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Abstract: In this paper, we studied single-server models of queuing-inventory systems (QIS) with
catastrophes in the warehouse part and negative customers (n-customers) in service facility. Consumer
customers (c-customers) that arrived to buy inventory can be queued in an infinite buffer. Under
catastrophes, all inventory of the system is destroyed but customers in the system (on server or in
buffer) are still waiting for replenishment of stocks. Upon arrival of n-customer one c-customer
is pushed out, if any. One of two replenishment policies (RP) can be used in the system: either
(s, S) or randomized. In the investigated QISs, a hybrid service scheme was used: if upon arrival
of the c-customer, the inventory level is zero, then according to the Bernoulli scheme, this customer
is either lost (lost sale scheme) or joining the queue (backorder scheme). Mathematical models of
the investigated QISs were constructed as two-dimensional Markov chains (2D MC). Ergodicity
conditions of the investigated QISs were obtained, and the matrix-analytic method (MAM) was used
to calculate the steady-state probabilities of the constructed 2D MCs. Formulas for performance
measures were found and the results of numerical experiments are presented.
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1. Introduction

Queuing systems (QS), in which to service the customer, along with an idle server,
certain items are also required, are called queuing-inventory systems (QIS), see [1,2]. In
other words, QISs simultaneously possess the properties of classical QS and inventory
control systems (ICS). In classical QS, only an idle server is enough to service a customer (in
multi-rate QS, several idle servers will be required at the same time), and in classical ICS,
the inventory is released to customers instantly, i.e., in classical ICS, there are no servers
for customer service. However, in many real ICS, delivery of the inventory to customers
is carried out using certain devices (servers), and this process will require some positive
time to complete. Since the flow of customers is a random one, and the service time (i.e.,
the process of issuing stocks to customers) is a random variable, a queue of customers is
formed to receive stocks. In other words, in QISs, it is necessary to manage both service
and inventory control processes simultaneously, i.e., it is necessary to organize the process
of servicing of customers and manage the inventory of the system.

The first work devoted to the study of QISs models are the works [3,4]. After these
works, models of QISs were intensively studied by various authors over the past three
decades. A detailed overview of known results is set out in the work [5].

In each QIS model, it is necessary to make certain assumptions about the type of
distribution functions (d.f.) of random variables that form the model under study, i.e.,
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d.f. of input flow, service time, the lifetime of inventory, etc. In addition, it is necessary
to define the replenishment policy (RP) used. Usually, this d.f. and RP are the basis for
classifying of QISs models. Based on the purpose of the considered paper, here, we will use
the classification of QISs based on the lifetime of the stocks. According to this indicator,
all QISs can be divided into two classes: QISs with an infinite life of stocks (i.e., the stocks
of the system never deteriorate) and QISs with a finite life of stocks (i.e., the stocks of the
system deteriorate after a finite time). Models of QISs with an infinite life of stocks are
studied in detail in the available literature, see [5].

In models of perishable QISs, stock deterioration occurs within a certain positive time
interval. In the class of perishable QISs, two sub-classes of systems are distinguished:
(1) QIS with individual lifetime (ILT) in which each item can perish independently of the
others, and (2) QIS with common lifetime (CLT) where all items perish together, e.g., foods
with the same expiry date, medicines manufactured with the same expiry date and so on.
Note that models of perishable QIS with ILT were intensively investigated, see, e.g., [6–9]
and their reference lists. However, models of perishable QIS with CLT were little studied,
see [10–13].

It is important to note that, in practice, there are QISs in which items can be destroyed
instantly due to various reasons, e.g., due to the negligence of warehouse workers, as a
result of a sudden power outage, etc. Despite their importance, such models of QISs were
hardly studied, see [14–17]. Note that in the indicated papers, it was assumed that upon
accident, the inventory level was instantly reduced only by one. In the present work, QIS
models with catastrophes in the warehouse part of the system are studied. This means that
all stocks of the system are destroyed at the same time. At first glance, it may seem that the
models of QISs with catastrophes are similar to models of QISs with CLT, but these models
differ from each other. Indeed, in models of QISs with CLT, it is required that, at any given
time, all stocks in the warehouse have the same age, i.e., it is considered that all stocks
arrived as a result of execution of one batch of orders. One can be achieved as follows:
any items remaining in the inventory at the time of replenishment will be removed to
accommodate the new batch of S items, where S is a maximum inventory capacity, see [10].
However, in the model of QIS with catastrophe, this rather rigid assumption is removed.

Note that the classical models of QS with catastrophes were studied in detail in the
available literature, see [18–24]. These papers considered that, as a result of a catastrophe,
the servers of the system fail, while the customers are not affected and they are waiting for
the servers to be repaired. In other words, QS models with catastrophes are a useful tool
for studying systems with unreliable servers.

Another feature of the QIS models studied here is that in addition to consumer
customers, c-customers (i.e., customers that arrived to purchase the inventory), negative
customers (n-customers) also enter the system. Negative customers do not require the
stocks, but they force one C-customer out of the system. At the same time, n-customers
will not affect the stocks of the system. For more details about the QS with n-customers,
readers can refer to the pioneering work [25], as well as the review paper [26].

Despite their importance, QIS models with n-consumers almost were not studied in
the available literature. To the best of our knowledge, for the first time, the Markovian
model of single-server perishable QIS with finite waiting room under (s,Q), Q = S− s > s + 1,
replenishment policy was considered in [27]. It is assumed that both types of customers,
consumer and negative, arrive according to a Markovian arrival process (MAP). Authors
considered the following removal rule: an n-customer at an arrival epoch removes one or
more waiting c-customers and the number of removals is a random variable depending
on the number of waiting c-customers in the system. The joint probability distribution of
the number of c-customers in the system and the inventory level is obtained and various
performance measures of the system are computed as well as the total expected cost rate is
calculated. This paper showed also examples of real-life situations in which QIS models
with n-customers can be applied. For instance, some people who promote the goods of
other sellers may advertise their goods among the customers of this system, and thus, the
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customers of this system may leave the system without receiving its goods. In a recent
paper [28], n-customers were taken into account for the perishable QIS model with double
sources for replenishments.

Note that catastrophes and n-customers make models of QIS more realistic. To our
best knowledge, no existing works on QIS management considered these two features
simultaneously. It was also unclear whether known RPs still work well in this setting. As a
result, it is desirable to develop models of such QISs and deeply analyze this problem. On
the other hand, considering these realistic features simultaneously increases the difficulty
of the constructed mathematical models as well as their computational complexity. The
considered work is the first attempt in this direction.

Most of the existing literature on the QIS assumed that one of the following schemes is
applied: (i) lost sales where any customer that faces a zero inventory is lost or (ii) backorder
sales where each customer joins the queue if upon its arrival there is no inventory. However,
in real QISs, some customers may join the queue or be lost according to the Bernoulli
scheme if the inventory level is zero at the time of their arrival. We will call these schemes
hybrid sales. Note that, to the best of our knowledge, QIS models with hybrid sales were
hardly studied.

The next step after the description of the model was the choice of the appropriate
mathematical tool. In this regard, we note that the matrix-analytic method (MAM) [29] is
an effective tool. A modern exposition of the basis of the theory and practice of MAM can
be found in monographs [30–34].

An analysis of the available literature showed that they studied QIS models under
several unrealistic assumptions. For instance, in known works, it was assumed that, in
the warehouse, there were no accidents that lead to the destruction of the entire inventory
and the system used a unique sales scheme. In addition, most known works did not take
into account the possibility of negative customers. Therefore, we summarize the main
contributions of this work as follows:

• Our model simultaneously captures three important and realistic features of QISs:
catastrophes in a warehouse, negative customers in a service facility, and hybrid sales;

• The investigated QISs can operate under two RPs: (s, S) policy or randomized replen-
ishment policy;

• We obtain the easily checkable stability conditions of the investigated systems and
show that in special cases, they do not depend on the storage size, the rate of catastro-
phes as well as the replenishment rate;

• Simple formulas for steady-state probability vectors as well as for performance mea-
sures of our systems are developed;

• The developed formulas allow analyzing of the effect of the initial parameters on
performance measures of the studied QISs as well as on expected total cost (ETC) and
appropriately select the optimal RPs parameters so that the ETC is minimized.

This paper is organized as follows. In Section 2, we describe the QIS models, clarifying
the assumptions of the d.f. random variables that form the models. Stability conditions
for both models are established and MAM is used for steady-state analysis of the models
are given in Section 3. Explicit formulas for key performance measures are obtained in
Section 4. The results of numerical examples are shown in Section 5. Concluding remarks
are given in Section 6.

2. Describing the Models

The block diagram of the investigated single-server QIS of infinite capacity is shown in
Figure 1. The homogeneous c-customers arrive at the service facility according to Poisson
process with rate λ+. The service times of the c-customers are assumed to be exponentially
distributed with parameter µ. The service requires an idle server along with items (one for
each c-customer) that are stored in an inventory of maximum capacity S.
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In the system, hybrid sales scheme is used, i.e., some part of c-customers is serviced
according to the backorder sale scheme, while the other part is serviced according to the
lost sale scheme. This means the following: if there are no stocks in the system upon arrival
of c-customer, then, in accordance to the Bernoulli trials, it either, with probability (w.p.),
ϕ1 joins the queue of infinite length (backorder sale scheme), or w.p. ϕ2 leaves the system
unserved (lost sale scheme), where ϕ1 + ϕ2 = 1.

The system also receives n-customers with a rate λ−. When a n-customer arrives,
one c-customer force out of the system. A n-customer can force out of the system even a
c-customer, which is in the server, while the inventory level does not change, since it is
assumed that stocks are released after the completion of servicing a c-customer. If there is a
queue of c-customers at the time an n-customer arrives, then only the c-customer is pushed
out from the queue (i.e., the service of the c-customer, which is in the server, continues); if
there are no c-customers in the system, then the received n-customer does not affect the
operation of the system.

In the system, catastrophic events can occur only in its warehouse part. The flow of
catastrophic events is Poisson one with the parameter κ, and at the moment of arrival of
such an event, all the reserves of the system are instantly destroyed. As a result of the
catastrophes, even the stock, which is at the status of release to the c-customer, is destroyed.
In the latter case, the c-customer whose service was interrupted due to a catastrophe is
returned to the queue; in other words, the catastrophe only destroys the stocks of the
system and does not force c-customers out of the system. If the inventory level is zero, then
the disaster does not affect the operation of the system warehouse.

Here, two inventory replenishment policies were considered. The first RP was accord-
ing to a (s, S)-type policy (sometimes this policy is called “Up to S”). In this policy, when
the inventory level drops to the reorder point s, where 0 ≤ s < S, an order was placed
for replenishment and upon replenishment, the inventory level was restocked to level S,
no matter how many items are still present in the inventory. Second RP is randomized
(randomized replenishment policy, RRP), see [35]. In RRP, an order is placed only when the
system’s warehouse is completely empty and the volume of the supplied stock is a random
variable with a known distribution; in other words, w.p. αm, the volume of incoming stock
is equal to m, where ∑S

m=1 αm = 1, αS > 0. In both RPs, the parameter ν indicates the
reorder rate per order.

The task is to find the joint distribution of the number of c-customers in the system
and the inventory level of the system, as well as to calculate the key performance measures
of the system.

3. Stationary Distributions

First consider the computation of the steady-state probabilities of the system under
(s, S) policy. Let Xt be the number of customers at time t and Yt be the inventory level
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at time t. Then, the process Zt = {(Xt, Yt), t ≥ 0} forms a continuous time Markov chain
(CTMC) with state space

E =
∞
∪

n=0
L(n),

where L(n) = {(n, 0), (n, 1), . . . , (n, S)} is the subset of state space E with Xt = n called the
level n.

Let q((n1, m1), (n2, m2)) denote the transition rate from state (n1, m1) ∈ E to state
(n2, m2) ∈ E. So, by noting the assumptions made in Section 2, we conclude that the
investigated CTMC has a generator G = (q((n1, m1), (n2, m2))), (n1, m1), (n2, m2) ∈ E,
with the following transition rates for (n1, m1) ∈ E :

q((n1, m1), (n1 + 1, 0)) = λ+ϕ1·χ(m1 = 0); (1)

q((n1, m1), (n1 + 1, m1)) = λ+·χ(m1 > 0); (2)

q((n1, m1), (n1 − 1, m1)) = λ−·χ(n1 > 0); (3)

q((n1, m1), (n1 − 1, m1 − 1)) = µ·χ(n1 > 0)·χ(m1 > 0); (4)

q((n1, m1), (n1, 0)) = κ·χ(m1 > 0); (5)

q((n1, m1), (n1, S)) = ν·χ(m1 ≤ s). (6)

Hereinafter, χ(A) is the indicator function of the event A, which is 1 if A is true and
0 otherwise.

By re-numbering the states of the system in a lexicographic way, from relations (1)–(6)
we conclude that the process Zt, t ≥ 0, is a level independent quasi birth–death (LIQBD)
process and its generator G might be represented as follows:

G =


B A0 O . . . O . . .

A2 A1 A0 · · · O . . .
O A2 A1 A0 O . . .
O O A2 A1 A0 . . .
...

...
. . . . . . . . .

...

, (7)

where O denotes zero square matrix with dimension S + 1, and all other block matrices
are square matrices of the same dimension. Entities of the block matrices B = ‖bij‖ and

Ak = ‖a
(k)
ij ‖, i, j = 0, 1, . . . , S, are determined as follows:

bij =



ν if 0 ≤ i ≤ s, j = S,
κ if i > 0, j = 0,

−(ν + λ+ϕ1) if i = j = 0,
−(ν + κ + λ+) if 0 < i ≤ s, i = j,
−(κ + λ+) if s < i ≤ S, i = j,

0 in other cases;

(8)

a(0)ij =


λ+ϕ1 if i = j = 0,

λ+ if i 6= 0, i = j,
0 in other cases;

(9)
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a(1)ij =



ν if 0 ≤ i ≤ s, j = S,
κ if i > 0, j = 0,

−(λ− + ν + λ+ϕ1) if i = j = 0,
−(ν + κ + µ + λ+ + λ−) if 0 < i ≤ s, i = j,
−(κ + µ + λ+ + λ−) if i > s, i = j,

0 in other cases;

(10)

a(2)ij =


λ− if i = j,
µ if i > 0, j = i− 1,
0 in other cases.

(11)

The entities of the generator A = A0 + A1 + A2 are determined as follows:

aij =



−ν if i = j = 0,
ν if 0 ≤ i ≤ s, j = S,

µ + κ if i = 1, j = 0,
κ if i > 1, j = 0,
−µ if i > 0, j = i,
µ if i ≥ 2, j = i− 1.

(12)

The stationary probability vector that corresponds to the generator A is denoted by
π =(π(0), π(1), . . . , π(S)). In other words, we have the balance equations:

πA = 0, πe = 1, (13)

where 0 is the null row vector of dimension S + 1 and e is the column vector of dimension
S + 1 that contains only 1’s.

By using the recursive procedure, we obtained that Equation (13) had the following
solution:

π(0) =
1 + bc
1 + dc

, π(1) = dπ(0)− b; π(m) = amπ(1), 2 ≤ m ≤ S, (14)

where d = ν+κ
µ , b = κ

µ , c = ∑S
m=1 am, am =

{
(1 + d)m−1, if 1 ≤ m ≤ s + 1,

(1 + d)s(1 + b)m−s−1, if s + 1 < m ≤ S.
Using the stationary probability vector of the generator A given by (14), we can derive

the ergodicity (stability) condition of the process Zt, t ≥ 0.

Proposition 1. Under (s, S) policy, the process Zt, t ≥ 0, is ergodic if and only if the following
condition is fulfilled:

λ+(1− ϕ2π(0)) < λ− + µ(1− π(0)). (15)

Proof of Proposition 1. In accordance with [29] (pp. 81–83), the process Zt, t ≥ 0, is ergodic
if and only if

πA0e < πA2e. (16)

By using relations (14), from the matrices A0 and A2, we have

A0e = λ+ϕ1π(0) + λ+
S

∑
m=1

π(0) = λ+ϕ1π(0) + λ+(1− π(0)) = λ+(1− ϕ2π(0))

and

πA2e = λ−
S

∑
m=0

π(m) + µ
S

∑
m=1

π(m) = λ− + µ(1− π(0)).

Thus, relation (16) is equivalent to the inequality (15). �
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Note 1. The established ergodicity condition (15) has a probabilistic meaning, i.e., it indicates that
the rate of c-customers entering the system must be less than the total rate of negative customers
and the rate of served c-customers. We find from (15) that in general case stability condition for
the present model is dependent on the storage size of system, the rate of catastrophes, and the
replenishment rate.

Note 2. Consider the following special cases.

(i) If ϕ2 = 1 (i.e., when a pure lost sale scheme is used) and λ− = 0 (i.e., when there
are not negative customers) from (9), we find the ergodicity condition for the single-server
Markovian queuing system, i.e., λ+ < µ. In other words, under such assumptions, the
ergodicity condition of the system does not depend on the storage size of system, the rate
of catastrophes, and the replenishment rate. Similar results for other models were obtained
in [9,36,37].

(ii) If ϕ2 = 1 and λ− > 0, the ergodicity condition is depending on all indicated
parameters of the system, see Formula (14).

(iii) If ϕ2 = 0 (pure backorder scheme is used), the ergodicity condition is dependent
on all indicated parameters of the system even for case λ− = 0, see Formula (14).

A steady-state probability that corresponds to the generator matrix G, we denote
by p = (p0, p1, p2, · · ·), where pn = (p(n, 0), p(n, 1), . . . , p(n, S)), n = 0, 1, · · · . Under
the ergodicity condition (15), desired steady-state probabilities are determined from the
following equations:

pn = p0Rn, n ≥ 1, (17)

where R is the nonnegative minimal solution of the following quadratic matrix equation:

R2 A2 + RA1 + A0 = 0.

From (8)–(11), it was concluded that bound probabilities p0 are determined from the
following system of equations with normalizing conditions:

p0(B + RA2) = 0,

p0(I − R)−1e = 1. (18)

where I indicate the identity matrix of dimension S + 1.
Now consider the computation of the steady-state probabilities under RRP. In this case,

parameters q((n1, m1), (n2, m2)) are calculated via relations (1)–(5) but relation (6) should
be substituted by the following equations:

q((n1, 0), (n1, m)) = νm·χ(1 ≤ m ≤ S),

where νm = ναm, 1 ≤ m ≤ S.
Therefore, for this policy the generator matrix of the process Zt, t ≥ 0, has the follow-

ing form:

G̃ =


B̃ A0 O . . . O . . .

A2 Ã1 A0 · · · O . . .
O A2 Ã1 A0 O . . .
O O A2 Ã1 A0 . . .
...

...
. . . . . . . . .

...

,
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Here, entities of matrices B̃ and Ã1 are calculated as follows:

b̃ij =


νj if i = 0, j > 0,
κ if i > 0, j = 0,

−(ν + λ+ϕ1) if i = j = 0,
−(κ + λ+) if 0 < i ≤ S, i = j,

0 in other cases ;

(19)

ã(1)ij =


νj if i= 0, j > 0,
κ if i > 0, j = 0,

−(λ− + ν + λ+ϕ1) if i = j = 0,
−(κ + µ + λ+ + λ−) if i > 0, i = j,

0 in other cases.

(20)

In this model, entities of the generator Ã = A0 + Ã1 + A2 are determined as

ãij =



−ν if i = j = 0,
νj if i = 0, j > 0,

µ + κ if i = 1, j = 0,
κ if i > 1, j = 0,
−µ if i > 0, j = i,
µ i f i ≥ 2, j = i− 1.

(21)

Again, using the recursive procedure, we found that the balance Equation (13), where
the matrix A is replaced by Ã, the following solution was used

π(m) = rmπ(0), 0 ≤ m ≤ S, (22)

where rm are calculated from the following reverse recursive relations

r0 = 1,

rS =
νS

µ + κ
,

rm =
1

µ + κ
(µrm+1 + νm), 1 ≤ m ≤ S− 1.

Here, the unknown parameter π(0) is found from the normalizing condition, i.e.,

π(0) =

(
S

∑
r=0

rm

)−1

. (23)

In analogy with Proposition 1, it is easy to show that the following fact is true.

Proposition 2. Under RRP policy, the process Zt, t ≥ 0, is ergodic if and only if the condition (15)
is fulfilled where π(0) is defined as in (23).

Furthermore, by using a system of Equations (17) and (18), the steady-state probabili-
ties for this model were calculated.

4. Performance Measures

In this section, we are interested in the key performance measures of the investigated
system related to both inventory and queuing under each RP. Having determined the
steady-state probabilities under both RPs, we can compute the key performance measures
of the investigated models explicitly.



Mathematics 2023, 11, 2380 9 of 16

Performance measures related to inventory are the following:

• Average inventory level (Sav) under both policy

Sav =
S

∑
m=1

m
∞

∑
n=0

p(n, m); (24)

• Average order size under (s, S) policy

Vav =
S

∑
m=S−s

m
∞

∑
n=0

p(n, S−m); (25)

under RRP

Vav =

(
S

∑
m=1

mαm

)(
∞

∑
n=0

p(n, 0)

)
; (26)

• Average reorder rate (RR) under (s, S) policy

RR = µ
∞

∑
n=1

p(n, s + 1) + κ

(
1−

∞

∑
n=0

p(n, 0)

)
; (27)

under RRP
RR = µ ∑∞

n=1 p(n, 1) + κ
(

1−∑∞
n=0 p(n, 0)

)
. (28)

Performance measures related to queuing are the following:

• Average length of the queue (Lav) under both policies

Lav =
∞

∑
n=1

n
S

∑
m=0

p(n, m). (29)

• Loss rate (LR) of customers under both policies

LR = λ+ϕ2

∞

∑
n=0

p(n, 0) + λ−
(

1−
S

∑
m=0

p(0, m)

)
. (30)

5. Numerical Results

Here, we consider the results of numerical experiments for both models. These
experiments were generated using a Fortran 90 code due to the authors’ years of experience
with this software. The running time (i.e., time from compiling the program to the time
results appear) was only a few seconds.

Below, hypothetical models were considered for both policies, i.e., the values of initial
parameters were chosen arbitrarily. Note that in realistic applications, these values can
be changed.

First, consider the results for the model with “Up to S” policy. For this RP, we
considered the behavior of performance measures versus s as well as the finding the
optimal value of s to minimize the expected total cost (ETC) that was defined as follows:

ETC(s) = (K + crVav)RR + chSav + cpsκSav + cl LR + cwLav, (31)

where K is the fixed price of one order, cr is the unit price of the order size, ch is the unit
inventory storage price per unit of time, cps is the price of unit inventory damaging, cl is
the cost for a single c-customer loss, cw is the price per unit time of queuing delay for a
single c-customer.
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For this policy, it was assumed that values of all parameters of the QIS were fixed
except the parameter s. In other words, here, numerical experiments were processed to
analyze the effect of parameter s on the performance measures.

Let us consider S = 50 and that values of load parameters are selected as follows:
λ+ = 6, λ− = 1, κ = 1, µ = 8, ϕ1 = 0.6, ν = 1. The coefficients in the expression for
functional in ETC (see (31)) were chosen as follows: K = 10, cr = 15, ch = 10, cl = 450,
cw = 400, cps = 15.

The impact of reorder points s on performance measures, ETC, are shown in Table 1.
From this table, we conclude that the rate of change of all performance measures was very
low and ETC was a unimodal function; its minimal value is indicated in bold.

Table 1. Impact of reorder point s to performance measures and ETC.

s Sav Vav Lav RR LR ETC

1 21.4427 25.0148 14.1234 0.5004 2.4279 8176.89
2 21.4447 25.0169 14.1208 0.5005 2.4278 8175.77
3 21.4470 25.0193 14.1183 0.5006 2.4277 8174.74
4 21.4495 25.0219 14.1161 0.5008 2.4276 8173.85
5 21.4524 25.0249 14.1142 0.5009 2.4276 8173.12
6 21.4557 25.0282 14.1124 0.5011 2.4275 8172.47
7 21.4593 25.0319 14.1109 0.5013 2.4274 8171.96
8 21.4646 25.0348 14.1097 0.5015 2.4274 8171.64
9 21.4681 25.0407 14.1083 0.5018 2.4274 8171.22

10 21.4732 25.0459 14.1072 0.5021 2.4273 8171.00
11 21.4825 25.0480 14.1061 0.5025 2.4273 8170.92
12 21.4855 25.0583 14.1053 0.5028 2.4273 8170.81
13 21.4948 25.0655 14.1045 0.5032 2.4272 8170.84
14 21.5021 25.0724 14.1039 0.5036 2.4272 8171.02
15 21.5099 25.0827 14.1032 0.5043 2.4272 8171.19
16 21.5200 25.0929 14.1026 0.5049 2.4272 8171.50
17 21.5318 25.1054 14.1020 0.5058 2.4272 8172.04
18 21.5348 25.1166 14.1016 0.5066 2.4272 8172.45
19 21.5577 25.1305 14.1012 0.5076 2.4271 8173.11
20 21.5731 25.1459 14.1009 0.5087 2.4271 8173.99
21 21.5913 25.1618 14.1006 0.5101 2.4271 8174.78
22 21.6091 25.1820 14.1002 0.5116 2.4271 8175.86
23 21.6300 25.2029 14.1000 0.5133 2.4271 8177.14
24 21.6554 25.2233 14.0998 0.5154 2.4271 8178.81
25 21.6785 25.2514 14.0996 0.5177 2.4271 8180.22
26 21.6971 25.2764 14.0994 0.5194 2.4271 8182.75
27 21.7322 25.3014 14.0992 0.5218 2.4271 8184.44
28 21.7708 25.3438 14.0991 0.5271 2.4271 8186.67
29 21.8121 25.3939 14.0989 0.5329 2.4271 8189.58
30 21.8532 25.4310 14.0988 0.5399 2.4271 8192.77

The goals of the numerical experiments for the model with RRP were the investigation
of the behavior of performance measures versus initial parameters for three schemas of
changing of probabilities αm, 1 ≤ m ≤ S: (1) when αm, 1 ≤ m ≤ S are constants, (2) when
αm, 1 ≤ m ≤ S are increasing ones, and (3) when αm, 1 ≤ m ≤ S are decreasing ones.

Here, we again assumed that S = 50 and ϕ1 = 0.6. Additionally, in the first schema,
we set αm = 1

50 , 1 ≤ m ≤ 50; in the second schema, we set α1 = 0.01755, αm = αm−1 +
0.0001, 2 ≤ m ≤ 50; in the third schema, we set α1 = 0.02245, αm = αm−1 − 0.0001,
2 ≤ m ≤ 50;

Values of other parameters are shown in the title of the appropriate Tables 2–5. In these
tables, the first row corresponds to schema (1), the second row corresponds to schema (2),
and the third row corresponds to schema (3).
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Table 2. Performance measures vs. λ+ under RRP, λ− = 1, µ = 15, ν = 1, κ = 1.

λ+ Sav Vav Lav RR LR

5
10.4293 13.6926 2.7998 0.5370 1.7367
10.8777 13.5965 2.7612 0.5332 1.7260
9.9749 13.7905 2.8397 0.5408 1.7475

5.2
10.3387 13.7382 3.0565 0.5388 1.8006
10.7845 13.6384 3.0111 0.5348 1.7892
9.8870 13.8400 3.1036 0.5427 1.8122

5.4
10.2490 13.7845 3.3380 0.5406 1.8645
10.6920 13.6810 3.2847 0.5365 1.8524
9.7998 13.8901 3.3936 0.5447 1.8769

5.6
10.1600 13.8315 3.6481 0.5424 1.9286
10.6003 13.7243 3.5854 0.5382 1.9156
9.7133 13.9409 3.7138 0.5467 1.9417

5.8
10.0718 13.8792 3.9915 0.5443 1.9926
10.5095 13.7685 3.9175 0.5399 1.9789
9.6276 13.9923 4.0692 0.5487 2.0067

6
9.9845 13.9276 4.3739 0.5462 2.0568
10.4197 13.8134 4.2864 0.5417 2.0423
9.5428 14.0445 4.4661 0.5508 2.0717

6.2
9.8981 13.9769 4.8024 0.5481 2.1212
10.3308 13.8591 4.6985 0.5435 2.1058
9.4588 14.0975 4.9122 0.5528 2.1370

6.4
9.8127 14.0269 5.2859 0.5501 2.1858
10.2430 13.9056 5.1620 0.5453 2.1696
9.3757 14.1511 5.4175 0.5549 2.2024

6.6
9.7283 14.0777 5.8360 0.5521 2.2506
10.1562 13.9530 5.6875 0.5472 2.2335
9.2930 14.2056 5.9926 0.5571 2.2681

6.8
9.6450 14.1294 6.4678 0.5541 2.3156
10.0706 14.0013 6.2886 0.5491 2.2976
9.2125 14.2608 6.6603 0.5592 2.3341

7
9.5627 14.1819 7.2012 0.5562 2.3809
9.9861 14.0504 6.9829 0.5510 2.3620
9.1325 14.3168 7.4371 0.5614 2.4003

Table 3. Performance measures vs. λ− under RRP; λ+ = 5, µ = 15, ν = 1, κ = 1.

λ− Sav Vav Lav RR LR

1
10.4293 13.6926 2.7998 0.5370 1.7367
10.8777 13.5965 2.7612 0.5332 1.7260
9.9749 13.7905 2.8397 0.5408 1.7475

1.2
10.5029 13.6569 2.5348 0.5356 1.8460
10.9531 13.5640 2.5032 0.5319 1.8353
10.0469 13.7514 2.5673 0.5393 1.8570

1.4
10.5277 13.6237 2.3027 0.5343 1.9491
11.0247 13.5338 2.2768 0.5307 1.9383
10.1150 13.7150 2.3294 0.5378 1.9601

1.6
10.7387 13.5928 2.0989 0.5330 2.0460
11.0924 13.5058 2.0775 0.5296 2.0352
10.1794 13.6812 2.1208 0.5365 2.0570
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Table 3. Cont.

λ− Sav Vav Lav RR LR

1.8
10.7410 13.5640 1.9193 0.5319 2.1369
11.1563 13.4797 1.9016 0.5286 2.1262
10.2401 13.6497 1.9375 0.5353 2.1479

2
10.7595 13.5374 1.7608 0.5309 2.2221
11.2146 13.4555 1.7460 0.5277 2.2115
10.2972 13.6204 1.7759 0.5341 2.2330

2.2
10.8145 13.5126 1.6206 0.5299 2.3018
11.2729 13.4331 1.6082 0.5268 2.2913
10.3507 13.5932 1.6332 0.5331 2.3136

2.4
10.8660 13.4897 1.4963 0.5290 2.3763
11.3259 13.4124 1.4859 0.5260 2.3659
10.4009 13.5680 1.5069 0.5321 2.3869

2.6
10.9142 13.4684 1.3859 0.5282 2.4459
11.3755 13.3931 1.3771 0.5252 2.4356
10.4478 13.5446 1.3949 0.5312 2.4563

2.8
10.9594 13.4486 1.2877 0.5274 2.5108
11.4220 13.3752 1.2802 0.5245 2.5007
10.4917 13.5229 1.2954 0.5303 2.5210

3
11.0016 13.4303 1.2002 0.5267 2.5713
11.4655 13.3586 1.1937 0.5239 2.5614
10.5328 13.5028 1.2068 0.5295 2.5814

Table 4. Performance measures vs. ν under RRP; λ+ = 5, λ− = 1, µ = 15, κ = 1.

ν Sav Vav Lav RR LR

1
10.4293 13.6926 2.7998 0.5370 1.7367
10.8777 13.5965 2.7612 0.5332 1.7260
9.9749 13.7905 2.8397 0.5408 1.7475

1.2
11.5715 12.4789 2.1985 0.5872 1.5968
12.0587 12.3874 2.1724 0.5829 1.5869
11.0774 12.5721 2.2255 0.5916 1.6070

1.4
12.5297 11.4631 1.8188 0.6293 1.4813
13.0489 11.3761 1.7996 0.6246 1.4720
12.0029 11.5518 1.8385 0.6342 1.4908

1.6
13.3451 10.6004 1.5601 0.6651 1.3844
13.8910 10.5177 1.5452 0.6599 1.3757
12.7907 10.6847 1.5753 0.6704 1.3933

1.8
14.0472 9.8585 1.3742 0.6959 1.3020
14.6140 9.7797 1.3623 0.6903 1.2937
13.4694 9.9387 1.3865 0.7016 1.3103

2
14.6581 9.2136 1.2352 0.7226 1.2310
15.2465 9.1385 1.2254 0.7167 1.2232
14.0602 9.2900 1.2454 0.7286 1.2389

2.2
15.1945 8.6478 1.1281 0.7461 1.1693
15.8000 8.5762 1.1198 0.7399 1.1619
14.5790 8.7208 1.1367 0.7524 1.1767

2.4
15.6692 8.1476 1.0435 0.7668 1.1151
16.2898 8.0791 1.0363 0.7604 1.1082
15.0383 8.2173 1.0508 0.7734 1.1222
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Table 4. Cont.

ν Sav Vav Lav RR LR

2.6
16.0924 7.7020 0.9752 0.7853 1.0673
16.7261 7.6365 0.9690 0.7786 1.0607
15.4478 7.7687 0.9816 0.7921 1.0740

2.8
16.4718 7.3026 0.9193 0.8018 1.0247
17.1174 7.2398 0.9137 0.7950 1.0184
15.8151 7.3665 0.9249 0.8089 1.0311

3
16.8141 6.9425 0.8727 0.8168 0.9865
17.4703 6.8822 0.8678 0.8097 0.9805
16.1464 7.0039 0.8777 0.8240 0.9926

Table 5. Performance measures vs. κ under RRP; λ+ = 5, λ− = 1, µ = 15, ν = 1.

κ Sav Vav Lav RR LR

1
10.4293 13.6926 2.7998 0.5370 1.7367
10.8777 13.5965 2.7612 0.5332 1.7260
9.9749 13.7905 2.8397 0.5408 1.7475

1.2
9.6443 14.7246 3.1521 0.5774 1.8486
10.0636 14.6395 3.1099 0.5741 1.8390
9.2205 14.8111 3.1958 0.5808 1.8583

1.4
8.9548 15.5927 3.5168 0.6115 1.9440
9.3468 15.5167 3.4702 0.6085 1.9353
8.5592 15.6699 3.5650 0.6145 1.9528

1.6
8.3492 16.3323 3.9015 0.6405 2.0264
8.7164 16.2637 3.8496 0.6378 2.0184
7.9791 16.4019 3.9553 0.6432 2.0345

1.8
7.8156 16.9696 4.3143 0.6655 2.0985
8.1604 16.9072 4.2560 0.6630 2.0911
7.4684 17.0327 4.3748 0.6680 2.1060

2
7.3432 17.5242 4.7640 0.6872 2.1622
7.6679 17.4672 4.6979 0.6850 2.1554
7.0166 17.5820 4.8327 0.6875 2.1692

2.2
6.9229 18.0112 5.2610 0.7063 2.2191
7.2294 17.9587 5.1852 0.7043 2.2127
6.6147 18.0644 5.3398 0.7084 2.2256

2.4
6.5469 18.4422 5.8178 0.7232 2.2704
6.8371 18.3936 5.7302 0.7213 2.2643
6.2553 18.4913 5.9090 0.7251 2.2765

2.6
6.2089 18.8262 6.4504 0.7383 2.3168
6.4842 18.7810 6.3481 0.7365 2.3111
5.9323 18.8719 6.5573 0.7401 2.3227

2.8
5.9035 19.1705 7.1797 0.7518 2.3593
6.1655 19.1284 7.0586 0.7501 2.3538
5.6405 19.2132 7.3065 0.7535 2.3648

3
5.6264 19.4810 8.0339 0.7640 2.3983
5.8762 19.4415 7.8884 0.7624 2.3931
5.3758 19.5210 8.1865 0.7655 2.4036

Now, we present the effect of initial parameters as well as considered schemas of
changing probabilities αm, 1 ≤ m ≤ S on the performance measures of the investigated
RRP as follows:
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• An analysis of data in Tables 2–5 showed that the second schema was favorable for
all performance measures, except for the average inventory level. For the average
inventory level, the third schema was favorable. It is interesting to note that the first
schema was always intermediate between the three schemes.

• Table 2 shows that for all schemas, except for the average inventory level, perfor-
mance measures increased versus the rate of consumer customers. These findings
were expected.

• From Table 3, we can see that the average inventory level as well as the rate of loss
of consumer customers increased when the rate of negative customers increased.
However, the main performance measures decreased as the rate of negative customers
increased. These findings were true for all schemas, and they were also expected.

• From Table 4, we can notice that the average inventory level as well as the reorder rate
increased when the replenishment rate increased. A first observation concerning the
behavior of reorder rate was unexpected. This phenomenon was explained as follows:
when the replenishment rate increased, the probability that the inventory level was
positive also increased and, hence, the catastrophe rate increased (see the second
term in Formula (28)). Here, the rest of the performance measures were decreased
versus replenishment rate. These findings were true for all schemas, and they were
also expected.

• Table 5 shows that for all schemas, excluding the average inventory level, performance
measures increased versus the rate of catastrophes. These findings were true for all
schemas, and they were also expected.

Note that the values of all performance measures in all Tables 2–5 changed smoothly.

6. Conclusions

A new model of the single-server QIS with negative customers and catastrophes in
the warehouse under two replenishment policies was proposed. One of the replenishment
policies was “Up to S” and the other was a randomized policy. The combination of lost
sale scheme and backorder scheme was used, i.e., if the inventory level upon arrival of
consumer customer was zero, then, in accordance to the Bernoulli trials, it either joined
the queue of infinite length (backorder sale scheme), or left the system unserved (lost sale
scheme). Negative customers required neither service nor inventory, i.e., upon the arrival
of such a customer, one of the consumer customers was pushed out of the system. In the
case of a catastrophe, all items in the warehouse, as well as items that were at the status of
release to the consumer customer, were instantly destroyed but catastrophes did not force
the consumer customers out of the system.

The mathematical models of the investigated system under both policies were two-
dimensional Markov chains with different three-diagonal generators. The ergodicity con-
ditions for the constructed 2D MC were found and probabilistic means of the obtained
conditions were given. It was shown that some known results were special cases of the
developed conditions. Formulas for calculating the performance measures were proposed.
The results of numerical experiments were analyzed.

The direction of future work should be the investigation of the models with MAP
flows of c-customers and/or n-customers as well as with PH distribution of service times
for c-customers.
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List of Acronyms

ETC Expected Total Cost
ICS Inventory Control System
ILT Individual Life Time
CLT Common Life Time
MAM Matrix-Analytic Method
MAP Markovian Arrival Process
QS Queuing System
QIS Queuing-Inventory System
RP Replenishment Policy
RRP Randomized Replenishment Policy
IL Inventory Level
QL Queue Level
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