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Abstract: The class of H-matrices, also known as Generalized Diagonally Dominant (GDD) matrices,
plays an important role in many areas of applied linear algebra, as well as in a wide range of
applications, such as in dynamical analysis of complex networks that arise in ecology, epidemiology,
infectology, neurology, engineering, economy, opinion dynamics, and many other fields. To conclude
that the particular dynamical system is (locally) stable, it is sufficient to prove that the corresponding
(Jacobian) matrix is an H-matrix with negative diagonal entries. In practice, however, it is very difficult
to determine whether a matrix is a non-singular H-matrix or not, so it is valuable to investigate
subclasses of H-matrices which are defined by relatively simple and practical criteria. Many subclasses
of H-matrices have recently been discussed in detail demonstrating the many benefits they can
provide, though one particular subclass has not been fully exploited until now. The aim of this
paper is to attract attention to this class and discuss its relation with other more investigated classes,
while showing its main advantage, based on its simplicity and elegance. This new approach, which
we are presenting in this paper, will be compared with the existing ones, in three possible areas of
applications, spectrum localization; maximum norm estimation of the inverse matrix in the point,
as well as the block case; and error estimation for LCP problems. The main conclusion is that the
importance of our approach grows with the matrix dimension.

Keywords: H-matrices; block H-matrices; eigenvalue localization; inverse matrix norm estimation;
error estimation for LCP

MSC: 15A09; 15A18; 15B99

1. Introduction

The class of generalized diagonally dominant (GDD), also known as the H-matrix
class, as well as its various subclasses, attract significant scientific attention due to its central
subclass, the strictly diagonally dominant (SDD) class, which appears to be very important
and productive in many fields of applied linear algebra, for example:

• The famous Geršgorin theorem [1] is, in fact, equivalent to non-singularity result for
SDD matrices [2];

• For a given SDD matrix, an infinity norm estimation for its inverse can be easily found
by Varah’s theorem [3];

• For an arbitrary matrix, its ε−pseudospectrum can be easily localized by ε−pseudo
Geršgorin set [4];

• If the (Jacobian) matrix off a particular (non-linear) dynamical system is an SDD matrix
with negative diagonal entries, then this dynamical system is (locally) stable;

• The error bound for linear complementarity problems can be easily calculated for the
class of SDD matrices [5];

• The Schur complement of an SDD matrix is SDD itself [6].

All of these applications are simple and elegant as they only require simple operations
with matrix entries. In comparison, even if we manage to find an analogue application for
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GDD-matrices (such as Minimal Geršgorin set [2] for the first item), it is neither simple
nor elegant. For this reason, something between SDD and GDD classes, i.e., various H-
matrix subclasses, became relevant. Many such subclasses have been discovered over the
years, such as doubly strictly diagonally dominant (DSDD), also known under the name
Ostrowski matrices [7–9], Dashnic–Zusmanovich matrices [10], Dashnic–Zusmanovich
type matrices [11], S-SDD or CKV matrices [12,13], CKV type matrices [14], Nekrasov
matrices [15–17], SDD1 matrices [18,19], etc. Various problems related to these classes
have been studied, including eigenvalue localizations [2,7], pseudospectra localizations [4],
infinity norm estimations of the inverse [18,20–27], Schur complement problems [28–31],
error bound for linear complementarity problems [32–36], etc. Furthermore, introducing
new H-matrix subclasses can provide more benefits for SDD class itself. For example,
infinity norm estimation for the inverse of Nekrasov matrices, see [17,21], can be used for
SDD matrices as well (since SDD class is a subset of Nekrasov class), and produce better
estimation than Varah’s one. This idea has been specifically essential to estimate the infinity
norm of the iterative matrix of a parallel-in-time iterative algorithm for Volterra partial
integro-differential problems [37], and to analyze the preconditioning technique for an
all-at-once system from Volterra subdiffusion equations [38]. Of course, as a matrix class
under consideration becomes wider, the more computational effort has to be performed to
obtain a corresponding result.

On the other hand, in many applications, such as in ecology for example, a matrix
under consideration is almost an SDD matrix, meaning that in only one row is strictly diago-
nally not dominant. Such matrices might belong to Ostrowski or Dashnic–Zusmanovich
classes, which are widely investigated in the recent years [8,23,29,31,39,40]. However, if
we focus on matrices with only one non-SDD row, which are not Ostrowski matrices,
we can find a simpler condition than Dashnic–Zusmanovich one, providing an H-matrix
property. This condition can be derived from a non-singular class of matrices from [41],
which, to author’s knowledge, has not been fully exploited up to now. In this paper, we
will present a new approach to this class, show how many benefits we can achieve in the
case of matrices with only one non-SDD row, and compare our results with the existing
ones in three possible areas of applications, which are eigenvalue localization; maximum
norm estimation of the inverse matrix in the point, as well as the block case; and error
estimation for LCP problems.

Throughout this paper, the usual notations shall be used:

N := {1, 2, . . . , n},

ri(A) := ∑
j 6=i
|aij|, i ∈ N, si(A) := max

j∈N\{i}
|aji|, i ∈ N.

In [41], the following non-singularity result was proved.

Theorem 1. If a matrix A = [aij] ∈ Cn,n, n ≥ 2, satisfies the conditions

|aii| > min
(
ri(A), si(A)

)
, i ∈ N, (1)

and
|aii|+ |ajj| > ri(A) + rj(A) i, j ∈ N, i 6= j, (2)

then A is non-singular.

The matrix class described by conditions (1) and (2) we will call Nearly-SDD class.
To authors’ knowledge, the relationship with some other known non-singular classes has
not been established yet. Hence, first of all, we will discuss these relationships, and then
present some advantages of using the Nearly-SDD class in applications.
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A closer look at conditions (1) and (2), leads to the conclusion that all matrices from the
Nearly-SDD class have at most one non-SDD row, i.e., the matrix is either an SDD (strictly
diagonally dominant) matrix, meaning that

|aii| > ri(A) i ∈ N,

or there is only one index k ∈ N, such that

sk(A) < |akk| ≤ rk(A),

and
|ajj| > rj(A) +

(
rk(A)− |akk|

)
, j ∈ N \ {k}.

Hence, Theorem 1 has the following Corollary:

Corollary 1. If for a matrix A = [aij] ∈ Cn,n, n ≥ 2, there exists an index k, such that

sk(A) < |akk| ≤ rk(A),

and for all j 6= k

|ajj| > rj(A) +
(

rk(A)− |akk|
)

,

then A is non-singular.

This particular situation, when a given matrix has at most one non-SDD row, happens
also with two well-known subclasses of H-matrices, Ostrowski (or Doubly Diagonally
Dominant), [9], defined by the condition

|aii||ajj| > ri(A)rj(A), i, j ∈ N, i 6= j, (3)

and Dashnic–Zusmanovich (DZ) [10], defined by the condition that there exists an index
i ∈ N, such that

|aii|
(
|ajj| − rj(A) + |aji|

)
> ri(A)|aji|, j ∈ N \ {i}. (4)

So, the natural question that immediately arises is what is the relation between these
classes?

Recently, in [18,19], another H-matrix subclass which treats differently SDD and non-
SDD rows, has been proposed. Let N1(A) be the subset of indices that correspond to
non-SDD rows, i.e.,

N1(A) := {i ∈ N : |aii| ≤ ri(A)},

and

pi(A) := ∑
j∈N1(A)\{i}

|aij|+ ∑
j/∈N1(A)∪{i}

rj(A)

|ajj|
|aij|.

We say that a matrix A is SDD1 matrix if

|aii| > pi(A), i ∈ N1(A). (5)

Among SDD1 matrices, obviously, one can find matrices with only one non-SDD row (for
such matrices N1(A) is a singleton), so we will compare the Nearly-SDD class with the
SDD1 class, too. By convention, we will assume that SDD matrices (the case N1(A) = ∅)
does belong to SDD1 class.
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2. The Relation between Classes

Figure 1 illustrates the relationship between Nearly-SDD, Ostrowski, Dashnic–Zusma-
novich, and SDD1 classes.

Figure 1. The relationship between classes.

In order to confirm this, we will present the following:

1* An example—matrix A1—belonging to Nearly-SDD, but not to Ostrowski,
2* An example—matrix A2—belonging to Ostrowski, but not to Nearly-SDD,
3* An example—matrix A3—belonging to DZ, but neither to Ostrowski, nor to Nearly-SDD,
4* An example—matrix A4—belonging to Nearly-SDD, but not to SDD1,
5* The proof that every Nearly-SDD matrix is a DZ, too.

Other relations presented in the picture are obvious.
The following examples arise in ecological modelling, more precisely in the generalized

Lotka–Volterra equations, representing energy flow in complex food webs. Matrices A1,
A2, A3, and A4 are community matrices of such models.

1* The matrix

A1 =



−78 7 10 5 10 8 3 5 1 7
4 −95 9 3 3 5 3 5 5 2
4 4 −58 6 8 1 3 4 4 6
9 7 8 −87 2 5 6 8 8 3
0 2 4 2 −90 1 7 2 6 7

10 9 3 6 3 −80 8 2 6 9
9 6 5 4 8 7 −86 7 1 36
7 9 1 7 7 3 4 −93 11 3
5 8 4 4 3 5 6 4 −47 5
4 2 2 10 9 9 2 10 3 −49


is a Nearly-SDD matrix (for k = 10), but it is not an Ostrowski matrix, for

|a7,7||a10,10| = 4214 < 4233 = r7(A)r10(A).
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2* The matrix

A2 =



−78 7 10 5 10 8 3 5 1 7
4 −95 9 3 3 5 3 5 5 2
4 4 −58 6 8 1 3 4 4 6
9 7 8 −87 2 5 6 8 8 3
0 2 4 2 −90 1 7 2 6 7

10 9 3 6 3 −80 8 2 6 9
9 6 5 4 8 7 −86 7 1 35
7 9 1 7 7 3 4 −93 11 3
5 8 4 4 3 5 6 4 −47 6
4 2 2 10 9 9 2 10 3 −49


is an Ostrowski matrix, but it is not a Nearly-SDD matrix, for the only non-SDD row
is k = 10, and

|a9,9|+ |a10,10| = 96 = r9(A) + r10(A).

3* The matrix

A3 =



−78 7 10 5 10 8 3 5 1 7
4 −95 9 3 3 5 3 5 5 2
4 4 −58 6 8 1 3 4 4 6
9 7 8 −87 2 5 6 8 8 3
0 2 4 2 −90 1 7 2 6 7

10 9 3 6 3 −80 8 2 6 9
9 6 5 4 8 7 −86 7 1 37
7 9 1 7 7 3 4 −93 11 3
5 8 4 4 3 5 6 4 −47 6
4 2 2 10 9 9 2 10 3 −49


is a DZ matrix, but it is neither an Ostrowski matrix, because of

|a7,7||a10,10| = 4214 < 4284 = r7(A)r10(A),

nor a Nearly-SDD matrix, for the only non-SDD row is k = 10, and

|a7,7|+ |a10,10| = 135 = r7(A) + r10(A).

4* The matrix

A4 =



−59 7 10 5 10 8 3 5 1 7
4 −42 9 3 3 5 3 5 5 2
4 4 −43 6 8 1 3 4 4 6
9 7 8 −59 2 5 6 8 8 3
0 2 4 2 −34 1 7 2 6 7

10 9 3 6 3 −59 8 2 6 9
9 6 5 4 8 7 −56 7 1 6
7 9 1 7 7 3 4 −55 11 3
5 8 4 4 3 5 6 4 −47 5
2 2 2 2 1 1 1 1 1 −11


is a Nearly-SDD matrix (for k = 10), but it is not an SDD1 matrix, for

|a10,10| = 11 < 12.2032 = p10(A).
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5* Proof. Assume that A belongs to Nearly-SDD class. If A is an SDD matrix, the
conclusion follows immediately. Hence, suppose that there exists an index k, such that

sk(A) < |akk| ≤ rk(A),

and for all other indices j 6= k it holds that

|ajj| > rj(A) + rk(A)− |akk|.

Then,

|akk||ajj| > |akk|
(

rj(A) + rk(A)− |akk|
)
≥ |akk|rj(A) + sk(A)

(
rk(A)− |akk|

)
≥

≥ |akk|rj(A) + |ajk|
(

rk(A)− |akk|
)

,

or, equivalently,

|akk|
(
|ajj| − rj(A) + |ajk|

)
> |ajk|rk(A),

holds for all j 6= k, which means that A belongs to DZ class.

3. Scaling Technique for Nearly-SDD Class

It is well known that every H-matrix can be diagonally scaled, from the right-hand
side, to an SDD matrix, i.e., that there exists a positive diagonal matrix W, such that AW
is an SDD matrix. The class we are dealing with in this paper, the Nearly-SDD class, is a
subclass of H-matrices, which we confirm by constructing a scaling matrix W.

First of all, if A is an SDD matrix itself, then there is nothing to prove, since the role of
the scaling matrix is played by the identity matrix.

Consequently, assume that A belongs to Nearly-SDD class, and that k is the index of
the only non-SDD row:

sk(A) < |akk| ≤ rk(A). (6)

Note that for all other indices j 6= k it holds that

|ajj| > rj(A) + rk(A)− |akk|. (7)

We choose the scaling matrix W to have the following form:

W = diag(w1, w2, . . . , wn), where wi =

{
γ if i = k,
1 otherwise.

In order to ensure that AW is an SDD matrix, we have to choose γ, such that:

|akk|γ > rk(A), (8)

and
|ajj| > rj(A) + (γ− 1)|ajk|, j ∈ N \ {k}. (9)

Since (9) is fulfilled for all j, for which ajk = 0, and due to the fact that |akk| > 0, it means
that γ has to be chosen from the following interval

G1 :=
rk(A)

|akk|
< γ < 1 + min

j∈N\{k},ajk 6=0

|ajj| − rj(A)

|ajk|
= G2. (10)

This interval is not empty, because from (6) and (7), we have(
rk(A)− |akk|

)
|ajk| < |akk|

(
|ajj| − rj(A)

)
,



Mathematics 2023, 11, 2382 7 of 17

or, equivalently,

rk(A)|ajk| < |akk|
(
|ajj| − rj(A) + |ajk|

)
.

Note that we can always choose γ from interval

rk(A)

|akk|
< γ < 1 +

∆(A)

sk(A)
, (11)

where
∆(A) := min

j∈N\{k}

(
|ajj| − rj(A)

)
,

which is a bit smaller than (10), but very easy to calculate. It is also non-empty, because of
(6) and (7), rewritten as

sk(A) < |akk| ≤ rk(A), rk(A)− |akk| < ∆(A), (12)

so that

sk(A)
(

rk(A)− |akk|
)
< |akk|∆(A) =⇒ rk(A)sk(A) < |akk|sk(A) + |akk|∆(A).

Remark 1. The form of a scaling matrix also proves that the Nearly-SDD class is contained in DZ
class (which is fully characterized with the scaling matrices of this form, see [42]).

Remark 2. Although Nearly-SDD class is a subset of DZ class, it is worth discussing its applica-
tions, since its definition, in the form of (6) and (7) (which covers all Nearly-SDD matrices except
SDD ones) suggests that we can expect computationally more efficient eigenvalue localizations,
upper bound for the inverse, etc., compared to those obtained for wider classes of matrices.

Remark 3. Obviously, Nearly-SDD class is a subclass of non-singular H-matrices.

4. Possible Applications
4.1. A New Eigenvalue Localization Set

It is well-known that every subclass of H-matrices can lead to an eigenvalue localiza-
tion set, see [2,7]. For example, the condition defining SDD matrices leads to the well-known
Geršgorin set [1], and the condition defining DZ matrices leads to the DZ eigenvalue local-
ization set, a special case of the eigenvalue localization set in [12]. Here, we will reformulate
Theorem 6 from [12] for the case S = {k}, which corresponds to DZ class. As usual, by
σ(A) we denote the spectrum of A.

Theorem 2 ([12], Corrolary of Theorem 6). Let k ∈ N be an arbitrary index, and n ≥ 2. For a
given matrix A = [aij] ∈ Cn,,n, and all j ∈ N \ {k}, define sets

Vkj(A) :=
{

z ∈ C : |z− akk|
(
|z− ajj| − rj(A) + |ajk|

)
≤ rk(A)|ajk|

}
.

Then
σ(A) ⊆ C{k}(A) :=

⋃
j∈N\{k}

Vkj(A).

Furthermore
σ(A) ⊆ DZ(A) =

⋂
k∈N

C{k}(A).

Analogously, here, by the use of Theorem 1, we obtain the following eigenvalue
localization result.
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Theorem 3. For a given matrix A = [aij] ∈ Cn,,n, n ≥ 2, for i ∈ N, define the Geršgorin-
type disks

Γ?
i (A) :=

{
z ∈ C : |z− aii| ≤ min

(
ri(A), si(A)

)}
and for all i, j ∈ N, j 6= i, the ellipses

Pij(A) :=
{

z ∈ C : |z− aii|+ |z− ajj| ≤ ri(A) + rj(A)
}

.

Then

σ(A) ⊆ P(A) :=

(⋃
i∈N

Γ?
i (A)

)⋃ ⋃
i,j∈N,

j 6=i

Pij(A)

.

Proof. Suppose, on the contrary, that there exists an eigenvalue λ of A, such that λ /∈ P(A).
Then, for all i ∈ N, λ /∈ Γ?

i (A) , and for all i, j ∈ N, i 6= j, λ /∈ Pij(A), i.e.,

|λ− aii| > min
(
ri(A), si(A)

)
for all i ∈ N and

|λ− aii|+ |λ− ajj| > ri(A) + rj(A) for all i, j ∈ N, i 6= j,

which means that λE− A is a Nearly-SDD matrix, hence non-singular. This is an obvious
contradiction, so the proof is concluded.

Obviously, for everyPij(A) ⊂ Γi(A)∪ Γj(A), where Γi(A) denotes the i−th Geršgorin disk:

Γi(A) := {z ∈ C : |z− aii| ≤ ri(A)}.

More precisely:

• If Γi(A) ∩ Γj(A) = ∅, then Pij(A) = ∅,
• If Γi(A) ∩ Γj(A) 6= ∅, then Pij(A) is an ellipse with foci aii and ajj.

As an immediate consequence, we have the following statement.

Corollary 2. If for a given matrix A = [aij] ∈ Cn,,n, n ≥ 2,

|aii − ajj| > ri(A) + rj(A) for all i, j ∈ N, j 6= i, then

σ(A) ⊆ Γ?(A) :=
⋃

i∈N
Γ?

i (A).

This Corollary says that if we have a matrix for which all Geršgorin circles are isolated,
then it is possible to reduce their radius. Here, we give an illustrative example.

Example 1. In stability theory of continuous time-independent dynamical systems, the position
of the spectrum of a considered matrix is crucial. In order to ensure that the whole spectrum lies
in the open left-half plane, it is sufficient to find a good spectrum of localization, which lies in the
open left-half plane itself. This is the main reason for finding as many as possible elegant, meaning
computationally cheap, eigenvalue localizations. This particular example shows how Corollary 2
can help to achieve this goal.

Consider a matrix

A5 =


−1.2 + 4i 2 0.1 0.9 1

0.2 −6.2− i 2 0.5 0.1
1 0.5 −26.2 0.1 1

0.1 0.2 1 −11.7 0.2
0.1 0.5 1 0.1 −21.2

.
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In Figure 2, Geršgorin circles are marked by full line, exact eigenvalues by red crosses, and
localization area obtained by Corollary 2 (smaller circles) is shaded. Obviously, the original
Geršgorin set goes to the right-half plane, so it can not provide conclusion about stability,
while the localization set Γ?(A5) is completely in the left-half plane, hence, we now have
an answer, the corresponding dynamical system is stable.

Figure 2. Comparison between the Geršgorin set (black line) and Γ?(A5) from Corollary 2 (shaded).
Exact eigenvalues are marked by red crosses.

Remark 4. Similar observations can be found in [41], but the proof given there is based on the
structure of the corresponding eigenvector, hence it required more technicalities, comparing to
the approach presented here, which is based on the Equivalence Principle between subclasses of
H-matrices and corresponding Geršgorin-type localizations.

4.2. Upper Bounds for the Norm of the Inverse of Matrices From Nearly-SDD Class

In order to give an upper bound for the maximum norm of the matrix inverse to a
Nearly-SDD matrix A, we will use the facts from the previous section.

Theorem 4. Let A = [aij] ∈ Cn,n be a Nearly-SDD matrix, for which there exists an index k, such
that

sk(A) < |akk| ≤ rk(A), and for all j 6= k : |ajj| > rj(A) +
(

rk(A)− |akk|
)

.

Then,

‖A−1‖∞ ≤
rk(A) + sk(A) + ∆(A)

|akk|∆(A)− sk(A)
(

rk(A)− |akk|
) , (13)

where
∆(A) := min

j∈N\{k}

(
|ajj| − rj(A)

)
.

Proof. Let W be a scaling matrix, such that AW is an SDD matrix. Then

‖A−1‖∞ ≤ ‖W‖∞‖(AW)−1‖∞.

Choose γ from the admissible interval (11), i.e.,

F1 :=
rk(A)

|akk|
< γ < 1 +

∆(A)

sk(A)
=: F2. (14)

Since
rk(A)

|akk|
≥ 1, we immediately have

‖W‖∞ = max{1, γ} = γ.
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On the other hand, according to Varah’s well-known result, for the inverse of SDD matrix
AW we have

‖(AW)−1‖∞ ≤ max
i∈N

1
|(AW)ii| − ri(AW)

= max

{
1

|akk|γ− rk(A)
, max

j∈N\{k}

1
|ajj| − rj(A)− (γ− 1)|ajk|

}

≤ max

{
1

|akk|γ− rk(A)
,

1
∆(A)− (γ− 1)sk(A)

}
.

Denoting by

φ1(γ) =
γ

|akk|γ− rk(A)
and φ2(γ) =

γ

∆(A)− (γ− 1)sk(A)
,

for an arbitrary γ from the interval (F1, F2) given in (14), we have

‖A−1‖∞ ≤ max
{

φ1(γ), φ2(γ)
}

.

Obviously, function φ1(γ) =
1

|akk| −
rk(A)

γ

is a decreasing function by γ, while

φ2(γ) =
1

∆(A)+sk(A)
γ − sk(A)

is an increasing function by γ. Since

‖A−1‖∞ ≤ min
F1<γ<F2

max
{

φ1(γ), φ2(γ)
}

,

the minimum over γ will be attained for γ̂ satisfying

|akk|γ̂− rk(A) = ∆(A)− (γ̂− 1)sk(A), i.e.,

γ̂ =
rk(A) + sk(A) + ∆(A)

|akk|+ sk(A)
= 1 +

rk(A)− |akk|+ ∆(A)

|akk|+ sk(A)
,

if such a γ̂ belongs to the admissible interval (14). This is the case, because, due to (12)(
rk(A)− |akk|

)
sk(A) < ∆(A)|akk| =⇒ rk(A)

(
|akk|+ sk(A)

)
< |akk|

(
rk(A) + sk(A) + ∆(A)

)
=⇒ F1 =

rk(A)

|akk|
<

rk(A) + sk(A) + ∆(A)

|akk|+ sk(A)
= γ̂,

and

sk(A)
(

rk(A)− |akk|
)
< |akk|∆(A) =⇒ sk(A)

(
rk(A)− |akk|+ ∆(A)

)
<
(
|akk|+ sk(A)

)
∆(A)

=⇒ γ̂ = 1 +
rk(A)− |akk|+ ∆(A)

|akk|+ sk(A)
< 1 +

1
sk(A)

∆(A) = F2.

Finally,

min
F1<γ<F2

max
{

φ1(γ), φ2(γ)
}
= φ1(γ̂) = φ2(γ̂) =

γ̂

|akk|γ̂− rk(A)

=
rk(A) + sk(A) + ∆(A)

|akk|
(

rk(A) + sk(A) + ∆(A)
)
− rk(A)

(
akk|+ sk(A)

) =
rk(A) + sk(A) + ∆(A)

|akk|∆(A)− sk(A)
(

rk(A)− |akk|
) ,

and (13) is proved.
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Remark 5. Since the Nearly-SDD class is a subset of DZ class, which is a special case of S−SDD
class for S being a singleton, it is worthwhile to compare our inverse norm bound with the known
ones from [22,27]. However, in [39], all these known bounds were discussed in more details, and the
best one for DZ matrices is given in the following form (see Theorem 4.2 in [39]):

Theorem 5. Let A = [aij] ∈ Cn,,n, n ≥ 2, be a DZ matrix, such that[
|ajj| − rk

j (A)
]
|akk| > |ajk|rk(A) for a certain k ∈ N and all j 6= k.

Then
‖A−1‖∞ ≤ max{ξ1(k), ξ2(k)},

where

ξ1(k) := max
j 6=k

pj(A)≥pk(A)

|ajj| − rk
j (A) + rk(A)[

|ajj| − rk
j (A)

]
|akk| − |ajk|rk(A)

,

ξ2(k) := max
j 6=k

pj(A)<pk(A)

|ajk|+ |akk|[
|ajj| − rk

j (A)
]
|akk| − |ajk|rk(A)

,

rk
i (A) := ri(A)− |aik|, and pi(A) := |aii| − ri(A), i ∈ N.

In our case, when matrix A has only one non-SDD row, and the index of this row is k,
we have

pk(A) ≤ 0, and pj(A) > 0, for all j 6= k,

so there are no indices satisfying condition in the definition of ξ2(k). Hence,

‖A−1‖∞ ≤ ξ1(k) = max
j 6=k

rk(A) + |ajk|+
(
|ajj| − rj(A)

)
|akk|

(
|ajj| − rj(A)

)
− |ajk|

(
rk(A)− |akk|

) . (15)

Obviously, the bound (15) is an increasing function by |ajk|, while the equivalent expression

ξ1(k) = max
j 6=k

1
|akk|

(
1 +

|akk|rk(A) + rk(A)|ajk|

|akk|
(
|ajj| − rj(A)

)
− |ajk|

(
rk(A)− |akk|

))

suggests that it is a decreasing function over |ajj| − rj(A). Hence, our bound (13) can
not be better than (15), but it requires less computations. Namely, for a given matrix
with only one non-SDD row, we know index k of that row, so for the bound given by

(13), we have to find ∆(A) := minj∈N\{k}

(
|ajj| − rj(A)

)
, and then calculate expression

rk(A)+sk(A)+∆(A)

|akk |∆(A)−sk(A)

(
rk(A)−|akk |

) only once, while for the bound given by (15), we have to calculate

n− 1 expressions
rk(A)+|ajk |+

(
|ajj |−rj(A)

)
|akk |
(
|ajj |−rj(A)

)
−|ajk |

(
rk(A)−|akk |

) , and then find their maximum.

More importantly, for almost all community matrices in ecology, which we have
analyzed, our bound is not worse, but the same as (15). For example, for A1:

estimation (15) from [39] estimation (13)

‖A−1‖∞ ≤ 1.2 ‖A−1‖∞ ≤ 1.2
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4.3. Linear Complementarity Problem

Given A = [aij] ∈ Rn,n and q ∈ Rn, the linear complementarity problem (LCP(A, q)) is
to find a vector x ∈ Rn , such that

x ≥ 0, Ax + q ≥ 0, (Ax + q)Tx = 0,

or to show that such vector does not exist. It is well known that LCP(A, q) has a unique
solution for any q ∈ Rn if, and only if, the matrix A is a P−matrix, a real square matrix
with all its principal minors positive, see [43]. Here, we will consider the Nearly-SDD
matrices with positive diagonal entries. Such matrices are H+-matrices (i.e., H-matrices
with positive diagonal entries), so they are P-matrices.

In defining an upper error bound for LCP, the following fact can be a starting point,
see [44],

||x− x∗||∞ ≤ max
d∈[0,1]n

||(Ad)
−1||∞||r(x)||∞,

where Ad = I − D + DA, D = diag(d1, d2, . . . , dn) and d = [d1, d2, . . . , dn]T .
In the same paper, for A being an H+-matrix, it has been shown that

‖(Ad)
−1‖∞ ≤ ‖〈A〉−1 max{Λ, I}‖∞,

where 〈A〉 = [mij] ∈ Rn,n is the comparison matrix to matrix A, defined with

mij :=
{
|aii| for i = j,
−|aij| for i 6= j,

and Λ is the diagonal part of A. Here, we have used the max operator in the following sense:

max{Λ, I} = diag
(

max(a11, 1), max(a22, 1), . . . , max(ann, 1)
)

.

Obviously, if A is a Nearly-SDD matrix, then its comparison matrix 〈A〉 is an M-matrix,
and (13) can be treated as an upper bound of its inverse, as well. Hence

‖〈A〉−1‖∞ ≤
rk(A) + sk(A) + ∆(A)

akk∆(A)− sk(A)
(

rk(A)− akk

) .

On the other hand,
‖max{Λ, I}‖∞ = max{1, max

i
aii},

so that

‖(Ad)
−1‖∞ ≤

rk(A) + sk(A) + ∆(A)

akk∆(A)− sk(A)
(

rk(A)− akk

) max{1, max
i

aii}. (16)

However, when we are considering a subclass of H+-matrices, for which we know a
form of the scaling matrix, then we can use the approach presented in [33]. In fact, we can
apply Proposition 3.1 from this paper, since our class belongs to the Σ−SDD class (the class
for which there exists a non-empty subset S, such that matrix A is an S−SDD matrix). From
this Proposition, because of our scaling parameter γ is greater than 1, we conclude that

max
d∈[0,1]n

||(Ad)
−1||∞ ≤ max

{
γ

β
, γ

}
,

where
β := min

i
βi, and βi := aiiwi −∑

j 6=i
|aij|wj, i ∈ N,
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while W denotes a scaling matrix

W = diag(w1, w2, . . . , wn), where wi =

{
γ if i = k,
1 otherwise.

Obviously,

βk = akkγ− rk(A) and βi = aii − ri(A) + |aik| − |aik|γ, i 6= k,

so that

β = min
{

akkγ− rk(A), min
i 6=k

(
aii − ri(A)− |aik|(γ− 1)

)}
.

Hence, we have proved the following proposition.

Proposition 1. Let us assume that A = [aij] ∈ Cn,,n is a Nearly-SDD matrix, which is not SDD,
i.e., there exist an index k, such that

sk(A) < |akk| ≤ rk(A) and for all j 6= k : |ajj| > rj(A) + rk(A)− |akk|.

Let γ ∈ (F1, F2) defined by (14). Then

max
d∈[0,1]n

||(Ad)
−1||∞ ≤ max

 γ

min
{

akkγ− rk(A), mini 6=k

(
aii − ri(A)− |aik|(γ− 1)

)} , γ

. (17)

Let us consider the same example as in [33], and compare the corresponding bounds.

Example 2 ([33]). Let

A6 =

 t + 1 −t −t
−t 3t −t
−t −t 3t

, t ≥ 1.

It is a Nearly-SDD matrix, which is not SDD, and satisfies conditions of Proposition 1 for k = 1, so
we can conclude that for all γ ∈ (F1, F2) it holds that

max
d∈[0,1]n

||(Ad)
−1||∞ ≤ max

{
γ

min{(t + 1)γ− 2t, 2t− tγ} , γ

}
.

We will choose γ, such that

(t + 1)γ? − 2t = 2t− tγ?, i.e., γ? =
4t

2t + 1
.

Obviously

F1 =
rk(A)

|akk|
=

2t
t + 1

< γ? =
4t

2t + 1
< 1 +

t
t
= 1 +

∆(A)

sk(A)
= F2.

Finally,

max
d∈[0,1]n

||(Ad)
−1||∞ ≤ max

{
γ?

(t + 1)γ? − 2t
, γ?

}
= max

{
4t

2t+1

(t + 1) 4t
2t+1 − 2t

,
4t

2t + 1

}

= max
{

2,
4t

2t + 1

}
= 2.

In [33], the obtained bound for this matrix is 2k+1
k , which is greater than 2.
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estimation from [33] estimation (17)

maxd∈[0,1]n ||(Ad)
−1||∞ ≤ 2k+1

k maxd∈[0,1]n ||(Ad)
−1||∞ ≤ 2

Remark 6. If we compare this upper bound with the one from [40], on the same examples given
there, we see that the bounds are the same, but our bound (16) is computationally cheaper, for the
same reason we explained when comparing the bounds (13) and (15).

4.4. Block Case

It is well-known that in real applications, particularly in ecology, matrices might have
zeros on diagonal places and this restriction can not be avoided due to some physical
explanations. However, this fact immediately makes such a matrix outside of the non-
singular H-matrix class. This is one of the reasons why block generalizations become
important. The other important reason is that partitioning a given matrix into blocks
reduces the dimension of the problem.

Block generalizations of the class of H-matrices were considered in [45].
For a matrix A = [aij] ∈ Cn,n and a partition π = {pj}`j=0 of the index set N, one can

present A in the block form as [Aij]`×`. Here, we will consider only one possible way of
introducing the `× ` comparison matrix for a given A and a partition π of the index set.
The comparison matrix will be denoted by 〈A〉π = [µij], where

µij =


(||A−1

ii ||∞)−1, i = j and Aii non-singular,
0, i = j and Aii singular,
−||Aij||∞, i 6= j.

For a given A = [aij] ∈ Cn,n, and a given partition π = {pj}`j=0 of the index set we say
that:

• A is a block π H-matrix if 〈A〉π is an H-matrix,
• A is a block π SDD matrix if 〈A〉π is an SDD matrix,
• A is a block π Nearly-SDD matrix if 〈A〉π is a Nearly-SDD matrix,
• Etc.

In [46] the following results has been proved.

Theorem 6 ([46]). If A = [Aij]n×n is a block π H-matrix, then

||A−1||∞ ≤ ||(〈A〉π)−1||∞.

Due to this theorem, we are able to estimate the norm of the inverse of matrices which
are not H-matrices. The following example illustrates how this works:

A7 =



−4 0.2 0.2 0 0 0
−1 4 −0.2 0 0 0
0 3 0 4 1 −0.1
0 3 −0.5 0 0 0
0 3 2 −0.1 5 −0.4
0 3 −0.5 2 1 4

.

This is a matrix with zeros on its diagonal, so it can not be a non-singular H-matrix,
meaning that we can not apply any of known point-wise estimations for subclasses of
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H-matrices. However, if we consider this matrix in its block form, with respect to partition
π = {0, 1, 2, 6}, we obtain the comparison matrix

〈A7〉π =

 4 −0.2 −0.2
−1 4 −0.2
0 −3 0.5

.

This matrix is, obviously from Nearly-SDD class for k = 3, hence (13) gives us an upper
bound for the inverse of comparison matrix, as well as for the original matrix A6, due to
Theorem 6:

||A−1
7 ||∞ ≤ ||(〈A7〉π)−1||∞ ≤

r3(〈A7〉π) + s3(〈A7〉π) + ∆(〈A7〉π)
0.5 · ∆(〈A7〉π)− s3(〈A7〉π)

(
r3(〈A7〉π)− 0.5

) ≤ 6.667. (18)

It is a good estimation, since the exact values are

‖A−1
7 ‖∞ = ‖

(
〈A7〉π

)−1
‖∞ = 6.2857.

Note that comparison matrix 〈A7〉π is not the Ostrowski matrix, while, as we have already
pointed out, it is a DZ matrix. However, this information is not providing a better bound,
it is the same as (18), while, at the same time, required computational work is more
demanding. Of course, the above example is just an illustrative one, the importance of such
approach grows with the matrix dimension.

5. Conclusions

While the H-matrix class itself is very important from the application point of view,
checking if a matrix is an H-matrix is a computationally very demanding job. Instead, it is
much more efficient to check if a matrix belongs to an H-matrix subclass. In the case of a
positive answer, there are lots of benefits from this fact. Let us recall just a few:

• If all diagonal entries are negative, then we immediately conclude that the correspond-
ing continuous linear (non-linear) dynamical system is asymptotically (locally) stable,
without calculating exact eigenvalues.

• Moreover, if a particular feature in mathematical model depends only on the position
of eigenvalues, we have a new localization area for eigenvalues, easily constructed
from a given H-matrix subclass by equivalence principle, which might help.

• We are able to estimate max-norm of the inverse matrix, which is important in the
perturbation theory of ill-conditioned matrices in engineering, etc.

• We can apply this new max norm estimation for the inverse to SDD matrices, poten-
tially beneficial in the analysis of a parallel-in-time iterative algorithm for Volterra
partial integro-differential problems and the preconditioning technique for an all-at-
once system from Volterra subdiffusion equations.

A subclass of H-matrices, called in this paper the Nearly-SDD class, has not been
exploited in the above sense, yet.In order to reveal the place and significance of this subclass
of H-matrices. let us conclude the following:

• If all rows of the matrix are SDD, the technique is already known and developed.
• If the matrix has only one non-SDD row, the known technique offers to check if the

matrix is double SDD (satisfy condition (3)). If not, the known technique offers to
check the condition (4), i.e., whether the matrix is DZ or not. However, for that check, it
is necessary to go through all the indices, and for each of them check n− 1 conditions.

• Now, for a matrix with only one non-SDD row, we offer to check, in total, n conditions,
(6) and (7). We have also shown that, if these conditions are satisfied, then (4) will be
satisfied as well (precisely for the index corresponding to non SDD row).

Obviously, as the matrix dimension grows, savings become more important.
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21. Cvetković, L.; Dai, P.F.; Doroslovački, K.; Li, Y.T. Infinity norm bounds for the inverse of Nekrasov matrices. Appl. Math. Comput.

2013, 219, 5020–5024. [CrossRef]
22. Kolotilina, L.Y. New subclasses of the class of H-matrices and related bounds for the inverses. J. Math. Sci. 2017, 224, 911–925.

[CrossRef]
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