. MA-D, and 
ACE-D vs. MA-S. The results are shown in Figure 4 and Table 3: 
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As shown in Figure 3, the environment changes from the original environment to
the new environment. Five methods are used for learning, which are MA-D, experience
screening policy (ES), adaptive weighting policy (AW), MA-S, and ACE-D. Comparisons
about their effects are carried out as ES vs. MA-D, AW vs. MA-D, ACE-D vs. MA-D, and
ACE-D vs. MA-S. The results are shown in Figure 4 and Table 3:
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Figure 4. Comparison of effects of ablation experiments: (a) shows the training results of ES and
MA-D; (b) shows the training results of AW and MA-D; (c) shows the training results of ACE-D and
MA-D; (d) shows the training results of ACE-D and MA-S. (The stars represent the beginning nodes
of the steady state).
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Table 3. Ablation experiment results.

Method Average Stable Rewards σ Local Optimal Number of Training (k) Rewards Growth Rate (%) Efficiency Growth Rate (%)

MA-S 31.28 0 No 13 32.32 −85.71
MA-D 23.64 −0.244 Yes 7 0 0

ES 26.46 −0.154 No 9 8.5 −28.6
AW 29.48 −0.058 No 16 24.7 −128.6

ACE-D 29.56 −0.055 No 6 25 14.3

It can be seen from Figure 4 that the average stability rewards of the AW policy, ES
policy, and ACE-D method are higher than those of MA-D, and the training efficiency of the
ACE-D method is higher than that of MA-S. As can be seen from Table 3, the local optimum
degree σ of MA-D in a dynamic environment is −0.244, indicating that MA-D is trapped in
local optimum, while the ES policy, AW policy, and ACE-D method proposed in this paper
avoid the local optimum as expected. In the ablation experiment, the average stable reward
of the ACE-D method is close to that of the MA-S method, and the training efficiency of
the ACE-D method is 30.77% higher than that of the MA-S method, which indicates that
the ACE-D method is more efficient in dealing with the dynamic environment than the
MA-S method.

In addition, in terms of stable rewards, the ACE-D method is 25% higher than the
MA-D method, which is close to the 24.7% that contributed by the AW policy while the
ES promotes only 8.5% comparing with the MA-D, separately. It implies that the AW
policy plays a major role in getting rid of the local optimum. The convergence efficiency
of the ES policy and the ACE-D method is 43.75% and 62.5% higher than that of the AW
policy, respectively, indicating that the main role of the ES policy is to improve the training
efficiency. The experimental results show that the ACE-D method combines the advantages
of the ES policy and the AW policy and has the ability to get rid of the local optimum and
reach the stable state in the new environment faster, so as to realize the co-evolution of
multi-agent in the dynamic environment.

4.2. Composite Dynamic Environment Experiment

In order to verify the effectiveness of the ACE-D method under compound dynamics,
three sets of dynamic scenarios with increasing complexity are designed in this section.
Scenario 1 is a dynamic environment with the initial position change of obstacles, as shown
in Figure 5a; the initial positions of obstacles in the original environment are restricted
within the dashed box, and the positions are random after the environment change; scenario
2 is a dynamic environment with the initial position change of agents, as shown in Figure 5b;
compared with Scenario 1, a red bunker is added to the environment, and when there
is an agent into the bunder, the rest of agents cannot get its information. Positions of
prey in the original environment are restricted to the dashed box, and the positions of the
agents and the obstacles are random after the environment changes; scenario 3 is a dynamic
environment compounded by the previous two basic dynamic environments, as shown
in Figure 5c; in the original environment, the positions of obstacles are restricted to the
blue dashed box, and the positions of prey are restricted to the red dashed box. After the
environment changes, the initial position of the hunters is restricted to the blue dashed box,
and the rest of the positions are random. The results are shown in Figure 6 and Table 4:

As can be seen from Figure 6, both MA-D and ACE-D converge faster after dynamic
changes in the environment; the convergence efficiency of MA-S is much lower than the
other two methods, but MA-D has the lowest stable reward. As can be seen from Table 4,
the local optimality σ of MA-D in the three scenarios after dynamic environment changes
is −0.259, −0.551, and −0.309, respectively, which indicates that the MA-D method falls
into local optimality in all three scenarios, indicating that MA-D has a poor ability to cope
with the dynamic environment.
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Figure 5. Three sets of complex dynamic scenarios: (a) shows the scenario 1 with the initial position 
change of obstacles; (b) shows the scenario 2 with the initial position change of agents; (c) shows the 
Figure 5. Three sets of complex dynamic scenarios: (a) shows the scenario 1 with the initial position
change of obstacles; (b) shows the scenario 2 with the initial position change of agents; (c) shows the
scenario 3 compounded by the scenario 1 and scenario 2 with the initial position change of both the
obstacles and agents.
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Figure 6. Three sets of complex dynamic scenario reward curves: (a) shows the reward curve of
Scenario 1; (b) shows the reward curve of Scenario 2; (c) shows the reward curve of Scenario 3. (The
stars represent the beginning nodes of the steady state).
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Table 4. Comparison of training results of three sets of complex dynamic scenarios.

Scenario Method Average
Stable Rewards σ Local Optimal Number of

Training (k)
Rewards Growth

Rate (%)
Efficiency Growth

Rate (%)

Scenario 1
MA-S 31.28 0 No 13 34.89 −225
MA-D 23.19 −0.259 Yes 4 0 0
ACE-D 30.77 −0.016 No 8 32.69 −100

Scenario 2
MA-S 33.9 0 No 21 122.6 −320
MA-D 15.23 −0.551 Yes 5 0 0
ACE-D 35.98 0.061 No 11 136.2 −120

Scenario 3
MA-S 43.22 0 No 22 44.69 −175
MA-D 29.87 −0.309 Yes 8 0 0
ACE-D 41.93 −0.03 No 9 40.37 −12.5

In all three scenarios, the stable rewards of ACE-D method and MA-S are very close,
but the convergence efficiency of ACE-D method is improved by 38.5%, 47.6%, and 59.1%,
respectively, compared with MA-S. As the complexity of the environment increases, the
number of training sessions consumed by MA-S gradually grows, while the ACE-D method
can use the training results of the original environment and has a significant advantage
in the efficiency of adapting to the new environment compared with MA-S. The results
demonstrate that the ACE-D method could achieve co-evolution in complex dynamic
environments successfully. It also seems that the more complex the environment is, the
more obvious the advantage of the ACE-D method is.

4.3. Continuously Changing Dynamic Environment Experiment

Most of the dynamic changes of the real environment happen more than once, and
are unpredictable in time, so two sets of continuously changing scenarios are designed
in this group of experiments shown in Figure 7, which has three prey, three hunters, and
two obstacles. The training is carried out in total of 60,000 episodes, and the original
environment is shown in Figure 7a.

The time intervals between the two dynamic changes of the environment in the two
sets of scenarios are different. In continuous change scenario 1, the first change of the
environment occurred around the 10,000 episodes when the multi-agent had not reached
a stable state yet. The second change happened around the 35,000 episodes, when it
had reached a stable state; in continuous change scenario 2, the first change was at the
30,000 episodes, when the multi-agent reached a stable state, and the second change was at
the 40,000 episodes, when it had not adapted to the new environment yet. The experimental
results are shown in Tables 5 and 6.
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Table 5. Comparison of training results for continuous change scenario 1.

Environment Method Average
Stable Rewards σ Local Optimal Number of

Training (k)
Rewards Growth

Rate (%)
Efficiency

Growth Rate (%)

The
First Change

MA-S 32.08 0 No 18 32.51 −157.1
MA-D 24.21 −0.245 Yes 7 0 0
ACE-D 35.01 0.091 No 9 44.61 −28.57

The
Second Change

MA-S 31.28 0 No 13 31.48 −160
MA-D 23.79 −0.239 Yes 5 0 0
ACE-D 33.54 0.072 No 10 40.98 −100

Table 6. Comparison of training results for continuous change scenario 2.

Environment Method Average
Stable Rewards σ Local Optimal Number of

Training (k)
Rewards Growth

Rate (%)
Efficiency

Growth Rate (%)

Original MA-D 31.27 0 No 20 0 0
ACE-D 31.56 0.009 No 20 0.01 0

The
Second Change

MA-S 31.28 0 No 13 34.71 −160
MA-D 23.22 −0.258 Yes 5 0 0
ACE-D 30.37 −0.032 No 9 30.79 −80

From Figures 8 and 9, it can be seen that in the case of continuous changes in the
environment, the ACE-D method can respond to the changes in the environment quickly
and adapt to the new environment regardless of when the dynamic environment changes
occur, while MA-D is more likely to fall into the local optimum. As can be seen from Figure 9,
MA-D responds when the environment changes at the first time, but the response speed is
lower than that of ACE-D method, and ACE-D method adapts to the new environment
faster than MA-D; at the second environment change, MA-D almost loses its response
function, and the reward does not appear to be significantly changed, but the ACE-D
method is basically unaffected, from which it can be seen that multiple changes of the
environment can aggravate the local optimum and hinder the co-evolution.

From Tables 5 and 6, we can learn that after the change of environment, the local
optimality σ of MA-D is −0.245, −0.239, and −0.258, which are all smaller than τ; that is,
MA-D falls into the local optimum. After the secondary change of the environment, the
stable rewards of ACE-D method and MA-S method are improved by more than 30% com-
pared with MA-D, but the ACE-D method is more efficient compared with MA-S, and the
improvement is above 23%, which proves that the continuous change of the environment
does not affect the ability of ACE-D method to cope with the dynamic environment. The
comparison results show that the ACE-D method is largely unperturbed by continuous
changes in the environment and is able to respond to environmental changes rapidly and
achieve co-evolution in the continuously changing dynamic environment.
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5. Conclusions

A multi-agent adaptive co-evolution method in dynamic environments is proposed in
this paper, which gradually adjusts the environment exploration policy to an optimal policy
that adapts to the new environment when the environment changes dynamically while
avoiding falling into a local optimum and achieving co-evolution of a multi-agent. The
proposed ACE-D method can be applied to various multi-agent decision-making scenarios
in dynamic environments, such as cooperative UAV missions, swarm robots, and group
gaming games, providing a feasible approach to solve the problem of multi-agent systems
easily falling into overfitting in dynamic environments. The ACE-D method consists
of the experience screening policy and the adaptive weighting policy. The experience
screening policy separates the experiences of different environments, retains the favorable
experiences of the original environment while excluding the unfavorable effects, and
focuses on adapting to the new environment. The experience screening policy improves
the training efficiency by 30.8% over MA-S and the stable reward by 8.5% over MA-D,
which indicates its efforts for a multi-agent to adapt to new environments. The adaptive
weighting policy prioritizes learning by assigning high weights to the actions that are more
rewarding and beneficial for agent co-evolution in the new environment and improves
the stable reward by 24.7% over MA-D to avoid falling into the local optimum. The
ACE-D method combines the above two policies and is validated in different classes and
dynamic environment tasks of different complexity. The ACE-D method cannot only
cope with various dynamic environments and avoid local optimums but also make a big
improvement in the speed of adapting to new environments, and the more complex the
dynamic environment is, the more obvious the advantage of the ACE-D method is. The
experimental results demonstrate that the ACE-D method can achieve the co-evolution of a
multi-agent in various dynamic environments. Our future work will focus on dynamically
changing detection and more complex dynamic environments.
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